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Abstract

We establish the incompressible Navier–Stokes limit for the discrete velocity model of
the Boltzmann equation in any dimension of the physical space, for densities which re-
main in a suitable small neighborhood of the global Maxwellian. Appropriately scaled
families solutions of discrete Boltzmann equation are shown to have fluctuations that
locally in time converge strongly to a limit governed by a solution of Incompressible
Navier–Stokes provided that the initial fluctuation is smooth, and converges to appro-
priate initial data. As applications of our results, we study the Carleman model and
the one-dimensional Broadwell model.

1 Introduction and Main results

1.1 Introduction

The endeavor to understand how fluid dynamical equations can be derived from kinetic
theory goes back to the founding works of Maxwell [38] and Boltzmann [16]. Most of deriva-
tions are well understood at several formal levels by now, and yet their full mathematical
justifications are still missing. Here we establish a so-called incompressible Navier–Stokes
fluid dynamical limit for the discrete Boltzmann equation which is an evolution model for
a gas which can attain only a finite number of velocities, one has to mention that Inoue
and Nishida [30], and Caflish and Papanicolaou [19] have developed an asymptotic theory
for the six velocity Broadwell’s model. Further Studies have been developed for the two
velocity Carleman’s model by Kurtz [33] and by Lions and Toscani [36]. The interested
reader can recover the pertinent literature in the survey by Lachowicz [34].

As known, see Bonilla and Soler [14], different asymptotic expansions can be developed
for kinetic models thus obtaining various hydrodynamic descriptions. It has been recently
recognized by several mathematicians, Bardos, Golse and Levermore [3, 4], Demasi, Es-
posito and Lebowitz [21], that the incompressible Navier–Stokes equation can be obtained
as the limit of the Boltzmann equation, when the Knudsen number ε > 0 go to zero. The
validity of this fluid-dynamical approximation have been studied by several authors, see [2,
5, 6, 10, 21, 25, 26, 37]. On the other hand, there is non proof concerning the convergence
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of discrete velocity kinetic models to a solution of the incompressible Navier–Stokes equa-
tions. However, although a complete proof is not given, some partial results may be found
in [9, 10, 11, 28] in particular for Carleman and Broadwell’s models. In the present paper
a rigorous proof of the connection between these two points of view is done, precising and
completing some results which were announced in [4].

Let ε > 0 be the Knudsen number, and consider the scaled discrete Boltzmann equation

ε∂tFi + vi · ∇xFi =
1

ε
Qi(F,F ), i = 1, . . . ,m, (1.1)

where Fi = Fi(t, x) represents the mass density of gas particles with the constant velocity
vector vi = (v1i , . . . , v

n
i ) ∈ R

n at time t ≥ 0 and position x = (x1, . . . , xn) ∈ R
n; Qi is

a quadratic operator related to the binary collisions:

Qi(F,G) =
1

2αi

∑

jkl

{

A
ij
kl(FkGl + FlGk)−Akl

ij (FiGj + FjGi)
}

, (1.2)

where αi are positive constants, and the terms Akl
ij are the so-called transition rates refer-

ring to the collisions

(vi, vj) ↔ (vk, vl).

The transition rates are positive constants which, according to the indistinguishability
property of the gas particles and the reversibility of the collisions, fulfill the following
properties:

A
ij
lk = A

ij
kl = A

ji
kl = · · · = Akl

ij . (1.3)

A detailed computation of the terms Akl
ij can be performed by specializing the velocity

discretization and analyzing the related collision mechanics.
The above mathematical structure includes, as particular applications, various math-

ematical models of discrete Boltzmann equation which can be recovered in the pertinent
literature [18, 23]. It also refers to models with arbitrarily large number of velocities which
have been studied in a number of recent papers, see among others [1, 27], considering their
relatively simpler structure, with respect to the full Boltzmann equation, which may be
exploited for scientific computing. Indeed, convergence to the full Boltzmann equation
can be studied for models with arbitrary large number of velocities.

Following [7, 18, 23], we shall introduce the basic concepts concerning (1.1) and sum-
marize their properties which will be used later.

Definition 1. A vector φ = t(φ1,...,φm) ∈ R
m is called a summational invariant if

A
ij
kl

(

φi

αi
+
φj

αj
− φk

αk

− φl

αl

)

= 0,

for all i, j, k, l = 1, . . . ,m.

We denote by M the set of summational invariants. Then 0 < dimM < m because
t(α1,...,αm) ∈ M and M 6= R

m. The following three conditions are equivalent:
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(i) φ ∈ M,

(ii) 〈φ,Q(F,G)〉 = 0 for all F,G ∈ R
m,

(iii) 〈φ,Q(F,F )〉 = 0 for all F ∈ R
m.

Here 〈·, ·〉 denotes the standard inner product in R
m. For the proof see [7, 18, 23].

Let F = t(F1,...,Fm) ∈ R
m. We write F > 0 if Fi > 0 for all i = 1, . . . ,m.

Definition 2. A vector F = t(F1,...,Fm) > 0 is called a local Maxwellian if

A
ij
kl(FiFj − FkFl) = 0, for all i, j, k, l = 1, . . . ,m.

In particular, F > 0 is called an absolute Maxwellian if it is a locally Maxwellian state
and is independent of t and x.

Consider the initial value problem for Eq. (1.1):

ε∂tFε +

n
∑

j=1

V j∂xj
Fε =

1

ε
Q(Fε, Fε), t > 0, x ∈ R

n,

Fε(0, x) = F0(x), (1.4)

where

V j = diag
(

v1j , . . . , v
m
j

)

, j = 1, . . . , n,

and

Q(F,G) = t(Q1(F,G),...,Qm(F,G)).

