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On the influence of noise on chaos in nearly Hamiltonian systems
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The simultaneous influence of small damping and white noise on Hamiltonian systems with chaotic
motion is studied on the model of periodically kicked rotor. In the region of parameters where damp-
ing alone turns the motion into regular, the level of noise that can restore the chaos is studied. This
restoration is created by two mechanisms: by fluctuation induced transfer of the phase trajectory
to domains of local instability, that can be described by the averaging of the local instability index,
and by destabilization of motion within the islands of stability by fluctuation induced parametric
modulation of the stability matrix, that can be described by the methods developed in the theory
of Anderson localization in one-dimensional systems.

PACS numbers: 05.45-a, 05.40-a

I. INTRODUCTION

From the point of view of chaotic dynamics, the Hamil-
tonian systems are marked out by the omnipresence of
chaos: for nearly any Hamiltonian system with not less
than one and a half degrees of freedom (with the exemp-
tion of completely integrable models that are non-robust
and therefore exceptionally rare) the chaotic motion is
possible for some initial conditions. On the contrary,
for the dissipative systems of the same complexity of
the structure chaotic motion on strange attractors either
could be attained only in limited domains of the param-
eter space or is inaccessible at all [1, 2].

Inclusion of the dissipative terms, even arbitrarily
small, in the canonical equations of motion of the Hamil-
tonian system can change the character of the motion
drastically. In particular, such addition can banish the
chaos: for example, for the autonomous Hamiltonian sys-
tems with added (viscous) damping the only possible at-
tractors are stable fixed points. It must be noted that
this abrupt change may be basically formal, resulting
from the presence of the transition to the infinite time
limit in the rigorous definitions of important character-
istics of chaotic motion, like the Lyapunov exponent and
correlators of dynamic variables. In many experimen-
tally relevant models the ratio of the dissipation γ to the
typical frequency of motion ω may take very small val-
ues. Thus, for radiation damping of vibrations of poly-
atomic molecules one has γ/ω ∼ 10−10; the same order
of magnitude of γ/ω turns out for the tidal friction of the
celestial bodies of the Solar system. In these situations
the duration of the ”transient chaos” phase T ∼ γ−1 is so
long that accurate determination of characteristics of the
chaotic motion can be carried out without the account of
dissipation.

Physically the introduction of dissipation in the equa-
tions of motion is a form of description of the interac-
tion of an isolated (in the zeroth approximation) system
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with its environment - a ”heat bath” with practically
infinite number of degrees of freedom, continuous spec-
trum of eigenfrequencies and internal dynamics that is
independent of the state of the selected system. This
heat bath may be considered also as a source of noise
- that is, acting on the selected system random forces,
whose statistical characteristics are determined by the
properties of the heat bath alone. The problem of simul-
taneous influence of small dissipation and weak noise on
the features of chaotic motion in the originally Hamilto-
nian non-autonomous system is the main concern of this
paper.

The studies of the influence of noise on chaotic motion
were pioneered by Lieberman and Lichtenberg [3] just
by analysis of the effect of fluctuations on the Hamil-
tonian non-autonomous system. However, the modern
paradigm of the domain was formed later by Crutchfield
and Huberman [4, 5] who switched the attention to the
exploration of strongly dissipative systems (see late re-
view [6]). The influence of noise on the Hamiltonian sys-
tems has been discussed recently in the context of the
problem of decay of metastable chaotic states [7, 8], but
in general the field doesn’t seem to be fully investigated.

On the contrary, the influence of small dissipation on
the Hamiltonian chaos is well understood: Afraimovich,
Rabinovich, and Ugodnikov [9] have shown, that with
switching on a small dissipation phase trajectories of sta-
ble periodic motions of the Hamiltonian non-autonomous
systems become attractors with regular motion, and
chaos disappears. With the further increase of γ these
attractors may lose their stability; annihilation of the
last one turns the system back into chaotic motion on a
strange attractor, that resembles the chaotic motion of
the original Hamiltonian system. This pattern needs two
specifications. First, the strange attractor may emerge
before vanishing of the last of regular ones - the system
could be multistable. This case, mentioned in [9] as ”log-
ically possible”, will be met in our model. Secondly, if
the Hamiltonian system has no islands of stability that
correspond to periodic motion, then the transition from
Hamiltonian to dissipative chaos can occur immediately.
This case, apparently, will be present in our model too.
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The aforesaid permits to specify the main problem of
our paper: what intensity of noise is necessary to restore
the chaos, repressed by dissipation?
The rest of the text is organized as follows. In Sec.

