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Abstract

In this article, by means of using discrete zero curvature representation and constructing

opportune time evolution problems, two new discrete integrable lattice hierarchies with n-

dependent coefficients are proposed, which related to a new discrete Schrödinger nonisospectral

operator equation. The relation of the two new lattice hierarchies with the Volterra hierarchy

is discussed. It has been shown that one lattice hierarchy is equivalent to the positive Volterra

hierarchy with n-dependent coefficients and another lattice hierarchy with isospectral problem is

equivalent to the negative Volterra hierarchy. We demonstrate the existence of infinitely many

conservation laws for the two lattice hierarchies and give the corresponding conserved densities

and the associated fluxes formulaically. Thus their integrability is confirmed.

1 Introduction

In recent years there has been wide interests in the study of nonlinear integrable lattice systems. It is

well known that discrete lattice systems not only have rich mathematical structures but also have many

applications in science, such as mathematical physics, numerical analysis, statistical physics, quantum

physics, etc. Recently, Boiti and co-authors [1] proposed a whole class of nonlinear lattice evolution

equations, by use of the Lax technique introduced in [2] and [3], which correspond to isospectral

deformations of the new Schrödinger discrete spectral operator,

(E2 − qn+1E)ψ̄n(λ) = λψ̄n(λ), (1.1)

i.e.

Eψn(λ) = Un(λ)ψn(λ), Un(λ) =

(

0 1

λ qn

)

, (1.2)
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where n ∈ Z is a discrete variable, λ ∈ C is the spectral parameter and Ek is the shift operator defined

by Ekf(n) = f(n+k), k ∈ Z. This spectral equation was introduced by Shabat in [4] and investigated

by Boiti et al in [5]. Integrable lattice hierarchies related to (1.1) are interesting. It has been shown

that they contain as special cases discrete versions of KdV, Sine-Gordon and Liouville equations. The

Darboux transformation and the Bäcklund transformation for the proposed lattice hierarchies were

also obtained in [1]. In [6], we demonstrated the existence of infinitely many conservation laws for the

proposed lattice hierarchies and gave the corresponding conserved densities and the associated fluxes

formulaically.

In this paper, we would like to consider nonisospectral deformations of the Schrödinger discrete spectral

operator equation (1.1). By means of constructing opportune time evolution equation explicitly,

dψn(λ)

dt
= V (m)

n (qn, λ)ψn(λ), (1.3)

where V
(m)
n is a proper 2× 2 matrix, and using the discrete zero curvature representation

∂Un

∂t
+
∂Un

∂λ

dλ

dt
− (EV (m)

n )Un + UnV
(m)
n = 0, (1.4)

where dλ
dt = aλβ , a 6= 0 with β being a proper constant, we propose two integrable lattice hierarchies

with n-dependent coefficients related to nonisospectral problem (1.2). The relation of the two new

lattice hierarchies with the Volterra lattice hierarchy is discussed. It is well known that the existence

of infinitely many conservation laws is very important indicator of integrability of the system. From

physical view and numerical analysis, it is also very useful to know whether exist conservation laws for a

lattice system. Infinitely many conservation laws for many discrete lattice systems have been obtained.

However, to our knowledge, conservation laws for the lattice system with n-dependent coefficients have

not been discussed in the literature. In this article, using the explicit Lax pairs and following the

method studied in [6-10], we will demonstrate the existence of infinitely many conservation laws for

the obtained two lattice hierarchies and give the corresponding conserved densities and the associated

fluxes formulaically. It should be remarked that an extension of the discrete Schrödinger spectral

problem (1.1), i.e.

(E2 + anE + bn + cnE
−1)ψn = λψn (1.5)

and associated evolution equations were studied in [11,12]. However, the condition cn = 0 in above

operator equation is not allowed in [11,12].