According to [4], the discrete velocity Boltzmann equation (1.1) gives the incompressible
Navier–Stokes equation in the limit ε → 0 if Fε remains near an absolute Maxwellian M
with the distance of order ε.

Let M > 0 be an absolute Maxwellian state, and let

Λ = diag

(

M1

α1
, . . . ,

Mm

αm

)

.

We shall see the solution in the form

Fε(t, x) =M + εΛ
1

2 fε.

Then Problem (1.4) can be transformed into the following one:

∂tfε +
1

ε

n
∑

j=1

V j∂xj
fε +

1

ε2
Lfε =

1

ε
Γ(fε, fε),

fε(t = 0, x) = f0(x) = Λ− 1

2 (F0(x)−M), (1.5)

where the operators L and Γ are given by

Lf = −2Λ− 1

2Q
(

M,Λ
1

2 f
)

, (1.6)

Γ(f, g) = Λ− 1

2Q
(

Λ
1

2 f,Λ
1

2 g
)

, (1.7)

and have (see [7, 18, 23]) the following properties:
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(i) L is real symmetric and positive semi-definite. It is null space is given by N(L) =

Λ
1

2M. We denote by {ei, i = 1, . . . , d} the orthonormal basis for N(L).

(ii) Γ is bi-linear and satisfies Γ(f, g) ∈ N(L)⊥ for any f, g ∈ R
m, where N(L)⊥ denotes

the orthogonal complement of N(L) in R
m.

Existence of global solutions for discrete kinetic models have been obtained by several
authors (see [15, 17] and the review article of Bellomo and Gustafsson [8]). However
these results cannot be used here because they are based on the dispersion properties
of the linearized equations and concern small (with respect to the collision operator)
perturbations of the vacuum. It is easy to prove that any finite velocity model has a unique
smooth solution during a finite time that depends on the size of the initial data and on
the collision operator (or a global existence see [31, 32]). To the best of our knowledge it
has not been proven that the time of existence of this smooth solution is independent of ε.

Now we state our main results.

1.2 Main results

Our main result is an existence theorem that holds for all ε > 0 and a proof of the
validity of the fluid-dynamical approximation. To state our result precisely, one needs
some function spaces.

Let C(Ω,X) and L∞(Ω,X) denote the spaces of the continuous and bounded functions
on Ω ⊂ R

n with values in a Banach space X, respectively.

H l denotes the L2 (Rn)-Sobolev space of order l, with the norm ‖ · ‖l.

Theorem 1. Let (1.3) be assumed. Let n ≥ 1 and l ≥ n
2 . If f0 ∈ H l (Rn), then there

exists a positive constants T0 and k (depending only on ‖f0‖l) such that the initial value
problem (1.5) has a unique solution fε ∈ L∞ ([0, T0],H

l
)

∩C
(

[0, T0],H
l−1 (Rn)

)

satisfying

‖fε(t)‖l ≤ k, (1.8)

for t ∈ [0, T0].

If, in addition the initial data satisfies:

fε(0) = hε + ε2kε where kε ∈ H l and,

hε ∈ N(L), ‖Γ(hε, hε)‖l−1 ≤ Cε, ‖∂xhε‖l−1 ≤ Cε,

lim
ε→0

‖hε − h‖l−1 = 0. (1.9)

one gets the strong convergence for the discrete Boltzmann equation to Incompressible
Navier–Stokes equations:

Theorem 2. Let fε be as in Theorem 1. Then, as ε → 0, fε → f weakly ⋆ in
L∞ ([0, T ],H l

)

and strongly in C
(

[0, T ],H l−1
)

for any T > 0, and the limit has the form

f =
d
∑

i=1

ρiei, (1.10)
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where ρi = 〈ei, f〉 satisfy:

∇x · 〈V e⊗ e · ρ〉 = 0. (1.11)

Moreover, ρ(t, x) is a weak solution of the equations:

∂ρ

∂t
−∇2 : (〈L−1(P⊥(V e)) ⊗ (V e)〉 · ρ) + 1

2
∇ · 〈P⊥(V e)

(ρ · e)2√
αM

〉 = 〈V · ∇e⊗ e〉 · π,

ρ(t = 0) = 〈h, e〉, (1.12)

where g2√
αM

denotes the vector
(

g2
1√

α1M1

, . . . ,
g2n√
αnMn

)

and the vectors

∇2 : 〈V e⊗ L−1(P⊥(V e))〉ρ and ∇ · 〈P⊥(V e),
(ρ · e)2√
αM

〉

are given by:

∇2 : 〈V e⊗ L−1(P⊥(V e))〉ρ =





n
∑

j=1

n
∑

k=1

∂xj
∂xk

〈V kρ · e, L−1
(

P⊥ (V jei
)

)

〉





i

,

∇ · 〈P⊥(V e),
(ρ · e)2√
αM

〉 =





n
∑

j=1

∂xj
〈(ρ · e)

2

√
αM

,P⊥ (V jei
)

〉





i

.

Let (ρε)i = 〈ei, fε〉. Since {ei, i = 1, . . . , d} forms an orthogonal system, ρ in (1.10) is
given by ρi = 〈ei, f〉. One gets

Theorem 3. Let (1.9) be assumed. Then, as ε → 0, ρε → ρ weakly ⋆ in L∞ ([0, T ],H l
)

and strongly in C
(

[0, T ],H l−1
)

for any T > 0, and the limit ρ satisfies the incompressible
Navier–Stokes equations (1.11)–(1.12).