II the basic model is introduced. Sections III and IV
treat two mechanisms of restoration of chaos by noise:
fluctuation transfer to domains of local instability and
parametric destabilization of motion within stability is-
lands. Sec. V treats the influence of strong noise on the
Lyapunov exponent and correlation functions of chaotic
motion. Sec. VI contains the summary of results and
their discussion.

II. THE BASIC MODEL

We start from the well-known periodically kicked rotor
- the non-autonomous model with the Hamiltonian

H (I, θ, t) =
I2

2
+K cos θ

∞
∑

n=−∞

δ (t− n), (1)

where I and θ are the dynamic variables (canonically
conjugated momentum - action and coordinate - angle),
K is the control parameter, and δ(z) is the Dirac delta-
function. The stroboscopic mapping that links values
of dynamic variables at the moments of time n − 0 and
n+ 1− 0, preceding two consequent kicks,

I ′ = I +K sin θ, θ′ = θ + I ′, (2)

is known as the standard, or Chirikov - Taylor, mapping
and thoroughly studied [10].
The generalization of the model (1) that includes dis-

sipation and noise will be described by the equation of
motion for the angular variable

θ̈ + γθ̇ −K sin θ
∞
∑

n=−∞

δ (t− n) = ξ (t), (3)

where γ is the damping constant. The ξ(t) in the RHS
is the Langevin random force, that is a stationary, dis-
tributed by a Gaussian law, δ-correlated random process
(white noise) with zero mean and the correlator

〈ξ (t) ξ (t+ τ)〉 = 2γΘδ (τ) , (4)

where Θ = kBT is the noise temperature in energy units
(in the system of scales of the model). The model given
by Eqs. (3) and (4) has three parameters: K, γ and
Θ. We shall restrict ourselves by the domain of small
damping, γ ≪ 1, where the system is nearly Hamiltonian.
In the absence of noise, at Θ = 0, the stroboscopic

mapping for this model is given by equations

I ′ = a (I +K sin θ) , θ′ = θ + b (I +K sin θ) , (5)

where

a = e−γ , b = γ−1(1− e−γ). (6)

The two-parameter mapping given by Eqs. (5) is a spe-
cial case of the four-parameter Zaslavsky mapping, that
has been introduced in [11] and studied in [12, 13, 14].
The main efforts of these studies were applied to the case
γ & 1. Here we describe in brief the properties of our
model for the case of small damping, γ ≪ 1.
At small and moderate values of the control parameter

K the most important attractor of the mapping Eqs. (5)
is the fixed point I = 0, θ = π, that is stable in the range

K < K1 =
2 (1 + a)

b
≈ 4

(

1 +
7

12
γ2

)

. (7)

For K > K1 the leading attractor is the symmetric
cycle Cs

2 of two points that are related by equations
I ′ = −I, θ′ = 2π − θ. It is stable while

K < K2 =
π (1 + a)

b
≈ 2π

(

1 +
7

12
γ2

)

. (8)

For K > K2 the leading attractors are two asymmetric
cycles of length two Ca1

2 and Ca2
2 . The phase coordinates

of their points are related by equations I ′ = −I, θ′ =
π + θ. They are stable in the domain

K < K3 =
1

b

√

π2 (1 + a)
2
+ 3 + a2

≈ 2
√

π2 + 1 (1 + 0.152γ) . (9)

In general case the system defined by Eqs. (5) is mul-
tistable. From the first of these equations it follows that
the strip

|I| ≤ I+ =
K

exp γ − 1
(10)

is the trap (the absorbing set) of the system: any phase
trajectory that comes within this strip never leaves it. To
determine the comparative roles of basins of attraction
of strange and regular attractors of the model the frac-
tion f of chaotic trajectories among the set with random
initial conditions, uniformly distributed within the trap,
was calculated. The results are presented in Fig. 1. It
can be seen that the strange attractor is born within the
domain of stability of the cycle Cs

2 , and after the loss of
stability of cycles Ca1

2 and Ca2
2 , in the range K > K3(γ),

it remains the only apparent attractor of the system.
For Θ > 0 the stroboscopic mapping for the system

Eq. (3) has the form

I ′ = a (I +K sin θ) + υ,

θ′ = θ + b (I +K sin θ) + ϕ, (11)

where υ and ϕ are the random increments (fluctuations)
of action and angle for the unit interval of time. Fluctu-
ations υ and ϕ at the moment of time t after the begin-
ning of the motion with definite initial conditions have
the Gaussian distributions with the dispersions

Dυ = Θ
(

1− e−2γt
)

,

Dϕ =
Θ

γ2

(

2γt− 3 + 4e−γt − e−2γt
)

