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Three Dimensional Integrable Mappings

Apostolos Iatrou ∗†‡

Abstract

We derive three-dimensional integrable mappings which have two invariants.

1 Introduction

In this paper we focus on three-dimensional integrable autonomous mappings preserving at least one

three-quadratic (possibly rational) integral (we considered the four-dimensional case (together with

its generalization to higher dimensions) in [6]). A major reason for such a study is the lack off

results on three-dimensional integrable mappings. A recent paper, which makes some progress on

three-dimensional integrable mappings, is [5]. In this paper Hirota et al used algebraic entropy [4] to

determine which three-dimensional mappings of a particular form had polynomial growth implying

zero algebraic entropy. Having discovered all such possible mappings, they used a procedure outlined

in their paper to find two functionally independent conserved quantities for each map. In this paper

we will take a different approach to the one used by Hirota et al to construct three-dimensional

integrable mappings. For the purposes of this paper, we consider a three-dimensional autonomous

mapping integrable if there exist two functionally independent integrals in involution with respect to

some Poisson structure.

The plan of this paper is as follows : In Section 2 we derive three-dimensional volume-preserving

mappings which preserve a three-quadratic expression (a method introduced in [2] on a rational four-

quadratic expression), then assuming that these three-dimensional volume-preserving mappings have

a second integral with a particular ansatz we find 3 three-dimensional volume-preserving integrable

mappings. In Section 3 we use the processes of reparametrization and replacement [7, 8, 9] (terms

introduced and defined in [9]) to construct three-dimensional measure-preserving integrable mappings.

2 Three-Dimensional Volume-Preserving Mappings

In this section we construct three-dimensional volume-preserving mappings (orientation-reversing and

-preserving)1 possessing two integrals, at least one of the integrals being quadratic in the three vari-

ables.

We begin with the orientation-reversing case. Consider the three-quadratic expression

I(x, y, z) =
∑

Aα1β1γ1
xα1yβ1zγ1 , (α1, β1, γ1 = 0, 1, 2), (1)

where Aα1β1γ1
are independent parameters. Assume that (1) is invariant under a cyclic permutation

of variables2, i.e. I(x, y, z) = I(y, z, x), and that the mapping, L, preserving I(x, y, z) is reversible,

i.e.

L ◦G ◦ L = G, (2)
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†Part of this paper is taken from the author’s PhD thesis (La Trobe University). The part taken was written under

the supervision of K. A. Seaton.
‡email: A.Iatrou@latrobe.edu.au apostolosiatrou@hotmail.com
1A mappings L is orientation reversing (orientation preserving) if det dL = −1 (det dL = 1).
2This guarantees that the mapping preserving this integral takes the form x′ = y, y′ = z, z′ = F (x, y, z), where F is

some function.
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with reversing symmetry G : x′ = y, y′ = x, z′ = x. The reversing symmetry also implies that

I(x, y, z) = I(z, y, x). Under these conditions we obtain the integral

I(x, y, z) = A1x
2y2z2 +A2xyz(xy + xy + yz) +A3(x

2y2 + x2z2 + y2z2)

+A4xyz(x+ y + z) +A5(x
2y + x2z + xy2 + xz2 + y2z + yz2)

+A6xyz +A7(x
2 + y2 + z2) +A8(xy + xz + yz) +A9(x + y + z). (3)

The mapping, L, which leaves the integral (3) invariant can be derived by setting x′ = x and y′ = y

and differencing the integral (3), i.e. I(x′, y′, z′) = I(x, y, z′) = I(x, y, z). Then assuming z′ 6= z, we

can solve for z′, to obtain the involution Lz. Finally, composing Lz with the cyclic shift Lc : x′ =

y, y′ = z, z′ = x, i.e. L = Lz ◦ Lc, we obtain the non-trivial volume-preserving orientation-reversing

mapping, L,

x′ = y

y′ = z

z′ = −x−
A2y

2z2 +A4yz(y + z) +A5(y
2 + z2) +A6yz +A8(y + z) +A9

A1y2z2 +A2yz(y + z) +A3(y2 + z2) +A4yz +A5(y + z) +A7
. (4)

For a slightly more general map see [3].