2 Two integrable lattice hierarchies with n-dependent coefficient as-

sociated with nonisospectral problem (1.2)

The derivation of new integrable lattice hierarchy is always very important and interesting, though the

used method sometimes is standard. In this section, we derive two integrable lattice hierarchies with n-

dependent coefficients associated with nonisospectral problem (1.2) by means of discrete zero curvature
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representation and study the relation of the two lattice hierarchies with the Volterra hierarchy. Let’s

construct opportune time evolution matrix V
(m)
n as follows,

V (m)
n =

(

B(m)(λ) A(m)(λ)

λEA(m)(λ) C(m)(λ)

)

(2.1)

with

A(m)(λ) =
m
∑

j=−1

Ajλ
m−j , B(m)(λ) =

m
∑

j=−1

Bjλ
m−j , C(m)(λ) =

m
∑

j=−1

Cjλ
m−j ,

where Aj, Bj , Cj(j = −1, 0, 1.....m) are determined by the following equation:

(E + 1)Bj = −qnEAj , (E2 − 1)Aj = qn(E − 1)Bj−1,

Cj = −Bj, j = 0, 1, 2, ...,m (2.2)

EB−1 − C−1 + qnEA−1 = 0, (E2 − 1)A−1 = 0,

EC−1 −B−1 − qnEA−1 = a.

Here we suppose time evolution of spectral parameter λ is described by dλ
dt = aλm+2,m ≥ −1. From

discrete zero curvature representation, an integrable lattice hierarchy is proposed,

q̇n = qn(E − 1)Cm, m ≥ −1, (2.3)

where Cm,m ≥ −1 can be found from equation (2.2) via the path:

A−1 → B−1 → C−1 → A0 → C0 → ........ → Am−1 → Cm−1 → Am → Cm → .....

By means of the following formulas:

(E + 1)−1 =
∞
∑

k=0

(−1)kEk,

(E − 1)−1 = −
∞
∑

k=0

Ek, (2.4)

(E2 − 1)−1 = −
∞
∑

k=0

E2k,

and choose A−1 = −1, we obtain the solutions to equation (2.2):

B−1 = (
n

2
−

1

4
)a+ c1(−1)n +

∞
∑

k=0

(−1)kqn+k,

C−1 = (
n

2
+

1

4
)a− c1(−1)n −

∞
∑

k=0

(−1)kqn+k,
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A0 = c2 + c3(−1)n + (2c1(−1)n −
a

2
)

∞
∑

k=0

qn+2k +
∞
∑

k=0

q2n+2k − 2
∞
∑

k=0

qn+2k

∞
∑

j=1

(−1)j+1qn+j+2k,

C0 = c4(−1)n + c2

∞
∑

k=0

(−1)kqn+k − c3(−1)n
∞
∑

k=0

qn+k −
a

2

∞
∑

k=0

(−1)kqn+k

∞
∑

j=0

qn+2j+k+1 (2.5)

−2c1(−1)n
∞
∑

k=0

qn+k

∞
∑

j=0

qn+2j+k+1 +
∞
∑

k=0

(−1)kqn+k

∞
∑

j=0

q2n+2j+k+1

−2
∞
∑

k=0

(−1)kqn+k

∞
∑

j=0

qn+2j+1+k

∞
∑

i=2

(−1)iqn+i+2j+k

A1 = (E2 − 1)−1[qn(1− E)C0], C1 = (E + 1)−1(qnEA1),

............

where ci, (i = 1, 2, 3, 4) are arbitrary constants. The first flow and the second flow of lattice hierarchy

(2.3) are described, respectively,

q̇n = qn(2c1(−1)n +
a

2
+ qn + 2

∞
∑

k=1

(−1)kqn+k), (2.6)

q̇n = qn(E − 1)C0, (2.7)

In order to obtain the second lattice hierarchy, we set, in matrix V
(m)
n , that

A(m)(λ) =
m
∑

j=0

Ajλ
j−m−1, B(m)(λ) =

m
∑

j=0

Bjλ
j−m−1, C(m)(λ) =

m
∑

j=0

Cjλ
j−m−1,

where Aj, Bj , Cj(j = 0, 1, 2, ....m) are determined by the following equation:

(E + 1)Bj = −qnEAj , (E2 − 1)Aj−1 + qn(E − 1)Cj = 0,

Bj = −Cj , j = 1, 2, ...,m (2.8)

EB0 − C0 + qnEA0 = 0, (E − 1)C0 = 0,

EC0 −B0 − qnEA0 = a.