(12)
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FIG. 1: The dependence of the fraction f of the trap area,
covered by the basin of attraction of the strange attractor
of the system Eqs. (5), on the control parameter K. The
damping value γ = 0.05. For each value of K 100 uniformly
distributed initial conditions was taken.

respectively [15]. In our case γt ≡ γ ≪ 1 and the expres-
sions Eqs. (12) could be replaced by their asymptotics

Dυ = 2γΘ, Dϕ =
2

3
γΘ. (13)

Fluctuations υ and ϕ are positively correlated; that
has clear physical meaning: positive increment in veloc-
ity (that is numerically equal to the action) at the unit
interval of time leads, most probably, to the positive in-
crement of coordinate. The correlator M = 〈υϕ〉 by the
moment t after the beginning of motion can be calculated
by the method described in [15]:

M =
Θ

γ

(

1− e−γt
)2

. (14)

For γt ≡ γ ≪ 1 the asymptotic value of this correlator is
M = Θγ. The joint distribution of fluctuations of action
and angle has the form

w (υ, ϕ) =

√
3

2πγΘ
exp

[

− 1

γΘ

(

3ϕ2 − 3ϕυ + υ2
)

]

. (15)

In the presence of noise the phase trajectory can reach
any point of the phase space of the system. However, for
finite γ the system with overwhelming probability will
stay in the strip with limited action values that is much
narrower than the trap given by Eq. (10). For the de-
scription of this domain of concentration of the probabil-
ity density the term ”attractor” will be used.

III. THE THRESHOLD OF CHAOS: TRANSFER

TO THE DOMAIN OF LOCAL INSTABILITY

The condition of existence of chaos is, by definition, the
positive value of the Lyapunov exponent σ. Numerical
calculation show, that in our model at moderate values of

K . 5.4, when the motion of the system in the absence
of noise is regular, the Lyapunov exponent increases with
Θ and at some value of Θ0 passes through zero.
We turn to the theoretical description of the onset of

chaos. For conservative (area-preserving) mappings with
strong chaos rather accurate estimate for the Lyapunov
exponent could be obtained by averaging of the local in-
stability index - the logarithm of the maximal in abso-
lute value eigenvalue of the stability matrix - over the
domain of chaotic motion [10, 16]. Since our model is
nearly Hamiltonian, we may try to use this approach.
The stability matrix for the mapping given by Eqs.

(11) is

A =

∣

∣

∣

∣

a aK cos θ
b 1 + bK cos θ

∣

∣

∣

∣

(16)

The local instability index depends only on the angle θ;
for K < 4

σ (θ) = ln

∣

∣

∣

∣

∣

∣

S

2
+

√

(

S

2

)2

−D

∣

∣

∣

∣

∣

∣

, (17)

where S = a+ 1 + bK cos θ is the trace of A and D = a
is its determinant. For small γ almost everywhere in the
interval π/2 < θ < 3π/2 the index is negative and con-
stant, σ(θ) = −γ/2, and the motion is locally stable.
Most probably the system stays in this domain, but un-
der the influence of noise it can sporadically enter the
domains of local instability. For large enough values of
Θ their contribution can compensate the weak squeezing
of phase trajectories in the central part of the attractor.

A. Small K

For small valuesK ≪ 1 in the absence of damping (γ =
0) the evolution of the periodically kicked rotor nearly
everywhere in the phase space can be described by the
time averaged (and thus time-independent) Hamiltonian
of the system, that is given by Eq. (1):

H (I, θ) = H (I, θ, t) =
I2

2
+K cos θ. (18)

For an autonomous Hamiltonian system the inclusion of
viscous damping and connection to the Langevin (white
noise) heat bath lead to the canonical distribution of
probability in the phase space

W (I, θ) = N exp −H (I, θ)

Θ
, (19)

whereN is the normalization constant. For the averaging
σ = 〈σ (θ)〉 one needs to know the angular distribution
W (θ). Its normalized form could be found from Eqs. (18)
and (19):

W (θ) =
1

2πI0 (K/Θ)
exp −K

Θ
cos θ, (20)
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FIG. 2: The dependence of the temperature threshold of
chaos Θ0 on damping γ for K = 0.3. Calculation by Eqs.
(21) and (22) (line) and numerical calculation (points).

where I0(z) is the zeroth order modified Bessel function
of the first kind. Since nearly all probability density is
concentrated in the stability interval, where cos θ < 0,
the contribution of this domain to the averaged value is

σ− ≈ −γ

2
. (21)

To calculate the contributions of zones of local insta-
bility we neglect the damping; then we have σ (θ) ≈√
K cos θ. Positive contribution of two instability strips

could be estimated by the integral

σ+ ≈ 1

πI0 (K/Θ)

2π
∫

3π/2

exp

(

−K

Θ
cos θ

)√
K cos θ dθ.