Next, assume that the mapping (4) has a second integral with the following ansatz3

I(x, y, z) =
∑

Aα2β2γ2
xα2yβ2zγ2 , (α2, γ2 = 0, 1, 2 , β2 = 0, 1, 2, 3, 4). (5)

where Aα2β2γ2
are independent parameters. As the mapping (4) is reversible we also have I2(x, y, z) =

I2(z, y, x). We have found the following mappings which simultaneously preserve integrals of the form

(3) and (5) :

x′ = y

y′ = z (6)

z′ = −x−
β(y + z)2 + ǫ(y + z) + ξ

β(y + z) + γ

with integrals

I1 = β(x2y + x2z + xy2 + xz2 + y2z + yz2 + 2xyz) + γ(x2 + y2 + z2)

+ ǫ(xy + xz + yz) + ξ(x+ y + z) (7)

I2 = β2(x+ y)2(y + z)2 + β(ǫ − γ)[(x+ y)2(y + z) + (x + y)(y + z)2]

+ γ(ǫ − 2γ)[(x+ y)2 + (y + z)2] + [βξ + (ǫ− γ)(ǫ− 2γ)](x+ y)(y + z)

+ ξ(ǫ − 2γ)[(x+ y) + (y + z)] (8)

and

x′ = y

y′ = z (9)

z′ = −x−
2βyz + ǫ(y + z) + ξ

αyz + β(y + z) + γ

with integrals

I1 = α2x2y2z2 + 2αβxyz(xy + xz + yz) + αǫxyz(x+ y + z)

+ β2(xy + xz + yz)2 + βǫ(x2y + x2z + xy2 + xz2 + y2z + yz2 + 4xyz)

+ (αξ − 2βγ)xyz + γǫ(x2 + y2 + z2 − xy − xz − yz)− γ2(x2 + y2 + z2)

+ (βξ + ǫ2)(xy + xz + yz) + ξ(ǫ− γ)(x+ y + z) (10)

I2 = (β + ǫ)[αxyz(x− y + z) + γ(x2 + y2 + z2 − xy − yz + xz) + ξ(x + z)]

+ [β2(x+ z) + βǫ(x + z + 1) + ǫ2][xy + xz + yz − y2]. (11)
3See the Appendix for the reason why the ansatz has this form.
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We next consider the orientation-preserving case. Consider the three-quadratic expression (1)

possessing the symmetry I(x, y, z) = I(y, z,−x) 4. Following the procedure outlined above we obtain

the mapping

x′ = y (12)

y′ = z

z′ = x+
A(y − z)

Byz + C

with integrals

I1 = B2x2y2z2 −ABxyz(x− y + z)−A(A+ C)(xy − xz + yz)

− C(A + C)(x2 + y2 + z2) (13)

I2 = B3x2y2z2 − C3(xy + xz + yz) +ABC(2xz − 2xy2z − y) +A2(B − C)y2

−BC2(x2 + y2 + z2 + x+ y + z + xyz[x+ y + z])

+ 2AB2xy2z −B2Cxyz(xyz + 1)−AC2(x+ y)(y + z) (14)

We close this section with the following remark.

Remark The mapping (6) under the coordinate transformation X = x + y, Y = y + z can be

reduced to a two-dimensional area-preserving mapping, i.e.

L1 : X ′ = Y , Y ′ = −X −
(ǫ − γ)Y + ξ

βY + γ
(15)

with the second integral, I2, becoming

I = β2X2Y 2 + β(ǫ − γ)(X2Y +XY 2) + γ(ǫ− 2γ)(X2 + Y 2)

+ [βξ + (ǫ− γ)(ǫ − 2γ)]XY + ξ(ǫ − 2γ)(X + Y ). (16)

Note that the first integral, I1, does not reduce under this transformation.