Here the time evolution of spectral parameter λ is described by dλ
dt = aλ−m,m ≥ 0. By means of

discrete zero curvature representation, another lattice hierarchy is proposed,

q̇n = (E2 − 1)Am, m ≥ 0, (2.9)

where Am,m ≥ 0 are determined from equation (2.8) via the path:

C0 → B0 → A0 → B1 → A1 → ....... → Bm−1 → Am−1 → Bm → Am → ......
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Choosing C0 = 0, we obtain

B0 = na− 1, A0 =
1− na

qn−1
, B1 =

1− na

qnqn−1
+ a

∞
∑

k=0

1

qn+kqn+k+1
,

A1 =
(n− 1)a− 1

q2n−1

(
1

qn
+

1

qn−2
)−

2a

qn−1

∞
∑

k=0

1

qn+kqn+k+1
, (2.10)

B2 =
−1

qn−1qn
[
1 + (1− n)a

qn−2qn−1
+

1 + (3− n)a

qn−1qn
+

1− na

qnqn+1
]−

2a

qn−1qn

∞
∑

k=1

1

qn+kqn+k+1
−3a

∞
∑

k=0

1

q2n+kq
2
n+k+1

,

A2 =
−(1 + E−1)B2

qn−1
,

................

The first flow of (2.9) is given by

q̇n =
1− (n+ 2)a

qn+1
−

1− na

qn−1
, (2.11)

which is just a discrete KdV equation with n dependent coefficient. The second flow of (2.9) is

q̇n =
(n + 1)a − 1

q2n+1

(
1

qn+2
+

1

qn
)−

(n− 1)a− 1

q2n−1

(
1

qn
+

1

qn−2
)

−
2a

qn+1

∞
∑

k=2

1

qn+kqn+k+1
+

2a

qn−1

∞
∑

k=0

1

qn+kqn+k+1
. (2.12)

We notice that by considering the following two transformations for (1.1):

ψ̄n = φ̄nλ
n/2

∞
∏

k=n+1

qk, (2.13)

ψ̄n = φ̄nλ
n/2

n
∏

k=−∞

1

qk
, (2.14)

the nonisospectral problem (1.1) becomes

(qnqn+1)
−1φ̄n+1 = φ̄n−1 + λ−1/2φ̄n (2.15)

i.e.,

Eφn = Ūnφn, Ūn =

(

0 1

qnqn+1 λ−1/2qnqn+1

)

(2.16)
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and continuous time evolution equation (1.3) becomes

dφn(λ)

dt
= V̄ (m)

n (qn, λ)φn(λ), (2.17)

where

V̄ (m)
n (qn, λ) =





v
(m)
11 − n−1

2λ
dλ
dt −

∑

∞

k=n
q̇k
qk

λ1/2v
(m)
12

qn

λ−1/2qnv
(m)
21 v

(m)
22 − n

2λ
dλ
dt −

∑

∞

k=n+1
q̇k
qk



 (2.18)

Discrete spectral problem (2.15) is the well-known Volterra discrete spectral problem with canonical

variable 1
qnqn+1

. So, it may be questioned that are lattice hierarchies (2.3) and (2.9) equivalent to the

Volterra hierarchy with n dependent coefficients? It is well known that lattice hierarchy derived from

discrete zero curvature representation not only depends on discrete spectral operator equation but

also relates to its continuous-time evolution problem. In the following, we will give an answer to the

question. By the discrete zero curvature representation of Ūn and V̄n, we have

d(qnqn+1)

dt
= qnqn+1(Ev

(m)
22 − v

(m)
11 − λ−1qnv

(m)
21 − λ−1dλ

dt
+
q̇n

qn
+
q̇n+1

qn+1
), (2.19)

λ−1/2 d(qnqn+1)

dt
= λ−1/2qnqn+1[(E − 1)v

(m)
22 +

1

qn
(E − E−1)V

(m)
21 +

q̇n+1

qn+1
] (2.20)

For lattice hierarchy (2.9), notice the conditions (2.8) of v
(m)
ij , the equations (2.19) and (2.20) are

compatible, which leads to

d(qnqn+1)

dt
= qn+1(E

2 − 1)Am + qn(E
2 − 1)EAm, m ≥ 0. (2.21)

However, for lattice hierarchy (2.3), notice the conditions (2.2) of v
(m)
ij ,the equations (2.19) and (2.20)

are compatible only if a = 0. In this case, we have

d(qnqn+1)

dt
= qnqn+1(E

2 − 1)Cm, m ≥ −1. (2.22)

Now let’s discuss the relation of lattice hierarchy (2.21) with the positive Volterra lattice hierarchy.

