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Real Jacobian Elliptic Function Parametrizations for a

Genuinely Asymmetric Biquadratic Curve

Apostolos Iatrou ∗†‡

Abstract

We give real Jacobian elliptic function parametrizations for a genuinely asymmetric biquadratic

curve where the variables and parameters are real.

1 Introduction

In a recent paper [3] a method was developed to simplify any real elliptic asymmetric biquadratic

curve1, i.e.

ᾱX2Y 2 + β̄X2Y + δ̄XY 2 + γ̄X2 + κ̄Y 2 + ǭXY + ξ̄X + λ̄Y + µ̄ = 0, (1)

to a canonical curve of the following form

x2y2 + γ(x2 + y2) + ǫxy ± 1 = 0 (2)

or

x2y2 + γ(x2 − y2) + ǫxy − 1 = 0, (3)

using a real invertible transformation T (X,Y ) : (X,Y ) 7→ (x, y) = (f(X), g(Y )) with f and g modular,

and, correspondingly, to simplify the dynamics on it from being generated by

X ′ = −X − δ̄Y 2 + ǭY + ξ̄

ᾱY 2 + β̄Y + γ̄
, Y ′ = −Y − βX ′2 + ǭX ′ + λ̄

ᾱX ′2 + δ̄X ′ + κ̄
(4)

to

x′ = y , y′ = −x− ǫy

y2 + γ
(5)

or

x′ = −x− ǫy

y2 + γ
, y′ = −y − ǫx′

x′2 − γ
, (6)

respectively.

Futhermore, a procedure was outlined which one could use to parametrize the symmetric canonical

biquadratic curves given in equation (2), and consequently many of the asymmetric biquadratic curves

∗ c© Apostolos Iatrou
†Part of this paper is taken from the author’s PhD thesis (La Trobe University). The part taken was written under

the supervision of K. A. Seaton.
‡email: A.Iatrou@latrobe.edu.au apostolosiatrou@hotmail.com
1Following [3], we classify the biquadratic as rational if at least one of the square root signs disappears when y is

solved as a function of x or x is solved as a function of y, meaning y is a rational function of x or x is a rational function

of y. On the other hand, if neither square root sign disappears we call the biquadratic elliptic. We call a biquadratic

symmetric when it is symmetric in the variables, otherwise we call it asymmetric.
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(1), using Jacobian elliptic functions2. The results for the parametrization when the variables and

parameters are real were given in [3, Table 3]. However, two cases were not parametrized. The

fundamentally asymmetric canonical curve given in equation (3) was also not parametrized. As noted

in [3, Section 5], however, if one allows complex variables and parameters then all elliptic biquadratics

can be reduced to the canonical form given in equation (2) (with + sign) 3. This then can be

parametrized by the Jacobian elliptic function sn, see [1, pp. 471–473].

In this paper we give parametrizations for the fundamentally asymmetric normal form for many

asymmetric biquadratics given in equation (3) using Jacobian elliptic functions when the variables

and parameters are real. We also discuss the two outstanding cases of the symmetric canonical curve

given in equation (2) (with + sign).

2 Asymmetric Case

Consider the asymmetric biquadratic given in equation (3) after making the replacement ǫ → 2ǫ, that

is

B(x, y) = x2y2 + γ(x2 − y2) + 2ǫxy − 1 = 0. (7)

Writing y as a function of x, we get

y =
−ǫx±

√

−γx4 + (γ2 + ǫ2 + 1)x2 − γ

x2 − γ
, (8)

while writing x as a function of y, we get

x =
−ǫy ±

√

γy4 + (γ2 + ǫ2 + 1)y2 + γ

y2 + γ
. (9)

The nature of the curves given by (7), e.g. whether the range of x and y is bounded or unbounded,

can be determined by looking at the quartics

∆x(x) = −γx4 + (γ2 + ǫ2 + 1)x2 − γ (10)

and

∆y(y) = γy4 + (γ2 + ǫ2 + 1)y2 + γ. (11)

The possibilities are listed in Figure 1, where we introduce

Bx =
(γ2 + ǫ2 + 1)

γ
(12)

and By = −Bx. Note that for γ > 0 we get

γ +
1

γ
≥ 2 ⇒ γ +

1

γ
+

ǫ2

γ
=

γ2 + ǫ2 + 1

γ
≥ 2. (13)

Similarly, for γ < 0 we get

γ2 + ǫ2 + 1

γ
≤ −2. (14)

Also note that ∆x(x) (∆y(y)) has three (one) extrema if Bx ≥ 2 (By ≤ −2) and one (three) if Bx ≤ −2

(By ≥ 2). The functions ∆x(x) and ∆y(y) each take two different possible forms

2We refer the reader throughout this section to e.g. [2, pp. 18-31,284-285] for definitions and properties of Jacobian

elliptic functions.
3This complex normal form for biquadratics was also found independently in [4].
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Case γ Bx By ∆x(0) ∆y(0) ∆x(x) ∆y(y) B(x, y) = 0

1 > 0 ≥ 2 ≤ −2 −γ γ

2 < 0 ≤ −2 ≥ 2 −γ γ

Figure 1: The possible forms of ∆x(x) and ∆y(y), see (10) and (11), where γ 6= 0, and corresponding

representative asymmetric biquadratics B(x, y) = 0 of (7).