In fact, the mapping (6) is a member of a recently-discovered hierarchy of integrable mappings

given in [6], the three-dimensional asymmetric mapping5 being

x′ = −x−
β(y + z)2 + ǫ(y + z) + ξ0

β(y + z) + γ0

y′ = −y −
β(x′ + z)2 + ǫ(x′ + z) + ξ1

β(x′ + z) + γ1

z′ = −z −
β(x′ + y′)2 + ǫ(x′ + y′) + ξ2

β(x′ + y′) + γ2
. (17)

3 Three-Dimensional Measure-Preserving Mappings

In this section we apply the processes of reparametrization and replacement to the three-dimensional

volume-preserving integrable mappings constructed above to construct measure-preserving integrable

mappings. These examples illustrate how integrable three-dimensional families of mappings can be

embedded in larger (i.e. higher number of parameters) integrable three-dimensional families of map-

pings via the processes of reparametrization and replacement.

Consider the mapping (9) when α = 0 and ǫ = γ, i.e.

x′ = y

y′ = z

z′ = −x−
2βyz + γ(y + z) + ξ

β(y + z) + γ
(18)

4This symmetry is due to [3].
5In [6] this asymmetric mapping was shown to be obtained as a composition of three involutions. We believe that

this guarantees the reversibility of this mapping. It seems, more generally, that a mapping obtained from a composition

of involutions is reversible, see [6] for examples of such mappings.
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which has integrals

I1 = β(xy + xz + yz)2 + γ(x+ y)(x+ z)(y + z) + ξ(xy + xz + yz) (19)

I2 = (β + γ)[γ(x2 + y2 + z2 − xy − yz + xz) + ξ(x+ z)]

+ [β2(x+ z) + βγ(x+ z + 1) + γ2][xy + xz + yz − y2]. (20)

Notice that the parameters β, γ and ξ now appear linearly in the integral I1. Reparametrizing the

parameters, i.e. β → β0+β1K, γ → γ0+γ1K, ξ → ξ0+ξ1K and the integral I1 → Ī1 = I1+µ0+µ1K,

we obtain the mapping

x′ = y

y′ = z

z′ = −x−
2(β0 + β1K)yz + (γ0 + γ1K)(y + z) + ξ0 + ξ1K

(β0 + β1K)(y + z) + (γ0 + γ1K)
. (21)

Using Ī1(x, y, z) = 0 (as Ī1(x, y, z) = 0 ⇒ Ī1(x
′, y′, z′) = 0) a new integral K = k(x, y, z) can be

defined. Define the map LK to be the map (21) with replacement K = k(x, y, z). The map LK has

two integrals k(x, y, z) and Ī2 = I2(x, y, z)|K=k(x,y,z), i.e.

k = −
β0(xy + xz + yz)2 + γ0(x+ y)(x+ z)(y + z) + ξ0(xy + xz + yz) + µ0

β1(xy + xz + yz)2 + γ1(x+ y)(x+ z)(y + z) + ξ1(xy + xz + yz) + µ1

(22)

Ī2 = {[β0 + γ0 + (β1 + γ1)K][(γ0 + γ1K)(x2 + y2 + z2 − xy − yz + xz)

+ (ξ0 + ξ1K)(x+ z)] + [(β0 + β1K)2(x+ z)

+ (β0 + β1K)(γ0 + γ1K)(x+ z + 1)

+ (γ0 + γ1K)2][xy + xz + yz − y2]}|K=k(x,y,z). (23)

The map LK is also measure preserving with

m(x, y, z) =

[

∂Ī1

∂K

]−1

. (24)

Consider the mapping (9) when α = 0 and ǫ = γ = β, i.e.

x′ = y

y′ = z

z′ = −x−
β(2yz + y + z) + ξ

β(y + z + 1)
(25)

which has integrals

I1 = β[(xy + xz + yz)2 + (x + y)(x+ z)(y + z)] + ξ(xy + xz + yz) (26)

I2 = β(x + z)(x+ z + xy + xz + yz − y2) + ξ(x+ z). (27)