First notice that positive Volterra lattice hierarchy is described by

dun

dt
= un(E − 1)(1 + E−1)em, m ≥ 0, (2.23)

where em is determined by the following equation:

(E −E−1)ej + (E − 1)hj+1 = 0, j ≥ 0

(E − 1)ej + un+1E
2hj − unhj = 0, j ≥ 0 (2.24)

(E − 1)h0 = 0,

6



By introducing un = 1
qnqn+1

, and t→ −t for even flows, the hierarchy (2.21) is written as

dun

dt
= un(E − 1)(E + 1)(−1)m+1Cm+1, m ≥ 0. (2.25)

If only considering isospectral problem, we can prove the following formula by the induction:

(−1)j+1(E + 1)Cj+1 = (1 + E−1)ej , j ≥ 0. (2.26)

In fact, since e0 = un, C1 = −un−1, equation (2.26) holds for j = 0. Suppose it is true for j = m− 1,

then notice that

Cm+1 = (E − 1)−1[q−1
n (1− E2)(

E−1(1 + E)Cm
qn−1

)]

= (−1)m(E − 1)−1[q−1
n (1− E2)(

E−1(1 + E−1)em−1

qn−1
)] (2.27)

and

E−1(1 + E−1)em−1 = qn−1(E
2 − 1)−1[qn(E − 1)E−1em]. (2.28)

Then, equation (2.26) is also true for j = m. Thus, hierarchy (2.25) is equivalent to positive Volterra

hierarchy for isospectral and nonisospectral problems. The first and the second nonisospectral flow of

the hierarchy (2.25) are described by the following equations, respectively,

dun

dt
= un(un+1 − un−1)− aun[(n + 3)un+1 + un − nun−1] (2.29)

dun

dt
= unun+1(un + un+1 + un+2)− unun−1(un + un−1 + un−2) +

+2au2n(un+1 + 2
∞
∑

k=n+2

uk) + 2aunun+1

∞
∑

k=n+3

uk + 2aunun−1

∞
∑

k=n

uk

+nau2n(un + un−1) + (n− 1)aun−1un(un−2 + un−1)

−(n+ 1)au2n(un + un+1)− (n+ 2)aunun+1(un+1 + un+2). (2.30)

Very recently, the negative Volterra hierarchy is proposed by Pritula and Vekslerchik in [13], which

has the form,

dun

dt
= un(E − 1)gm+1, m ≥ −1, (2.31)

where gi, i ≥ 0 is determined by the following equation:

(E − E−1)fj + (E − 1)gj−1 = 0, j ≥ 1

(E − 1)fj + un+1E
2gj − ungj = 0, j ≥ 1 (2.32)

(E − E−1)f0 = 0, un+1E
2g0 − ung0 = 0.
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Set un = 1
qnqn+1

in equation (2.32), then g0 = qn. Under transformation un = 1
qnqn+1

, and t → −t for

even flows, the hierarchy (2.22) possesses the form

dun

dt
= un(E − 1)(E + 1)(−1)mCm, m ≥ −1. (2.33)

The first flow of the hierarchy (2.33) is written as,

dun

dt
=

1

qn
−

1

qn+1
(2.34)

which is just the simplest flow of negative Volterra hierarchy (2.31). The fact is very interesting.

Can we establish relation between lattice hierarchy (2.33) and the negative Volterra lattice hierarchy

(2.31)? Answer is yes. In fact, we can prove the following formula by the induction,

(−1)j(E + 1)Cj = gj+1, j ≥ −1. (2.35)

First, from equation (2.2) we have −(E + 1)C−1 = qn = g0, thus equation (2.35) holds as j = −1.