The system (1.11)–(1.12) are generalizations of the Navier–Stokes equations. The con-
dition (1.11) generalizes the ∇ · u = 0, ∇(ρ+ θ) = 0 conditions that arise in the classical
incompressible Navier–Stokes limit (see [3]). π is the lagrange multiplier corresponding to
the constraint (1.11) and is the generalization of the classical pressure term. The quadratic
term in (1.12) corresponds to the classical convection terms. The justification of these
formal approximations for the classical Boltzmann equation has proven difficult because
many regularity questions remain open for both these fluid systems as the Boltzmann
equation. Two approaches to circumventing these difficulties have emerged recently. First
some authors have studied direct derivations of linear or weakly nonlinear fluid dynamical
systems, such as incompressible Navier–Stokes [21]. Their result requires smooth initial
data and holds for as long as the limiting solution of the incompressible Navier–Stokes
system is smooth. Second, some authors have abandoned the traditional expansion-based
derivations in favor of moments based formal derivation [5, 6, 26]. In [6] it is shown
that the solution of the Boltzmann equation considered over space of dimension three or
more will be smooth for all time, with small initial data and will converge strongly to
the solution of the incompressible Navier–Stokes equations. Recently the Incompressible
Navier–Stokes fluid dynamical limit for the classical Boltzmann equation is considered
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in [26]. It was shown that the scaled families of DiPerna–Lions renormalized solutions [22]
have fluctuations that globally in time converge weakly to a limit governed by a solution
of the incompressible Navier–Stokes equations due to Leray [35] provided that

H(fε(0)) =

∫∫

R3×R3

(fε(0) log fε(0)− fε(0) + 1)M dvdx ≤ Cε2,

and the fluid moments of their initial fluctuations converge to appropriate L2 initial data.
The proof use the averaging lemma (cf. [24]). The averaging lemma is valid for contin-
uous solutions and has no counterpart for discrete velocity models (except in one space
dimension (cf. Tartar [39])). However, in the proof of Theorem 2, one needs to evaluate
the limit of the nonlinear moment

〈L−1(P⊥(V e)),Γ(fε, fε)〉. (1.13)

Some uniform regularity estimates would likely be needed for obtaining the limit of non-
linear terms (1.13). This term disappears in the case of Stokes limit (see [12]).

Here we establish a so-called incompressible Navier–Stokes fluid dynamical limit (1.11)–
(1.12) for the discrete Boltzmann equation in any dimension of the physical space. We
solve (1.5) by using the principle of contraction mappings, we introduce the iteration
scheme (Lemma 1 and Lemma 2) similar to one used in [19] to obtain the uniform estimate
of the remainder term in the Hilbert expansion in order to justify the compressible Euler
system from the one dimensionnal Broadwell. The convergence of the scheme to a solution
of equation (1.5) is proved by using some properties of the operators L and Γ. The strong
convergence of the solution of equation (1.5) as ε → 0 is proved by the uniform estimate
and the equicontinuity in t ∈ [0, T ] of the solution with respect to ε ∈ (0, 1) (Lemma 3)
provided that the initial fluctuation is smmoth, close to an N(L) element which converges
to appropriate initial data.

Remark 1. Put hε = Λ
1

2 t(α1,α2,...,αm)wε, one gets

Γ(hε, hε) = w2
εΛ

− 1

2Q(M,M) = 0. (1.14)

An example of assumptions (1.9) can be given by:

fε = Λ
1

2 t(α1,α2,...,αm)wε + ε2k,

‖∂xwε‖l−1 ≤ Cε, lim
ε→0

‖wε − w‖l−1 = 0. (1.15)

Remark 2. In the case where h2
ε√

αM
∈ N(L), one has Γ(hε, hε) = 0 (see Lemma 5).

Therefore an other example can be given by:

fε(0) = hε + ε2kε, where kε ∈ H l and,

hε ∈ N(L),
h2ε√
αM

∈ N(L), ‖∂xhε‖l−1 ≤ Cε, lim
ε→0

‖hε − h‖l−1 = 0.

Remark 3. In [12] it was proven that the kinetic models (1.1) converge weakly and
strongly to the linearized incompressible Navier–Stokes. The assumption Γ(hε, hε) = O(ε)
in H l−1 is not necessary in this case and the time of existence of solutions goes to infinity
as ε→ 0.
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Remark 4. The present work improves upon the result given in [12] for the Carleman and
Broadwell’s model, without assuming some restriction upon the scaling of the fluctuation
with respect to Knudsen number, namely that the fluctuations should only be required to
be of an order equal to the Knudsen number, but at the cost of being restricted to initial
fluctuations (assuming Γ(hε, hε) = O(ε) in H l−1) for the Broadwell model.

The plan of this paper is as follows. Section 1 deals with the above introduction and
main results. In Section 2, the formulation of the problem and the proof of uniform ex-
istence Theorem are given. In Section 3, the estimate for ∂tfε is shown. This estimate
is used to prove the strong convergence of the solution to the solution of the non-linear
incompressible Navier–Stokes equation. Finally, Sections 4 and 5 contains some appli-
cations. As applications of our results, we are dealt with the Carleman model and the
one-dimensional Broadwell model.

2 Uniform existence

To prove the existence of local solutions to (1.5), one has to get suitable “apriori” estimate.