(22)
The threshold values Θ0 found by averaging of the local

instability index and by direct numerical calculation are
compared in Fig. 2.
If K/Θ ≫ 1, the integral can be calculated analyti-

cally: replacing the Bessel function by its asymptotics
for large value of the argument, and approximating the
cosine by the linear function, we obtain:

σ+ ≈
√

1

2K
Θ exp −K

Θ
. (23)

From the condition 〈σ〉 = σ− + σ+ = 0 the threshold
value of temperature is determined by the root of the
equation

γ =

√

2

K
Θ0 exp − K

Θ0
. (24)

This expression yields the asymptotic dependence of the
temperature threshold of chaos for small K: it has the
form

Θ0 ≈ K

| ln γ | (25)

and possesses a logarithmic accuracy.
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FIG. 3: Numerically found dependence of the temperature
threshold of chaos Θ0 on the control parameter K for the
damping value γ = 0.1.

B. Large K

The results of the previous subsection shows that for
small K the threshold Θ0 grows with the increase of the
control parameter K, Θ0 ∝ K. On the other hand, as it
was noted in the Sec. II (see Fig. 1), for K > K3 chaos
in the dissipative system exists (apparently for any initial
conditions) even without any noise. For the reasons of
continuity we may expect that there may exist a range
of values of K where the dependence Θ0(K) at the con-
stant damping γ is decreasing. The numerical calculation
confirms this suggestion (see Fig. 3).
For the area-preserving mapping Eq. (2), reduced to

the basic square (0 ≤ I < 2π)×(0 ≤ θ < 2π), for large K
the chaotic motion takes place in the chaotic component
that covers the largest part of the phase space (for K > 2
the measure of the chaotic component µ(K) > 0.78). For
the system with damping and noise Eq. (11) we shall re-
tain the name ”chaotic component” for the part of the
attractor that includes the points of the chaotic compo-
nent of the conservative system, and the complementary
part will be referred to as ”islands of stability”. Limiting
ourselves to the case K < 4, we will take into account
only one island of stability that surrounds the stable fixed
point I = 0, θ = π.
Some properties of chaotic motion of the system with

damping and noise in the chaotic component could be
described by the following simple model. The action
variable for one time step receives the increment ∆I ≈
K sin θ with the averaged square value

〈

∆I2
〉

≈ K2
/

2.
For the motion in the chaotic component the correla-
tions of the consequent values of θ are small [17, 18],
and we can depict the evolution of the system as the
motion of the rotor with the damping γ under the influ-
ence of some Langevin force, a white noise coming from
the source with an effective temperature Θ⋆. From Eq.
(13) we have the estimate Θ⋆ ≈ K2/4γ ≫ 1. In this
approximation the distribution of phase density in the
chaotic component will become canonical one, with uni-



5

form distribution of angles and the Gaussian distribution
of action,

Wc (I, θ) =

√

γ

2π3K2
exp

(

− 2γ

K2
I2
)

. (26)

This expression is applicable for small γ and large K.
Let’s assume that in the island of stability the prob-

ability density also has the distribution of the canonical
form

Wi (I, θ) = N exp

(

− H̃ (I, θ)

Θ

)

, (27)

where H̃(I, θ) is an effective Hamiltonian (a function that
is constant on the invariant curves of the standard map-
ping (2)), and N is the normalization constant. This
assumption is plausible in view of Eq. (19); additional
support for it will be obtained in the next section.
If γ and Θ are sufficiently small, then the phase tra-

jectory can leave the island of stability or return to it
only by passing through the narrow strip of the width
δ ∼ √

γΘ along the border of the island of stability. The
probability P of finding a phase point in the chaotic com-
ponent could be found from the balance considerations
by equalizing Wc and Wi on this border. For P ≪ 1 we
can neglect the non-uniformity of the distribution Eq.
(26) in action and obtain the estimate

P = N

√

2π3K2

γ
exp

(

−∆

Θ

)

, (28)

where ∆ is the value of the effective Hamiltonian H̃ (I, θ)
on the border of the island of stability. At present we can
not calculate this quantity analytically, but from its value
taken from the numerical calculations (and depending
only on K) by Eq.(28) we can find the dependence of P
on Θ and γ.
In the numerical experiment the basic square