Notice that

(E + 1)Cj = qn(E
2 − 1)−1[qn+1(1− E)ECj−1],

gj+1 = qn(E
2 − 1)−1[qn+1(1− E)fj+1], j ≥ 0 (2.36)

So, for j ≥ 0, equation (2.35) is equivalent to

(−1)jECj−1 = fj+1, j ≥ 0 (2.37)

Since

f1 = −(1 + E)−1Eg0 =
∞
∑

k=0

(−1)k+1qn+k+1 = EC−1,

equation (2.37) is true for j = 0. Suppose equation (2.37) holds for j = m, then it also holds for

j = m+ 1. In fact, we have

fm+2 = −(1 + E)−1Egm+1 = −(1 + E)−1[qn+1(E
2 − 1)−1(qn+2(1 −E)Efm+1)]

= (−1)m+1(1 +E)−1[qn+1(E
2 − 1)−1(qn+2(1− E)E2Cm−1)] = (−1)m+1ECm (2.38)

From above analysis, we conclude that lattice hierarchy (2.9) is equivalent to the positive Volterra

hierarchy with n-dependent coefficients and lattice hierarchy (2.3) with a = 0 is equivalent to the

negative Volterra hierarchy. We thus believe it was worthwhile to study nonisospectral problem (1.2)

and the related lattice hierarchies in a independent way.
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3 Infinitely many conservation laws for lattice hierarchies (2.3) and

(2.9)

For a lattice equation

F (q̇n, q̈n, ..., qn−1, qn, qn+1, ...) = 0, (3.1)

if there exist functions ρn and Jn, such that

ρ̇n|F=0 = Jn+1 − Jn, (3.2)

then equation (3.2) is called the conservation law of equation (3.1), where ρn is the conserved density

and Jn is the associated flux. Suppose equation (3.1) has conservation law (3.2) and Jn is bounded for

all n and vanishes at the boundaries, then
∑

n ρn = c, with c being arbitrary constant, is an integral of

motion of lattice equation (3.1). In this section, we first demonstrate the existence of infinitely many

conservation laws for lattice hierarchy related to nonisospectral problem (1.2) by means of the explicit

Lax pairs, and then we derive infinitely many conservation laws for lattice hierarchies (2.3) and (2.9)

in details and give the corresponding conserved densities and the associated fluxes formulaically.

3.1 Infinitely many conservation laws for lattice hierarchy related to nonisospectral problem (1.2)

For discrete Schrödinger nonisospectral problem (1.2)

ψ2,n+1 = λψ2,n−1 + qnψ2,n, (3.3)

if set Γn =
ψ2,n−1

ψ2,n
and notice that

(ψ2,n+1ψ
−1
2,n)t

ψ2,n+1ψ
−1
2,n

=
(ψ2,n+1)t
ψ2,n+1

−
(ψ2,n)t
ψ2,n

, (3.4)

then we obtain

∂

∂t
[ln(λΓn + qn)] = Qn+1 −Qn, (3.5)

where

Qn = V
(m)
21 Γn + V

(m)
22 . (3.6)

The spectral problem (3.3) can be written in the form,

λΓnΓn+1 + qnΓn+1 − 1 = 0, (3.7)

which is a discrete Riccati equation. In order to solve the equation, we suppose the eigenfunction

ψ2(n, t, λ) is an analytical function of the arguments and expand Γn with respect to λ by the Taylor

series

Γn =
∞
∑

j=0

λjw(j)
n , (3.8)
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and then w
(j)
n can be determined recursively as follows,

w(0)
n =

1

qn−1
, w(j)

n =
−1

qn−1

∑

l+m=j−1

w
(l)
n−1w

(m)
n , j = 1, 2, 3, ..... (3.9)

i.e.,

w(1)
n =

−1

qn−2q
2
n−1

, w(2)
n =

1

q2n−2q
2
n−1

(
1

qn−3
+

1

qn−1
),

w(3)
n =

−1

q2n−2q
2
n−1

[
1

qn−2qn−1
(

1

qn−1
+

2

qn−3
) +

1

q2n−3

(
1

qn−2
+

1

qn−4
)], (3.10)

................