γ

(

−x4 +
γ2 + ǫ2 + 1

γ
x2 − 1

)

, γ > 0, (15)

γ

(

y4 +
γ2 + ǫ2 + 1

γ
y2 + 1

)

, γ > 0 (16)

and

− γ

(

x4 +
γ2 + ǫ2 + 1

−γ
x2 + 1

)

, γ < 0, (17)

−γ

(

−y4 +
γ2 + ǫ2 + 1

−γ
y2 − 1

)

, γ < 0. (18)

Comparing the shape of ∆x(x) and ∆y(y) given in Figure 1 above with those given in [3, Figure 7]

suggests the following parametrizations:

Case 1. dn/
√
k′ or

√
k′nd for x and cs/

√
k′ or

√
k′sc for y, and

Case 2. cs/
√
k′ or

√
k′sc for x and dn/

√
k′ or

√
k′nd for y.

Following the procedure outlined in [3], we have obtained the various possible parametrizations

given in Table 1. Note that Bx = −By = 1/k + k ≥ 2 for Case 1 and Bx = −By = −1/k − k ≤ −2

for Case 2 when k ∈ [0, 1]. As a result the elliptic parametrizations given in Table 1 cover all possible

cases. Also note that in Table 1 there are two possible parametrizations of x, y for each subcase. The

second is related to the first by a shift of the argument u → u+K(k), where

K(k) =

∫ 1

0

dt√
1− t2

√
1− k2t2

is the complete elliptic integral of the first kind (and equals one quarter of the period of sn(u, k) and

cn(u, k)).

Remark 1 The asymmetric biquadratic (7) is invariant under (x, y) 7→ (−x,−y). As a result the

parametrizations given in Table 1 with −x and −y also parametrize the curve.

Remark 2 Using the parametrizations given in Table 1 and (6) (with ǫ → 2ǫ), we generally obtain

(x′, y′) = (−px(±u+2η),−py(±u+3η)) for Case 1 and (x′, y′) = (−px(u± 2η),−py(u± 3η)) for Case

2, where px and py are the appropriate elliptic functions from the Table.

The above parametrizations for x′ and y′ can be verified using the following fact: B(x, y) =

B(x′, y) = B(x′, y′) = 0, where B(x, y) is given by equation (7). Assume x and y satisfy B(x, y) = 0

and have the parametrizations px and py, respectively, where px and py are appropriate elliptic

3



Case x y γ ǫ

1

√
k′ nd(u)

dn(u)/
√
k′

cs(±u+ η)/
√
k′

−
√
k′ sc(±u+ η)

k′ nd2(η) k2 sd(η)cd(η)

√
k′ nd(u)

dn(u)/
√
k′

√
k′ sc(±u+ η)

− cs(±u+ η)/
√
k′

dn2(η)/k′ k2 sn(η)cn(η)/k′

2

√
k′ sc(u)

− cs(u)/
√
k′

± dn(u ± η)/
√
k′

±
√
k′ nd(u ± η)

−k′ nd2(η) k2 sd(η)cd(η)

− cs(u)/
√
k′

√
k′ sc(u)

∓dn(u± η)/
√
k′

∓
√
k′ nd(u± η)

−dn2(η)/k′ k2 sn(η)cn(η)/k′

Table 1: Elliptic parametrization of the cases given in Figure 1 (the explicit dependence of functions

on the modulus is suppressed for convenience).

functions for Case 1 (Case 2), say. The parametrization for x′ can be determined using B(x′, y) = 0,

i.e.

B(x′, y) = x′2y2 + γ(x′2 − y2) + 2ǫx′y − 1

= y2x′2 − γ(y2 − x′2) + 2ǫyx′ − 1 = 0. (19)

The y variable, whose parametrization is known, is treated as the first variable in Table 1 and x′,

whose parametrization is to be determined, is the second variable. Case 2 (Case 1) is now being con-

sidered. Finally, B(x′, y′) = 0 is used to determine the parametrization for y′. In this case x′, whose

parametrization is known, is treated as the first variable in Table 1 and y′, whose parametrization is

to be determined, is the second variable. Case 1 (Case 2) is now being considered again. Care needs to

be taken to ensure that the same pair of parametrizations are chosen and that the right signs appear

in the parametrizations for x′ and y′. This can be achieved using x, y, x′ or y′ when required.

Remark 3 The parametrizations given in Table 1 allow an action-angle variable description of the

dynamics on each of the asymmetric biquadratics of Figure 1 under their corresponding asymmetric

maps (6). Identifying (x, y) → (xn, yn) and (x′, y′) → (xn+1, yn+1), n ∈ ZZ being discrete time, (7)

becomes

x2
n
y2
n
+ γ(x2

n
− y2

n
) + 2ǫxnyn − 1 = 0, (20)

whereas (6) (with ǫ → 2ǫ) becomes

xn+1 = −xn − 2ǫyn
y2
n
+ γ

, yn+1 = −yn − 2ǫxn+1

x2
n+1 − γ

. (21)

Using Remark 2 above, the mapping (21) has the solution

xn = (−1)npx(u2n, k) = (−1)npx(2n η + u0, k),

yn = (−1)npy(u2n+1, k) = (−1)npy((2n+ 1) η + u0, k). (22)

This now allows us to describe the dynamics on each canonical asymmetric biquadratic curve in terms

of the modulus k and argument u of the elliptic functions:

kn+1 = kn

un+1 = un + η.