(0 ≤ I < 2π)× (0 ≤ θ < 2π) has been separated into 104

cells. A chaotic trajectory of the standard mapping Eq.
(2) in this square was calculated for 105 time steps, and
all cells, in which the trajectory came at least once, were
marked as the mask of the chaotic component. Then for
the trajectories of the system with damping and noise
Eq.(11) the probability P has been calculated as the frac-
tion of points of the trajectory whose projections on the
basic square got into one of the cells of the mask.
The results of numerical calculations for the values

K = 3 and γ = 0.05 are shown in Fig. 4. Fit of the linear
dependence of lnP on the inverse temperature β = Θ−1

for these points gives values ∆ = 1.07 and N = 0.057.
From the assumption that the motion inside the sta-

bility island gives to the Lyapunov exponent the nega-
tive contribution σ− = −γ/2, and that the positive con-
tribution from the motion in the chaotic component is
σ+ = σ (K)P , where σ(K) is the Lyapunov exponent
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FIG. 4: Dependence of the probability P of finding a trajec-
tory of motion of the system with damping and noise in the
place of the chaotic component of the standard mapping on
the inverse temperature β = Θ−1 for the values K = 3 and
γ = 0.05. Numerical calculation (points) and linear fit to the
points (line).

value of the Hamiltonian system, for the temperature
threshold of chaos we obtain the equation

Θ0 =
∆(K)

ln
[

σ (K)N
√

8π3K2γ−3
] . (29)

The threshold values Θ0 found by calculating the prob-
ability of transfer to the chaotic component by this for-
mula and by direct numerical calculation are compared
in Fig. 5. From the Eq. (29) it is seen that essentially
Θ0 is proportional to the ”activation energy” ∆(K); the
dependence on other parameters is only logarithmic. The
general behaviour of the dependence on Fig. 3 could be
explained by decrease of the size of the stability island
with the increase of K; the dip around K = 4 reflects the
restructurization of the regular attractor.
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FIG. 5: The dependence of the temperature threshold of
chaos Θ0 on damping γ for K = 3. Calculation by Eq. (29)
(line) and numerical calculation (points).
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IV. THE THRESHOLD OF CHAOS:

PARAMETRIC DESTABILIZATION IN THE

ISLANDS OF STABILITY

Although the agreement between the theoretical curve
and the numerical points in Fig. 5 is rather convincing,
the increase of discrepancy at very small γ is strange:
just in this domain the damping must have especially
little influence, and the picture of transfer between the
island of stability and the chaotic component promises
to be asymptotically exact. Furthermore, this discrepan-
cies could not be neglected from the quantitative point of
view, since for the sharp dependence of P (Θ) small vari-
ations of Θ at low temperatures produce large changes
in the positive contribution to the Lyapunov exponent
σ+ = σ (K)P . For example, for K = 3 and γ = 0.01
substitution of the numerically found value Θ0 = 0.086
in the Eq. (28) gives P = 2.6 ·10−5 and σ+ = 1.8 ·10−5 =
3.5 · 10−3(γ/2). Thus we must conclude that there exists
another mechanism creating the instability that acts on
the parts of phase trajectories that are localized within
the islands of stability.
In the domain 2 < K < 4, in which the island of

stability surrounds the fixed stable point I = 0, θ = π,
we can consider the dynamic variables x = θ − π and
y = I to be small. Then by substitution cosx ≈ 1−x2/2
the matrix of stability could be represented in the form

Ã =

∣

∣

∣

∣

a −aK + aη
b 1− bK + bη

∣

∣

∣

∣

, (30)

where η = Kx2/2 are small corrections. The quantities

η are fluctuating under the influence of noise and could
be treated as random. The stochastic modulation of pa-
rameters of the mapping leads to destabilization of the
motion. The corresponding exponent of instability σ+

we will calculate in the conservative approximation, since
the contribution to the common Lyapunov exponent from
damping σ− = −γ/2 and from stochastic modulation σ+

for small γ are additive.
The transformation of variables determined by matri-

ces Eq. (30) at γ = 0 can be reduced to the three-term
recurrent relation for the angular variable:

xn+1 − (2−K − ηn) xn + xn−1 = 0. (31)

This expression can be interpreted as an equation for am-
plitudes xn of the stationary wave function in the quan-
tum one-dimensional tight-binding model with unit non-
diagonal matrix elements (transfer integrals) between ad-
jacent sites, random site energies ηn and the energy eigen-
value E = 2 − K (one-dimensional chain with diagonal
disorder). The calculation of the Lyapunov exponent for
this system was carried out in the context of the theory
of Anderson localization. For the case in which ηn are
independent random variables with zero mean, 〈η〉 = 0,
and small dispersion,