2.1 Estimates

Lemma 1. Let z(t, x) be a given function of t and x such that,

‖z(t)‖l ≤ k, (2.1)

and let f(t, x) satisfy the linear system

∂tf +
1

ε

n
∑

j=1

V j∂xj
f +

1

ε2
Lf =

1

ε
Γ(z, f),

f(0, x) = f0(x). (2.2)

Then there exist T0 such that a constant k can be chosen such that

sup
0≤t≤T0

‖f(t)‖l ≤ k. (2.3)

Proof. From the theory of linear hyperbolic systems we know that (2.2) has a unique
solution in L∞ ([0, T ],H l

)

with df
dt

in L∞ ([0, T ], L2
)

. X-Mozilla-Status: 0000
Taking the Fourier transform of (2.2) in x yields

∂tf̂ +
1

ε

n
∑

j=1

V jiζj f̂ +
1

ε2
Lf̂ =

1

ε
Γ̂(z, f). (2.4)

Take the inner product (in C
m ) of (2.4) with f̂ . Since

n
∑

j=1
V jζj and L are real symmetric,

the real part of (2.4) is

∂t|f̂ |2
2

+
1

ε2
〈Lf̂ , f̂〉 = 1

ε
Re 〈Γ̂(z, f), f̂ 〉, (2.5)
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where 〈·, ·〉 denotes the standard inner product in C
m.

Noting that L is positive semi-definite and Γ ∈ N(L)⊥, one obtains due to (2.5) and to
the the inequality ab ≤ 1

2

(

a2 + b2
)

, the following estimate:

∂t|f̂ |2
2

+
C1

ε2
|P⊥f̂ |2 ≤ |Γ̂(z, f)||P⊥f̂ |

ε
≤ 1

2C1
|Γ̂(z, f)|2 + C1

2ε2
|P⊥f̂ |2, (2.6)

where C1 is a constant and P⊥ is the orthogonal projection onto N(L)⊥.
In particular (2.6) implies that

∂t|f̂ |2
2

≤ 1

2C1
|Γ̂(z, f)|2. (2.7)

Noting that for l > n
2 ,

‖Γ(f, g)‖l ≤ C2‖f‖l‖g‖l ∀ f, g ∈ H l. (2.8)

So by multiplying (2.7) by
(

1 + |ζ|2
)l
, integrating over [0, t] × R

n
ζ and using (2.8). One

obtains from Plancherel’s Theorem, the following inequality:

‖f‖2l ≤ ‖f0‖2l +
C2
2

C1

∫ t

0
‖f(s)‖2l ‖z(s)‖2l ds ≤ ‖f0‖2l + Ck2T sup

t∈[0,T ]
‖f(t)‖2l , (2.9)

with C =
C2

2

C1
.

Let T0 and k are such that

T0 =
1

16C‖f0‖2l
, k =

1−
√

1− 4
√
CT‖f0‖l

2
√
CT

,

for T ∈ [0, T0].
Then the desired estimate (2.3) is an immediate consequence of (2.9). Thus the proof

of Lemma 1 is completed. �

We shall solve (1.5) by using Lemma 1 and the principle of contraction mappings.
Define the iteration scheme{fNε } by

f0ε = f0,

∂tf
N+1
ε +

1

ε

N
∑

j=1

V j∂xj
fN+1
ε +

1

ε2
LfN+1

ε =
1

ε
Γ
(

fNε , f
N+1
ε

)

,

fN+1
ε (0, x) = f0(x), N = 0, 1, 2 . . . (2.10)

Lemma 2. Let f0 ∈ H l. Then suitable constants T0, k and λ (λ < 1) exist such that for
any ε > 0 and for any t ∈ [0, T0], the following estimates are satisfied:

∥

∥fN+1
ε

∥

∥

l
≤ k, (2.11)

and
∥

∥fN+1
ε − fNε

∥

∥

l
≤ C0λ

n
2 . (2.12)
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Proof. Since
∥

∥f0
∥

∥

l
= ‖f0‖l ≤ k, (2.11) follows thanks to Lemma 1.

Let hNε = fN+1
ε − fNε , therefore hNε satisfy the equation:

∂th
N
ε +

1

ε

n
∑

j=1

V j∂xj
hNε +

1

ε2
LfNε =

1

ε

(

Γ
(

hN−1
ε , fN+1

ε

)

+ Γ
(

fN−1
ε , hNε

))

.

Applying the technique used in the proof of Lemma 1 one gets:

∂t

∣

∣

∣ĥNε

∣

∣

∣

2
≤ 1

C

(

∣

∣

∣Γ̂
(

hN−1
ε , f̂N+1

ε

)∣

∣

∣

2
+
∣

∣

∣Γ̂
(

fN−1
ε , ĥNε

)∣

∣

∣

2
)

.

Multiplying by
(

1 + |ζ|2
)l
, integrating over [0, T ]×R

n
ζ and using (2.8). One can use again

Plancherel’s Theorem (2.11) to deduce that:

∥

∥hNε
∥

∥

2

l
≤ Ck2T

(

∥

∥hN−1
ε

∥

∥

2

l
+
∥

∥hNε
∥

∥

2

l

)

,

with C =
C2

2

C1
.

Since Ck2T < 1, it follows

∥

∥hNε
∥

∥

2

l
≤ k2cT

1− k2cT

∥

∥hN−1
ε

∥

∥

2

l
. (2.13)

Put

λ =
k2cT

1− k2cT
.