Finally, recall that (7), equivalently (20), is a normal form for many elliptic asymmetric biquadrat-

ics. In this case the original elliptic asymmetric biquadratic (1), written in terms of (Xn, Yn) (after
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the identification (X,Y ) → (Xn, Yn) and (X ′, Y ′) → (Xn+1, Yn+1)), can be related to (20) using an

asymmetric modular transformation

(Xn, Yn) = (f(xn), g(yn)), (23)

where f and g are modular. It now follows from above that successive points on the original biquadratic

can be written:

(Xn, Yn) = (f(xn), g(yn))

= ((f ◦ ((−1)npx)) (2n η + u0, k), (g ◦ ((−1)npy)) ((2n+ 1) η + u0, k)).

(24)

3 Symmetric Case

Consider the biquadratic

B(x, y) = x2y2 + γ(x2 + y2) + 2ǫxy + 1 = 0. (25)

Writing y as a function of x, we get

y =
−ǫx±

√

−γx4 + (ǫ2 − γ2 − 1)x2 − γ

x2 + γ
. (26)

The quartic under the square root sign can be written as

−γ

(

x4 +
ǫ2 − γ2 − 1

−γ
x2 + 1

)

, −γ > 0. (27)

The two cases of B(x, y) = 0 which were not parametrized. using (ratios of) Jacobian elliptic functions

in [3] correspond to 0 < B < 2 (Case 6 of [3, Figure 7]) and −2 < B < 0 (Case 4 of [3, Figure 7] when

−2 < B < 0), where B is defined as

B =
(ǫ2 − γ2 − 1)

γ
. (28)

The two cases can be combined into one, i.e. −2 < B < 2. In what follows, we show that this case

can be transformed into one where a parametrization has been found.

Consider the modular transformation4 (x, y) = (1−x̄

1+x̄
, 1−ȳ

1+ȳ
). Applying this transformation to the

biquadratic (25) we obtain

B̄(x̄, ȳ) = (1 + γ + ǫ)(x̄2ȳ2 + 1) + (1 + γ − ǫ)(x̄2 + ȳ2) + 4(1− γ)x̄ȳ = 0. (29)

Finally, dividing through by the coefficient of (x̄2ȳ2 + 1) we obtain

B̂(x̂, ŷ) = x̂2ŷ2 +

(

1 + γ − ǫ

1 + γ + ǫ

)

(x̂2 + ŷ2) + 4

(

1− γ

1 + γ + ǫ

)

x̂ŷ + 1 = 0. (30)

In doing the division, we note that the coefficient of (x̄2ȳ2 + 1) is necessarily non-zero. This follows

since the coefficient of (x̄2ȳ2 +1) being zero implies the biquadratic, and the initial curve from which

it is transformed, is rational, as can easily be checked.

Writing y as a function of x, we get

y =
2(γ − 1)x±

√

(ǫ2 − (γ + 1)2)(x4 + 1)− 2(ǫ2 − (γ + 1)2 + 8γ)x2

(1 + γ + ǫ)x2 + 1 + γ − ǫ
. (31)

4We note that for all parametrizable cases given in [3], the quartic is factorizable in the form (ax2 + b)(cx2 + d).

For the outstanding (combined) case, however, the quartic takes the form x4 + αx2 + 1, where −2 < α < 2, which is

factorizable in the form (x2 +
√
2− αx+ 1)(x2 −

√
2− αx+ 1). Looking for a modular transformation that produces

a quartic with no odd terms in the quadratics, we obtain x = (1− x̄)/(1 + x̄).
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The quartic under the square root sign can be rewritten as

(ǫ2 − (γ + 1)2)

{

x4 −
(

2 +
16γ

ǫ2 − (γ + 1)2

)

x2 + 1

}

, −γ > 0. (32)

Note that the term ǫ2− (γ+1)2 is positive, see (34) below. To determine the range of −2− 16γ/(ǫ2−
(γ + 1)2) we can use −2 < B < 2 from above, i.e.

−2 <
(ǫ2 − γ2 − 1)

γ
< 2. (33)

Subracting 2 and then dividing by -16 we obtain

0 <
ǫ2 − (γ2 + 1)2

−16γ
<

1

4
. (34)

Inverting and then subtracting 2 we obtain

2 < −2− 16γ

ǫ2 − (γ2 + 1)2
< +∞. (35)

I.e. Case 4 of [3, Figure 7]) when B < −2, where B is defined as B = 2 + 16γ/(ǫ2 − (γ + 1)2), which

is parametrized by
√
k′ sc or cs/

√
k′, see [3, Table 3]).
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