Further, from equation (3.5) we have

∂

∂t
lnqn +

∂

∂t

∞
∑

k=1

(−1)k+1λk

k
Φk = Qn+1 −Qn, (3.11)

with

Φ =
∞
∑

j=0

λjw̄(j)
n , w̄(j)

n =
w

(j)
n

qn
. (3.12)

Equation (3.11) leads to the form,

∂

∂t

∞
∑

j=0

λjα(j)
n =

∂

∂t
α(0)
n +

∞
∑

j=1

(ajλj+β−1α(j)
n + λj

∂

∂t
α(j)
n ) = Qn+1 −Qn, (3.13)

where

α(0)
n = lnqn, α(1)

n =
1

qnqn−1
, α(2)

n =
−1

q2n−1qn
(

1

qn−2
+

1

2qn
),

α(3)
n =

1

q2n−2q
2
n−1qn

(
1

qn−1
+

1

qn−3
) +

1

qn−2q
3
n−1q

2
n

+
1

3q3n−1q
3
n

,

α(j)
n = w̄(j−1)

n −
1

2

∑

l1+l2=j−2

w̄(l1)
n w̄(l2)

n +
1

3

∑

l1+l2+l3=j−3

w̄(l1)
n w̄(l2)

n w̄(l3)
n − ..... +

(−1)j−1

j − 2

∑

l1+l2+...+lj−2=2

w̄(l1)
n w̄(l2)

n ....w̄
(lj−2)
n + (−1)j(w̄(0)

n )j−2w̄(1)
n +

(−1)j+1

j
(w̄(0)

n )j . (3.14)

In comparison with the powers of λ on both sides of equation (3.13), we obtain infinitely many

conservation laws for lattice hierarchy related to nonisospectral problem (1.2),

ρ
(i)
n,t = J

(i)
n+1 − J (i)

n , i = 0, 1, 2, 3, ...... (3.15)
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3.2 Infinitely many conservation laws of lattice hierarchies (2.3) and (2.9)

For lattice hierarchy (2.3), notice that

Qn = λΓnEA
(m)(λ) + C(m)(λ) =

∞
∑

i=0

J (i)
n λi, (3.16)

where

J (i)
n =

{

Cm−i +
∑

s+l=i−1w
(s)
n EAm−l, 0 ≤ i ≤ m+ 1,

∑

s+l=i−1w
(s)
n EAm−l, i ≥ m+ 2

(3.17)

we thus obtain its infinitely many conservation laws (3.15), where the associated fluxes J
(i)
n (i =

0, 1, 2, .....) are presented by equation (3.17), and the conserved density ρ
(i)
n (i = 0, 1, 2, .....) are written

in the form,

ρ(i)n =

{

α
(i)
n , 0 ≤ i ≤ m+ 1,

α
(i)
n + a(i−m− 1)

∫ t
0 α

(i−m−1)
n dt, i ≥ m+ 2,

(3.18)

For lattice hierarchy (2.9), notice that

Qn = λΓnEA
(m)(λ) + C(m)(λ) =

∞
∑

i=0

J (i)
n λ−m+i, (3.19)

where

J (i)
n =

{

Ci+1 +
∑

s+l=iw
(s)
n EAl, 0 ≤ i ≤ m− 1,

∑

s+l=iw
(s)
n EAl, i ≥ m

(3.20)

with Al = 0 for l ≥ m + 1. Thus, lattice hierarchy (2.9) possesses infinitely many conservation laws

(3.15), where the associated fluxes J
(i)
n (i = 0, 1, 2, .....) are described by equation (3.20), and the

conserved density ρ
(i)
n (i = 0, 1, 2, .....) are written in the form,

ρ(i)n =















(i+ 1)a
∫ t
0 α

(i+1)
n dt, 0 ≤ i ≤ m− 1,

lnqn + (m+ 1)a
∫ t
0 α

(m+1)
n dt, i = m,

α
(i−m)
n + (i+ 1)a

∫ t
0 α

(i+1)
n dt, i ≥ m+ 1

(3.21)

Conserved quantities Hi, i ≥ 0 of lattice hierarchy (2.3) possess the following forms,

H0 =
∑

n

lnqn, H1 =
∑

n

1

qnqn−1
, H2 =

∑

n

−1

q2n−1qn
(

1

qn−2
+

1

2qn
),

H3 =
∑

n

1

q2n−2q
2
n−1qn

(
1

qn−1
+

1

qn−3
) +

1

qn−2q
3
n−1q

2
n

+
1

3q3n−1q
3
n

, (3.22)

........................
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Hm+1 =
∑

n

α(m+1)
n , Hi =

∑

n

[α(i)
n + a(i−m− 1)

∫ t

0
α(i−m−1)
n dt], i ≥ m+ 2.