It is clear that λ < 1 and (2.12) follows from (2.13). �

2.2 Proof of Theorem 1

In view of Lemma 2 the estimates (2.11), (2.12) imply that for each ε > 0, {fNε } is
a Cauchy sequence in L∞ ([0, T ],H l

)

. Let denote its limit by fε(t) and note that it
satisfies the estimate (1.8), i.e., this limit in L∞ ([0, T ],H l

)

.
From (2.10) one sees that ∂tf

N+1
ε can be expressed in terms of sequences converging in

L∞ ([0, T ],H l−1
)

as N → +∞. The limit is

Hε = −1

ε

n
∑

j=1

V j∂xj
fε −

1

ε2
Lfε +

1

ε
Γ(fε, fε).

Now let Ψ(t, x) be a C∞ function of compact support in [0, T ] × K. We have just seen
that

∫

[0,T ]×K

〈ψ(t, x), ∂tfN+1
ε 〉 dtdx→

∫

[0,T ]×K

〈ψ(t, x),Hε(t, x)〉 dtdx,

as N → +∞. However
∫

[0,T ]×K

〈ψ(t, x), ∂tfN+1
ε 〉 dtdx = −

∫

[0,T ]×K

〈∂tψ(t, x), fN+1
ε 〉 dtdx

→ −
∫

[0,T ]×K

〈∂tψ(t, x), fε〉 dtdx,
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as N → +∞. Therefore Hε(t) is identified with the distributions derivative in t of fε. It
follows that fε satisfies the equation (1.5) and moreover ∂fε

∂t
∈ L∞ ([0, T ],H l−1

)

; hence
fε ∈ C

(

[0, T ],H l−1
)

. X-Mozilla-Status: 0000

3 Hydrodynamical limit

This section deals with the strong convergence of the solution of the discrete velocity
model (1.1) towards solution of the nonlinear incompressible Navier–Stokes equations
(1.11)–(1.12). In order to derive the hydrodynamical limit, some uniform regularity esti-
mates would likely be needed for obtaining the limit of the nonlinear terms.

3.1 Strong convergence

To prove Theorem 2, one needs more than the uniform bound (1.8) for fε. For this purpose
we assume that hypothesis (1.9) holds and we show the uniform bound for ∂fε

∂t
.

The uniform equicontinuity in t is given by the following:

Lemma 3. Assume that hypothesis (1.9) holds and let l > n
2 + 1. Then

∥

∥

∥

∥

dfε

dt

∥

∥

∥

∥

l−1

≤ C exp

(

Ck2T

2

)

, ∀ t ∈ [0, T ], ε ∈ (0, 1), (3.1)

where the constant C does not depend on ε.

Proof. By differentiating the equation (1.5) with respect to t and by taking the Fourier
transform of the equation obtained, one has

d

dt
∂tf̂ε +

1

ε

n
∑

j=1

iζjV
j∂tf̂ε +

1

ε2
L∂tf̂ε =

1

ε
∂tΓ̂(fε, fε). (3.2)

Taking the inner product (in C
m) of (3.2) with ∂tf̂ε. The real part of the resulting equality

is

∂t|∂tf̂ε|2
2

+
1

ε2
〈L∂tf̂ε, ∂tf̂〉 =

1

ε
Re 〈Γ̂(∂tf, f), ∂tf̂ .〉

Since L is positive semi-definite and Γ ∈ N(L)⊥, we get

∂t|∂tf̂ε|2
2

+
C1

ε2
|P⊥∂tf̂ε|2 ≤

|Γ̂(∂tfε, fε)||P⊥∂tf̂ε|
ε

≤ 1

2C1
|Γ̂(∂tfε, fε)|2 +

C1

2ε2
|P⊥∂tf̂ε|2.

So, multiplying by
(

1 + |ζ|2
)l−1

, integrating over Rn
ζ and using (2.8) one gets

∂t‖∂tfε‖2l−1 ≤
1

C1
‖Γ(∂tfε, fε)‖2l−1 ≤ C‖∂tfε‖2l−1‖fε‖2l−1. (3.3)
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Using Gronwall’s inequality, one reduces (3.3) to

‖∂tfε‖l−1 ≤ exp

(

Ck2T

2

)

‖∂tfε(0)‖l−1.

By using equation (1.5) in order to express ∂tfε(0) in terms of the initial data we have

‖∂tfε‖l−1 ≤ exp

(

Ck2T

2

)





1

ε

∥

∥

∥

∥

∥

∥

n
∑

j=1

V j∂xj
f0

∥

∥

∥

∥

∥

∥

l−1

+
1

ε2
‖Lf0‖l−1 +

1

ε
‖Γ(f0, f0)‖l−1



 .

Taking into account hypothesis (1.9), one gets

‖∂tfε‖l−1 ≤ C exp

(

Ck2T

2

)(

1

ε
‖∂xhε‖l−1 + ε‖∂xkε‖l−1 + ‖Lkε‖l−1

+ ε‖hε‖l‖kε‖l + ε3‖kε‖2l +
1

ε
‖Γ(hε, hε)‖l−1

)

≤ C exp

(

Ck2T

2

)

.

The proof of (3.1) is now complete. �

Conclusion. From Lemma 3 we conclude the following: the solution fε is bounded in
C([0, T ],H l−1), uniformly for ε > 0, for t in any compact subset of the interval [0, T ],
moreover fε satisfies the bound (3.1). Therefore by the Ascoli–Arzela lemma we can
choose a convergent subsequence fεj , where εj → 0 such that

fεj → f in C
(

[0, T ],H l−1
)

. (3.4)

and the limit function satisfies the bound (1.6).