〈

η2
〉

≪ 1, the Lyapunov exponent

has been calculated by Derrida and Gardner [19]. Corre-
lations between consequent values of ηn were taken into
account by Tessieri and Izrailev [20]. The stochastic Lya-
punov exponent is proportional to the dispersion of fluc-
tuating parameter η:

σ+ =

〈

η2
〉

2 (4K −K2)
C (ω) . (32)

The correlation factor C(ω) in this expression has the
form

C (ω) = 1 + 2
∞
∑

k=1

bη (k) cos (2ωk), (33)

where bη(k) are normalized correlation functions of the
random variable η, bη (k) = 〈ηiηi+k〉

/〈

η2
〉

, and

ω = arccos
2−K

2
(34)

is the average angle of rotation of a vector by the lin-
earized standard mapping. Formula Eq. (32) is applica-
ble for the values of K that are not too close to K = 0 or
K = 4. In our case 〈η〉 6= 0, but we can include this value
in the parameter K; this renormalization will change its
value into K̃ = K

(

1−
〈

x2
〉/

2
)

. In what follows we shall
retain the designation η for the fluctuating quantity with
zero mean, η = K

(

x2 −
〈

x2
〉)/

2. To use the expression
Eq. (32) we have to determine statistical characteristics
of the variable η: its dispersion and correlation function.
It must be noted at once that for calculation of these
quantities the account of damping is essential.

A. Invariant density in the island of stability

Since for low temperatures Θ the phase trajectory
nearly all the time is located in the vicinity of the sta-
ble fixed point, for finding the invariant distribution of
the probability density W (x, y) we may use the linearized

mapping L̂,

x′ = by + (1− bK)x, y′ = ay − aKx. (35)

The motion of the system on a unit time interval can
be separated into two stages: the first is the evolution
under the mapping Eq. (35), the second is addition of
the fluctuation increments (cf. Eq. (11)). The probabil-
ity of coming in the vicinity of the point (u, v) after the
first stage is proportional to the value of the invariant
density in the vicinity of its prototype L̂−1 (u, v). The
influence of noise can be described by the convolution of
the obtained distribution with the distribution of fluctua-
tion increments w(υ, ϕ) Eq. (15). Thus for the invariant
density we obtain the following integral equation:
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W (x, y) = a−1

∫∫

du dvW

(

u− b

a
v,Ku+

1− bK

a
v

)
√
3

2πγΘ
exp

{

− 1

γΘ

[

3 (u− x)2 − 3 (u− x) (v − y) + (v − y)2
]

}

.

(36)

We will look for its solution in the form of a canon-
ical distribution with the effective Hamiltonian, that is
bilinear in action y and angle x:

W (x, y) = exp − 1

Θ

(

Ax2 +Bxy + Cy2
)

. (37)

After substitution of this expression in Eq. (36), inte-
gration and equivalizing the coefficients at the identical
powers of dynamic variables, in the lowest order in γ we
obtain the parameters of the function Eq. (37):

A =
3K

6−K
, B = − 3K

6−K
, C =

3

6−K
. (38)

Now we can calculate the moments of dynamic variables,
e.g.

〈

x2
〉

=
12− 2K

12K − 3K2
Θ, 〈xy〉 = 6−K

12− 3K
Θ, (39)

and the dispersion of the fluctuating quantity,

〈

η2
〉

=
1

2

(

12− 2K

12− 3K

)2

Θ2, (40)

that enters in the RHS of Eq. (32).

B. Correlation function

With the known form of the invariant density, the cor-
relation function of the angular variable x could be cal-
culated by the direct integration. For the linearized map-
ping Eq. (35) the values of Bx (n) = 〈xixi+n〉 could be
expressed through two moments,

〈

x2
〉

and 〈xy〉. For ex-
ample,

Bx (0) =
〈

x2
〉

Bx (1) = (1− bK)
〈

x2
〉

+ b 〈xy〉 ,

Bx (2) =
(

1− bK (2 + a) + b2K2
) 〈

x2
〉

+b (a− bK + 1) 〈xy〉 . (41)

For small γ the normalized correlation function bx (n) =
Bx (n)/Bx (0) can be expressed in the form

bx (n) = cos (ω̃n) exp
(

−γ

2
n
)

. (42)

Here the tilde over ω reminds that the renormalized value
of K̃ must be used in calculations. This formula is com-
pared to the numerical calculations in Fig. 6.
The normalized correlation function of the fluctuating

variable η can be calculated in a similar way:

bη (n) = cos2 (ω̃n) exp (−γn) . (43)
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FIG. 6: Normalized correlation function bx(n) of the angular
variable for the values of parameters K = 3 and γ = 0.2. (a)
For Θ = 0.05, (b) for Θ = 0.2. Calculation by Eq. (42) (line)
and numerical calculation (points).