Notice that the parameters β and ξ now appear linearly in both integrals. Reparametrizing the

parameters and the integrals, i.e. β → β0 + β1K1 + β2K2, ξ → ξ0 + ξ1K1 + ξ2K2, I1 → Ī1 =

I1 + µ0 + µ1K1 + µ2K2 and I2 → Ī2 = I2 + ν0 + ν1K1 + ν2K2, we obtain the mapping

x′ = y

y′ = z

z′ = −x−
(β0 + β1K1 + β2K2)(2yz + y + z) + ξ0 + ξ1K1 + ξ2K2

(β0 + β1K1 + β2K2)(y + z + 1)
, (28)

with integrals Ī1(x, y, z) and Ī2(x, y, z). Setting Ī1(x, y, z) = 0 and Ī2(x, y, z) = 0 it is possible to solve

for K1 = k1(x, y, z) and K2 = k2(x, y, z) as Ī1 and Ī2 are linear in K1 and K2. Define the map LK1K2
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to be the map (28) with replacements K1 = k1(x, y, z) and K2 = k2(x, y, z). The map LK1K2
has the

integrals K1 = k1(x, y, z) and K2 = k2(x, y, z). The map LK1K2
is also measure preserving with

m(x, y, z) =

∣

∣

∣

∣

∣

∂Ī1
∂K1

∂Ī1
∂K2

∂Ī2
∂K1

∂Ī2
∂K2

∣

∣

∣

∣

∣

−1

. (29)

The integrals to the above maps can be shown to be functionally independent and in involution with

respect to the following Poisson structure [1]

m(x, y, z)







0 ∂I
∂z

− ∂I
∂y

−∂I
∂z

0 ∂I
∂x

∂I
∂y

− ∂I
∂x

0






, (30)

where I is either one of integrals and m(x, y, z) is the measure.

Finally, we consider the mapping (6). As noted in the remark at the end of Section 2 we can use a

coordinate transformation, i.e. X = x+y and Y = y+z, to reduce the mapping to a two-dimensional

mapping. Importantly, however, the three-quadratic integral, I1, does not reduce under this coordinate

transformation and as a result if we use the processes of reparametrisation and replacement on this

integral then the resulting mapping, Lr, is not reducible to a two dimensional mapping, although for

every fixed K it is. The remark at the end of Section 2 also shows that the reduced mapping has a

biquadratic integral and thus can be explicitly integrated6, see [7]. This result can be used to integrate

the mapping Lr also but this time curve-wise (leaf-wise).7
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Appendix

Our work on multidimensional integrable mappings (particularly [6]) has lead us to the following ob-

servation about the degree of the variables that occur in the integrals :

A 2n-dimensional volume-preserving integrable mapping with variables v0, . . . , v2n−1, which has

one n-quadratic integral, possesses an additional (n− 1) integrals of the following form

I2 =
∑

Aα21...α2,2n
vα21

0 . . . v
α2,2n

2n−1 , (α21, . . . , α2,2n = 0, . . . , 4)
...

In =
∑

Aαn,1...αn,2n
v
αn,1

0 . . . v
αn,2n

2n−1 , (αn,1, . . . , αn,2n = 0, . . . , 2n).

(31)

While a (2n+1)-dimensional volume-preserving integrable mapping with variables v0, . . . , v2n, which

has one n-quadratic integral, possesses an additional n integrals of the following form

I2 =
∑

Aα21...α2,2n+1
vα21

0 . . . v
α2,2n+1

2n , (α21, . . . , α2,2n+1 = 0, . . . , 4)
...

In+1 =
∑

Aαn+1,1...αn+1,2n+1
v
αn+1,1

0 . . . v
αn+1,2n+1

2n , (αn+1,1, . . . , αn+1,2n+1 = 0, . . . , 2n+ 2).

(32)

In the case we have considered in this paper, the power of the first and last variables ranges from 0

to 2.

6This also is true for its asymmetric form.
7We believe that the maps considered in Case 2 of [6, Section 3] can be integrated in this way also.
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