Thanks to convergence results (3.4), the estimate (1.8) allow us to deduce (possibly
taking subsequences) the following convergence

Γ(fεj , fεj) → Γ(f, f) strongly in H l−1. (3.5)

3.2 Passage to the limit

This subsection is devoted to the connection between the discrete velocity kinetic equa-
tions (1.1) and the incompressible Navier–Stokes equations (1.11)–(1.12), we use the tech-
niques described in [3]. In order to get these equations, one needs the following:

Lemma 4. Let f, g ∈ R
m. One gets

〈f, Lg〉 = 1

8

∑

i,j,k,l

A
ij
kl(MiMj +MkMl)(f

⋆
i + f⋆j − f⋆k − f⋆l )(g

⋆
i + g⋆j − g⋆k − g⋆l ), (3.6)

where

f⋆i =
fi√
αiMi

, i = 1, . . . ,m.

Proof. See [7] and [23]. �
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Lemma 5. Let f ∈ N(L). One has

Γ(f, f) =
1

2
L

(

f2√
αM

)

. (3.7)

Proof. Using (1.7), one gets

Γ(f, f) = Λ− 1

2





1

αi

∑

j,k,l

(

A
ij
kl

√

MkMlfkfl −Akl
ij

√

MiMjfifj

)





=





∑

j,k,l

(

A
ij
kl

√
MkMl√

αiαkαlMi

fkfl −Akl
ij

√
Mj

αi
√
αj
fifj

)





i

. (3.8)

On the other hand, if f ∈ N(L), so one gets by (3.6) the following identity:

A
ij
kl

(

fi√
αiMi

+
fj

√

αjMj

− fl√
αlMl

− fk√
αkMk

)

= 0, ∀ i, j, k, l.

Thus, we have

2Aij
kl

fifj
√

αiαjMiMj
= A

ij
kl

(

f2l
αlMl

+
f2k

αkMk
− f2i
αiMi

−
f2j

αjMj
+

2flfk√
αlαkMlMk

)

.

Hence substituting this identity into (3.8) yields:

Γ(f, f) =

(

∑

j,k,l

A
ij
kl

( √
MkMl√

αiαlαkMi

fkfl −
√
MiMj√

αiαlαkMkMl

fkfl −
1

2

√
MiMj√
αiαlMl

f2l

− 1

2

√
MiMj√
αiαkMk

f2k +
1

2

√
MiMj

αi
√
αiMi

f2i +
1

2

√
Mi

αj
√
αi
f2j

)

)

i

. (3.9)

Noting that

A
ij
kl(MiMj −MkMl) = 0, ∀ i, j, k, l.

So,

A
ij
kl

( √
MkMl√

αiαlαkMi

fkfl −
√
MiMj√

αiαlαkMkMl

fkfl

)

= 0,

which with (3.9) imply

Γ(f, f) = −1

2





∑

j,k,l

A
ij
kl

( √
MiMj√
αiαlMl

f2l +

√
MiMj√
αiαkMk

f2k −
√
MiMj

αi
√
αiMi

f2i −
√
Mi

αj
√
αi
f2j

)





i

= −1

2





∑

j,k,l

A
ij
kl

(

Mk√
αiMi

f2l
αl

+
Ml√
αiMi

f2k
αk

− Mj√
αiMi

f2i
αi

− Mi√
αiMi

f2j

αj

)





i

. (3.10)

Therefore the desired identity (3.7) follows from (3.10) and (1.6). �
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Lemma 6. Let χ be a test function such that

n
∑

j=1

d
∑

r=1

∂xj
χr〈er, V jel〉 = 0, l = 1, . . . , d. (3.11)

Then

〈
n
∑

j=1

∂xj
〈fε, P (V j(el)〉, χ〉 = 0, l = 1, . . . , d, (3.12)

where P is the projection onto N(L).

Proof. One has

〈
n
∑

j=1

∂xj
〈fε, P (V j(el)〉, χ〉 = 〈

n
∑

j=1

∂xj
〈Pfε, V j(el)〉, χ〉

=
n
∑

j=1

〈∂xj
〈

d
∑

r=1

αε,rer, V
j(el)〉, χ〉 =

n
∑

j=1

d
∑

r=1

d
∑

l=1

〈∂xj
αε,r〈er, V j(el)〉, χl〉.

Integrating by parts and using (3.5), one gets

〈
n
∑

j=1

∂xj
〈fε, P (V j(el)〉, χ〉 = −

n
∑

j=1

d
∑

r=1

d
∑

l=1

〈αε,r〈er, V j(el)〉, ∂xj
χl〉 = 0.

This ends the proof of Lemma 6. �

Completion of the proof. Multiplying the equation (1.5) by ε2, letting ε go to zero
and using (3.4), yields the relation

Lf = 0.

This implies that f ∈ N(L) and thus can be written according to the formula (1.10).
The scaled local conservation laws associated with the kinetic equation (1.5) are

∂t〈fε, ei〉+
1

ε

n
∑

j=1

∂xj
〈V jfε, ei〉 = 0, i = 1, . . . , d. (3.13)

Letting ε tend to zero and applying formula (1.8) yields condition (1.11).
As was done in [3] for the classical continuous Boltzmann equation, we divide by ε and

we decompose the flux in the form

∂t〈fε, ei〉+
1

ε

n
∑

j=1

∂xj
〈fε, P⊥(V jei)〉+

1

ε

n
∑

j=1

∂xj
〈fε, P (V jei)〉 = 0. (3.14)

Using 3.11 (Lemma 6), the second term of (3.14) can be eliminated upon integra-
ting (3.14) against test functions satisfying (3.11).
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The limit of the first flux term in (3.14) is computed using the fact that P⊥(V jei) ∈
Ran (L) along with the kinetic equation (1.5) to obtain

∂t〈fε, ei〉+
n
∑

j=1

∂xj
〈−ε∂tfε −

n
∑

k=1

V k∂xk
fε + Γ(fε, fε), L

−1P⊥(V jei)〉

+
1

ε

n
∑

j=1

∂xj
〈fε, P (V jei)〉 = 0, i = 1, . . . , d. (3.15)

Letting ε goes to zero,

n
∑

j=1

n
∑

k=1

∂xj
∂xk

〈V kfε, L
−1(P⊥(V jei))〉 →

n
∑

j=1

n
∑

k=1

∂xj
∂xk

〈V kρ · e, L−1(P⊥(V jei))〉

= ∇2 : 〈V e⊗ L−1(P⊥(V e))〉ρ, (3.16)

in D′
t,x.