For lattice hierarchy (2.9), conserved quantities Hi, i ≥ 0 can be described by

Hi =















∑

n(i+ 1)a
∫ t
0 α

(i+1)
n dt, 0 ≤ i ≤ m− 1,

∑

n[lnqn + (m+ 1)a
∫ t
0 α

(m+1)
n dt], i = m,

∑

n[α
(i−m)
n + (i+ 1)a

∫ t
0 α

(i+1)
n dt], i ≥ m+ 1

(3.23)

Example 1 For lattice equation (2.6), since

Qn = −λΓn + (
n

2
+

1

4
)a− c1(−1)n −

∞
∑

k=0

(−1)kqn+k (3.24)

it possesses infinitely many conservation laws (3.15), where the associated fluxes J
(i)
n , i ≥ 0 are written

by the following equations, respectively,

J (0)
n = (

n

2
+

1

4
)a− c1(−1)n −

∞
∑

k=0

(−1)kqn+k,

J (1)
n =

−1

qn−1
, J (2)

n =
1

qn−2q
2
n−1

, J (3)
n =

−1

q2n−2q
2
n−1

(
1

qn−3
+

1

qn−1
),

J (4)
n =

1

q2n−2q
2
n−1

[
1

qn−2qn−1
(

1

qn−1
+

2

qn−3
) +

1

q2n−3

(
1

qn−2
+

1

qn−4
)], (3.25)

J (i)
n = −w(i−1)

n , i ≥ 5

For lattice equation (2.7), notice that

Qn = (λ2EA−1 + λEA0)Γn + λC−1 −B0, (3.26)

hence it admits infinitely many conservation laws (3.15), where the associated fluxes J
(i)
n , i ≥ 0 are

given by,

J (0)
n = −B0, J (1)

n =
EA0

qn−1
+C−1, J (2)

n =
EA−1

qn−1
−

EA0

qn−2q
2
n−1

,

J (i)
n = w(i−2)

n EA−1 + w(i−1)
n EA0, i ≥ 3 (3.27)

Example 2 For lattice equation (2.11), note that

Qn =
1− (n+ 1)a

qn
Γn, (3.28)

12



we thus obtain its infinitely many conservation laws (3.15), where the associated fluxes J
(i)
n , i ≥ 0 have

the formula,

J (i)
n =

1− (n+ 1)a

qn
w(i)
n , i ≥ 0 (3.29)

For lattice equation (2.12), we have

Qn = (EA0λ
−1 + EA1)Γn −B1λ

−1, (3.30)

so, its infinitely many conservation laws (3.15) is given, where the associated fluxes J
(i)
n , i ≥ 0 are

described by

J (0)
n = −a

∞
∑

k=−1

1

qn+kqn+k+1
,

J (1)
n =

na− 1

qn−1q2n
(

1

qn+1
+

1

qn−1
)−

1− (n+ 1)a

qn−2q
2
n−1qn

−
2a

qn−1qn

∞
∑

k=1

1

qn+kqn+k+1
−

1− (n+ 1)a

qn−2q
2
n−1qn

J (i)
n =

∑

s+l=i

w(s)
n EAl, i ≥ 2, (3.31)

here Al = 0 for l ≥ 2.

4 Conclusions

It is well known that the Lax pairs and infinitely many conservation laws are two important integrable

properties for a discrete lattice system. Specially, infinitely many conservation laws for the lattice

hierarchy with n-dependent coefficient has little work in the literature. In this article, by means of

discrete zero curvature representation and constructing opportune time evolution equations, two new

discrete integrable lattice hierarchies with n-dependent coefficients are proposed, which associated

with a new discrete Schrödinger nonisospectral problem. Further, it has been shown that lattice

hierarchy (2.9) is equivalent to the positive Volterra hierarchy with n-dependent coefficients and lattice

hierarchy (2.3) related to isospectral problem is equivalent to the negative Volterra hierarchy. We also

demonstrate the existence of infinitely many conservation laws for the proposed two lattice hierarchies

and give the corresponding conserved densities and the associated fluxes formulaically. Thus their

integrability is confirmed. The meaning of lattice hierarchy (2.3) related to nonisospectral problem is

worth further investigation.
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