With this expression one can calculate the correlation
factor C(ω) (see Eq. (33)). For small γ it is given by the

expression C (ω) ≈ (2γ)
−1

. With it from the condition
σ− + σ+ = 0 follows the estimate of the temperature
threshold of chaos

Θ0 = 2
√

4K −K2
12− 3K

12− 2K
γ. (44)

This formula is too crude for the practical application:
it gives only the estimate of Θ0 from below. Here is
the reason for this limitation: the expressions Eqs. (42)
and (43) for the correlation functions are valid only for
small temperatures, Θ . γ. For larger values the non-
linear terms that are present in the exact mapping Eq.
(11) change the frequency of oscillations of the correla-
tion function bη(n) (see Fig. 6(b)); by this they spoil the
resonance with the cosine factor under the summation
sign in Eq. (33) and considerably decrease the value of
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FIG. 7: The dependence of the Lyapunov exponent σ on the
noise temperature Θ for K = 3 and γ = 0.1 obtained from
numerical calculation (points). Parabola in the left part (solid
line) - calculation by Eq. (45) with κ = 1. Horizontal dashed
line marks the limiting value σ∞ = 0.538.

C(ω), down to the value about 2-3 on the threshold of
chaos. The numerical calculation shows that around Θ0

the temperature dependence of the Lyapunov exponent
is accurately described by the formula

σ = −γ

2
+ κΘ2 (45)

with a coefficient κ about unity. From Eq. (45) the sim-
ple approximation for the temperature threshold follows:

Θ0 ≈ c
√
γ, (46)

where constant c is about unity. The fit of the law Eq.
(46) to the points in Fig. 5 gives c ≈ 0.88.

V. STRONG NOISE

In this section we will look at the effects of noise with
temperature much higher than the chaos threshold Θ0.

A. The Lyapunov exponent

With the increase of the noise temperature the Lya-
punov exponent increases monotonously and tends to
some finite limit σ∞ (see Fig. 7).
Since with the increase of noise the typical values of

increments of the angle (ϕ) and of the action (υ) grow,

ϕ ∼ υ ∼
√

γΘ (see Eq. (13)), for Θ ≫ γ−1 all cor-
relations of dynamical variables vanish. Therefore the
limiting value σ∞ is equal to the Lyapunov exponent of
the infinite product of the matrices Eq. (17) with uncor-
related values of θ, uniformely distributed in the interval
0 ≤ θ < 2π. For small K the value of σ∞ can be calcu-
lated from the result of [19] for the localization length at
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FIG. 8: The dependence of the limiting value of the Lyapunov
exponent σ∞ on the control parameter K for γ = 0.1. Calcu-
lation by Eq. (47) (line) and numerical calculation (points).

the band edge, namely:

σ∞ = −γ

2
+ 0.229K2/3. (47)

The dependence given by this equation is in good agree-
ment with the numerical data up to the value of K ≈ 1
(see Fig. 8).
It may be noted that from Eq. (47) it follows that for a

given value of damping γ there exist a range of values of
the control parameterK < 3.23 γ3/2 in which chaos could
not be reached for any intensity of the noise. For large
valuesK & 3 the limit σ∞ does not differ noticeably from
the Lyapunov exponent σ(K) of the original Hamiltonian
system.

B. The angular correlations

In the theory of the standard mapping it is customary
to study the angular correlations through the properties
of the variable s = sin θ [17, 18]. From the symmetry
considerations it has zero mean: 〈s〉 = 0.
Let’s consider the correlation of two consequent values

of this variable:

Bs (1) = 〈sin θ sin θ′〉 . (48)

When the invariant densityW (I, θ) is known, the calcula-
tion of the correlation Eq. (48) is reduced to the two-fold
integration. For small K the distribution can be taken
as the canonical one with the averaged Hamiltonian Eq.
(18). With approximating the angular distribution by
the Gaussian function, for small damping γ we have the
expression

Bs (1) =
1

2

(

1− exp

(

−2Θ

K

))

exp

(

−Θ

2

)

. (49)

It is compared to the numerical data in Fig. 9(a).
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FIG. 9: Dependence of the correlation function Bs(1) of the
angular variable s = sin θ on the noise temperature Θ. (a) For
K = 0.3, γ = 0.01. Calculation by Eq. (49) and numerical
calculation (points). (b) For K = 3, γ = 0.05. Calculation by
Eq. (50) (line) and numerical calculation (points).