The limiting quadratic term of (3.15) must be evaluated further in order to bring it
into the form that appears in (1.12). Since f ∈ N(L) the convergence (3.5) and the
identity (3.7) can be employed to show the following convergence in D′

t,x as ε→ 0,

n
∑

j=1

∂xj
〈Γ(fε, fε), L−1P⊥(V jei)〉 →

n
∑

j=1

∂xj
〈Γ(f, f), L−1P⊥(V jei)〉

=
1

2

n
∑

j=1

∂xj
〈(ρ · e)

2

√
αM

,P⊥(V jei)〉 =
1

2
∇ · 〈P⊥(V e),

(ρ · e)2√
αM

〉. (3.17)

Passing to the limit ε→ 0 in equation (3.15), the above convergence (3.16) and (3.17)
suffices to write the limit equation (1.12).

By integrating the equation (3.15) over t, we have

〈fε, ei〉 − 〈fε(0), ei〉

= −
∫ t

0





n
∑

j=1

∂xj〈−ε∂tfε −
n
∑

k=1

V k∂xk
fε + Γ(fε, fε), L

−1P⊥(V jei)〉

+
1

ε

n
∑

j=1

∂xj
〈fε, P (V jei)〉(s)



 ds = 0, i = 1, . . . , d.

Let ε→ 0 and putting t = 0, it follows

〈f, ei〉(0) = 〈h, ei〉. (3.18)

Therefore the desired initial condition for the system (1.12) follows from (3.18).

In the next, we will apply the results discussed in Section 1 to two examples.
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4 Example, I (Carlemann model)

The simplest one-dimensional discrete-velocity models of the Botzmann equation are cer-
tainly those with two velocities. These models describe the evolution of the velocity
distribution of a fictitious gas composed of two kinds of particles that move parallel to
the x-axis with constant speed equal to one, either in the positive x-direction with a den-
sity F1, or in the negative x-direction with a density F2. The corresponding dimensionless
hyperbolic system is given by (see [20]):

ε
dF ε

1

dt
+
dF ε

1

dx
=

1

ε

(

F ε
2
2 − F ε

1
2
)

,

ε
dF ε

2

dt
− dF ε

2

dx
=

1

ε

(

F ε
1
2 − F ε

2
2) ,

F ε
i (t = 0, x) = F 0

i , i = 1.2. (4.1)

Here we have (α1, α2) = (1, 1) and

A22
11 = A11

22 = 1, and A
ij
kl = 0 otherwise.

The condition (1.3) is satisfied.The space M of summational invariants consists of vectors
φ = t(φ1,φ2) satisfying φ1 − φ2 = 0. Therefore M is spanned by φ = (1, 1).

On the other hand a locally Maxwellian state is a vector F = t(F1,F2) > 0 satisfying
F 2
2 = F 2

1 . Let M = (1, 1) be an absolute Maxwellian state: M = (1, 1). Set F (t, x) =

M + εΛ
1

2 f(t, x), here Λ = Id, and substitute it into (4.1), we get:

∂tfε +
1

ε
∂xV fε +

1

ε2
Lfε =

1

ε
Γ(fε, fε),

fε(t = 0, x) = f0(x), (4.2)

where

L = 2

(

1 −1
−1 1

)

, V =

(

1 0
0 −1

)

,

and

Γ(f, f) =
(

f21 − f22
)

t(−1,1).

As ε→ 0, we get that fε → f in D′
t,x (distribution sense) with f = ρ ·e and ρ is solution

of the heat equation:

∂tρ =
1

4
∂2xρ. (4.3)

It follows from the uniqueness of the solution of the initial value problem for (4.3) that
all sequences of fε as ε→ 0 give the same system (4.3) in the limit.

Thus we have proved

Theorem 4. Let f0 ∈ H1(R), then there exists a positive constants T0 and k (de-
pending only on ‖f0‖l) such that the initial value problem (4-2) has a unique solution
fε ∈ L∞ ([0, T0],H

1(R)
)

∩ C
(

[0, T ], L2(R)
)

satisfying

‖fε(t)‖l ≤ k, (4.4)

for t ∈ [0, T0].
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If in addition f0 satisfies

fε(0) = t(hε,hε) + ε2kε, ‖∂xhε‖2 ≤ Cε, lim
ε→0

‖hε − h‖2 = 0, (4.5)

we get

Theorem 5. As ε → 0, fε → f = ρ · e weakly in L∞ ([0, T0],H
1
)

and strongly in
C
(

[0, T ], L2(x)
)

and the limit satisfies the heat equation:

∂tρ =
1

4
∂2xρ, ρ(0, x) = 〈h, e〉. (4.6)

5 Example, II (Broadwell model)

We shall first describe the six-velocity model gas considered by Broadwell [17] and in [29]
and then specialize it to one dimension. We consider the following equation:

ε
dFi

dt
+ ui · ∇Fi =

B

3ε
(Fi+1Fi+4 + Fi+2Fi+5 − 2FiFi+3), i = 0, . . . , 5 (5.1)

Here Fi are the densities of the particles with velocity

ui =
(

c cos
(

θ + i
π

3

)

, c sin
(

θ + i
π

3

))

,

and B denotes the collision frequency.
We specialize (5.1) to solutions that do not depend on y, and θ = 0, and such that

F5 = F1 and F4 = F2 . We can write (5.1) for F1, F2, F3 and F4:

ε
dF0

dt
+
dF0

dx
=

2B

3ε
(F1F2 − F0F3),

ε
F1

dt
+

1

2

dF1

dx
=
B

3ε
(F0F3 − F1F2),

ε
dF2

dt
− 1

2

dF2

dx
=
B

3ε
(F0F3 − F1F2),

ε
dF3

dt
− dF3

dx
=

2B

3ε
(F1F2 − F0F3). (5.2)

By the form of second member we have (α0, α1, α2, α3) =
(

1
2 , 1, 1,

1
2

)

and the relation
(1,3) is satisfied. To get the equation (1.11)–(1.12) for the Broadwell’s model we need some
preparations. The space M of summational invariants consists of vectors φ = t(φ1,φ2,φ3,φ4)

satisfying 2φ1 + 2φ4 = φ2 + φ3. Therefore M is spanned by {φ1, φ2, φ3}, where

φ1 = t(1,0,0,−1), φ2 = t(0,1,0 1

2
), φ3 = t(0,0,1, 1

2
)

On the other hand a locally Maxwellian state is a vector F = t(F0,F1,F2,F3) > 0 satisfying
F2F1 = F0F3. Let M = t(1,1,1,1) be an absolute Maxwellian state. Set F (t, x) = M +

Λ
1

2 f(t, x) for Λ = diag (2, 1, 1, 2) and substitute it into (5.2):

ft +
V fx

ε
+
Lf

ε2
=

1

ε
Γ(f, f),

f(t = 0, x) = f0(x), (5.3)
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where V = diag
(

1, 12 ,−1
2 ,−1

)

and

L = −B
3









−2
√
2

√
2 −2√

2 −1 −1
√
2√

2 −1 −1
√
2

−2
√
2

√
2 −2









, (5.4)

Γ(f, f) =
B

3
(f2f1 − 2f0f3)t(

√
2,−1,−1,

√
2). (5.5)

Since N(L) = Λ
1

2M, a simple calculations gives the orthonormal basis {ei, i = 1, 2, 3} for
N(L):

e1 = t(√

2

2
,0,0,−

√

2

2

), e2 = t(
1

√

10
, 2
√

5
,0, 1

√

10

), e3 = t(
1

√

15
,− 1

√

30
,
√

5
√

6
, 1
√

15

).

By letting ε → 0 in (5.3) and using the results of Section 1, we get fε → f in D′
t,x

(distribution sense) with f = ρ · e, where

ρ = t(ρ1,ρ2,ρ3), e = t(e1,e2,e3),

and from (1.9) we get

ρ3 =
2
√
3√
10
ρ1, ρ2 = − 2√

5
ρ1. (5.6)

Lemma 7. Let f = ρ · e satisfying (5.6), then

Γ(f, f) = 0, (5.7)

〈V f, h〉 = 0 for any h ∈ N(L). (5.8)

Proof. By using (5.5) and (5.6), we get (5.7). (5.8) is obtained by a direct calculations.
This completes the proof. �

Lemma 8. Let f = ρ · e satisfying (5.6), then

〈L−1(P⊥(V e1)), V f〉 =
ρ1

2B
, (5.9)

〈L−1(P⊥(V e2)), V f〉 = − ρ1

4B
√
5
, (5.10)

〈L−1(P⊥(V e3)), V f〉 =
√
6ρ1

8B
√
5
. (5.11)

Proof. The proof of this lemma follows from Lemma 7. �

Using the results of Section 1 combined with Lemma 8, one gets:

Theorem 6. Let f0 ∈ H1(R), then there exists a positive constants T0 and k (de-
pending only on ‖f0‖l) such that the initial value problem (5.3) has a unique solution
fε ∈ L∞ ([0, T0],H

1(R)
)

∩ C
(

[0, T ], L2(R)
)

satisfying

‖fε(t)‖l ≤ k, (5.12)

for t ∈ [0, T0].
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If in addition the initial condition satisfies:

fε(0) = hε + ε2kε, Lhε = 0, ‖Γ(hε, hε)‖2 ≤ Cε,

‖∂xhε‖2 ≤ Cε, lim
ε→0

‖hε − h‖2 = 0, (5.13)

one gets:

Theorem 7. As ε → 0, fε → f = ρ · e weakly in L∞ ([0, T0],H
1
)

and strongly in
C
(

[0, T ], L2(x)
)

and the limit satisfies the heat equation:

∂tρ1 =
1

4B
∂2xρ1, ρ3 =

2
√
3√
10
ρ1, ρ2 = − 2√

5
ρ1,

ρ1(t = 0) =
ρ10 − 2√

5
ρ20 + 2

√
3√
10
ρ30

3
, (5.14)

where

ρi0 = 〈h, ei〉, i = 1, 2, 3.

Remark 5. One can remove the assumption ‖Γ(hε, hε)‖2 ≤ Cε in (5.13). A price to be
paid for this improvement is that: we see the solution of (5.2) in the form Fε =M+εφ(ε)fε
with φ(ε) = O(ε) (see [12]).
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