For large values of K ≥ 2 and small temperatures the
value of Bs(1) could be calculated from the distribution
Eq. (37):

Bs (1) = (1−K)
〈

x2
〉

+ 〈xy〉 = 12− 8K +K2

12K − 3K2
Θ. (50)

It is compared to the numerical data in Fig. 9(b). The
numerical calculation shows in this case the decrease of
Bs(1) with Θ for sufficiently high temperatures. The rea-
son for it is qualitatively clear. We have two competing
contributions to Bs(1): a negative one from the island
of stability and a smaller positive one from the motion
in the chaotic component. The increase of the temper-
ature leads to the increase of the probability P of the
motion within the chaotic component, that eventually
suppresses the negative contribution. The way of accu-
rate calculation of Bs(1) for high temperatures at present
is not known.
Thence both for small and large values of the control

parameter K the increase of the noise temperature (from
zero) induces first the increase of the correlation of the
consequent values of the angular variable s = sin θ up to
some maximal value, and then its decrease.

VI. CONCLUSION

Above we have studied the model of periodically kicked
rotor with added damping and white noise. We expect
that some of the established features and relations are
typical and will hold at least qualitatively for many rep-
resentative non-autonomous Hamiltonian systems with
chaotic motion. With this in view, in this Section we
summarize main results of this paper in a generalized
way. Since the growth of the control parameter of the
standard mapping K increases both the amount (given
by the invariant measure µ of the chaotic component) and
the intensity (given by Lyapunov exponent σ) of chaos
we will refer to K as to the strength of chaos. In what
follows (as well as everywhere above) the Lyapunov expo-
nent denotes the largest of the characteristic exponents
of the stroboscopic mapping of the system that can take
negative as well as positive values (one have to keep in
view that for systems - flows with finite phase velocity
there is always one zero characteristic Lyapunov expo-
nent that corresponds to evolution of the infinitesimal
displacement along the phase trajectory).
1. If chaos in a Hamiltonian system is suppressed by

addition of small dissipation, then addition of white noise
can, as a rule, restore the chaotic motion. The exception
is found only for very weak chaos, when the system re-
mains regular at arbitrarily intense noise (see Sec. V.A).
The increase of the noise intensity raises the Lyapunov
exponent. In wide context this fact is not quite trivial,
since there is an example of the system for which noise
diminishes the (positive) Lyapunov exponent, eventually
turning it negative [21].
2. The temperature threshold of chaos depends on

the strength of chaos of the Hamiltonian system in a
non-monotonous way (see Fig. 3). For weak chaos it
increases with the strength (in our model – by linear
law, see Eq. (25)), since the effective ”potential well”
corresponding to the island of stability becomes deeper,
whereas for strong chaos the threshold decreases due to
the shrinking of the islands of stability.
3. There are two essentially different mechanisms of

the chaotization of motion by noise. The first one is
the fluctuational transfer of the motion from the stabil-
ity island to the locally unstable regions of the phase
space; its contribution to the Lyapunov exponent de-
pends on the noise temperature by the ”activation law”,
σ+ ∝ exp(−∆/Θ) (see Eqs. (23) and (28) and Fig. 4).
The second is the parametric destabilization inside the
islands of stability created by small fluctuations of non-
linear terms of the stroboscopic mapping; its contribution
to the Lyapunov exponent depends on the noise temper-
ature by the power law, σ+ ∝ Θ2 (see Eqs. (32) and (40)
and Fig. 7). Any one of these mechanisms could be dom-
inating, depending on the combination of parameters.
4. Around the threshold of chaos the motion of the

system with damping and noise differs strongly from the
chaotic motion of the original Hamiltonian system. It is
concentrated mainly within the islands of stability with
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only rare excursions to the domain of the phase space
occupied by the chaotic component of the prototype. In
this aspect the restoration of chaos ”by noise” differs rad-
ically from the restoration of chaos ”by damping” [9].
The similarity to the original motion could be reached in
the domain of strong chaos and high noise temperatures
Θ ≫ 1 (see Fig. 7).
Lastly it must be noted that the existence of the range

of parameters where the transition from Hamiltonian to
dissipative chaos is immediate (see Fig. 1) may be spe-
cific for the studied model of periodically kicked rotor. In
this range the influence of noise on chaos has qualitative

peculiarities: e.g. the increase of noise could reduce the
Lyapunov exponent (for K = 7 and γ = 0.1 at Θ = 0
σ = 1.260(3), and at Θ = 100 σ = 1.228(3)). The sce-
nario of the immediate transition and related problems
for noisy systems may deserve a special study.
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