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Three Dimensional Integrable Mappings

Apostolos Tatrou **

Abstract

We derive three-dimensional integrable mappings which have two invariants.

1 Introduction

In this paper we focus on three-dimensional integrable autonomous mappings preserving at least one
three-quadratic (possibly rational) integral (we considered the four-dimensional case (together with
its generalization to higher dimensions) in [6]). A major reason for such a study is the lack off
results on three-dimensional integrable mappings. A recent paper, which makes some progress on
three-dimensional integrable mappings, is [B]. In this paper Hirota et al used algebraic entropy H] to
determine which three-dimensional mappings of a particular form had polynomial growth implying
zero algebraic entropy. Having discovered all such possible mappings, they used a procedure outlined
in their paper to find two functionally independent conserved quantities for each map. In this paper
we will take a different approach to the one used by Hirota et al to construct three-dimensional
integrable mappings. For the purposes of this paper, we consider a three-dimensional autonomous
mapping integrable if there exist two functionally independent integrals in involution with respect to
some Poisson structure.

The plan of this paper is as follows : In Section 2 we derive three-dimensional volume-preserving
mappings which preserve a three-quadratic expression (a method introduced in [2] on a rational four-
quadratic expression), then assuming that these three-dimensional volume-preserving mappings have
a second integral with a particular ansatz we find 3 three-dimensional volume-preserving integrable
mappings. In Section 3 we use the processes of reparametrization and replacement [, 8, 9] (terms
introduced and defined in [9]) to construct three-dimensional measure-preserving integrable mappings.

2 Three-Dimensional Volume-Preserving Mappings

In this section we construct three-dimensional volume-preserving mappings (orientation-reversing and
-preserving)! possessing two integrals, at least one of the integrals being quadratic in the three vari-
ables.

We begin with the orientation-reversing case. Consider the three-quadratic expression

I(,’E,y,Z) = ZAO‘16171 xalyﬁlz’ha (041761771 = 07 17 2)7 (1)

where Aq,3,~, are independent parameters. Assume that ([Il) is invariant under a cyclic permutation
of variables?, i.e. I(x,y,z) = I(y,2,), and that the mapping, L, preserving I(z,y,2) is reversible,
i.e.

LoGoL =G, (2)
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LA mappings L is orientation reversing (orientation preserving) if det dL = —1 (det dL = 1).

2This guarantees that the mapping preserving this integral takes the form =/ =y, = z,2’ = F(z,y, z), where F is
some function.
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with reversing symmetry G : 2’ = y,y' = z,2/ = x. The reversing symmetry also implies that
I(z,y,z) = I(z,y,2). Under these conditions we obtain the integral
I(z,y,2) = Aw’y®2? + Agwyz(ay + xy +yz) + As(2®y® + 222 + y22%)

+ Agzyz(z +y + 2) + As(2%y + 222 + 2y + 222 + 2 + y2?)

+ Agzyz + A7 (2® +y* 4+ 2%) + Ag(vy + 22 +y2) + Ag(z +y + 2). (3)
The mapping, L, which leaves the integral (Bl invariant can be derived by setting 2’ = z and ¢ = y
and differencing the integral @), i.e. I(a',y’,2") = I(z,y,2’) = I(x,y,z). Then assuming 2’ # z, we
can solve for 2/, to obtain the involution L.. Finally, composing L, with the cyclic shift L. : ' =
y,y =2,z ==x,1e. L =1L,0 L., we obtain the non-trivial volume-preserving orientation-reversing

mapping, L,
¥ =y
y = =z

o g AeytE At Ay 4 2) + As(y 4 2%) + Asyz + As(y +2) + Ag n
Ay?22 + Agyz(y + 2) + As(y? + 22) + Auyz + As(y + 2) + A7

For a slightly more general map see [3].
Next, assume that the mapping (@) has a second integral with the following ansatz®

I(,’E,y,Z) = ZAQQB2’Y2 xa2yﬁ2z’)l27 (042772 = 07 1727 62 = 07 1727374)' (5)

where Aq,3,+, are independent parameters. As the mapping (@) is reversible we also have I»(x,y, 2) =
I5(z,y, ). We have found the following mappings which simultaneously preserve integrals of the form

@) and @) :
o=y
y o=z (6)
ooy Byt +ely+2)+¢
Bly+z)+y
with integrals
I = Bay+2%z+xy® + 2% +yPz +y2® 4 2xy2) + y(2? + 4% + 2%)
t+e(zy +az+yz) +&(z+y+2) (7)
L = Ba+y)°y+2)°+8—la+y)>y+2)+ (@ +y)(y+2)°]
+(e=29)[(@ + ) + (y + 2)*] + [BE + (€ =) (e — 29)](x + y)(y + 2)
+&(e=29)[(z +y) + (y + 2)] (8)
and
y = =z (9)
- _x_25yz+€(y+2)+f

ayz + By +2) +v
with integrals

L = 22?2 4 20Bayz(vy + vz + yz) + aexyz(z +y + 2)

+ B2y + w2 +y2)? 4 Be(zPy + 2%z 4+ xy? + 22 + %2 + y2? + dayz)
+(a€ = 2B7)ayz +ve(@® +y° + 2% —wy — 2z —yz) — ¥ (2% + 3 + 27)

+(BE+ ) ay +aztyz)+Ee—)(@+y+2) (10)
L = (B+o|axyz(z—y+2)+y(@? +y? + 2% —ay —yz +22) + &(x + 2)]
+ [B%(x + 2) + Be(x + 2 +1) + €] [zy + 22 + yz — ¢7]. (11)

3See the Appendix for the reason why the ansatz has this form.



We next consider the orientation-preserving case. Consider the three-quadratic expression ()
possessing the symmetry I(z,y, z) = I(y, 2z, —x) *. Following the procedure outlined above we obtain
the mapping

=y (12)
y = =z
Aly — =
o= et Bg(Jyz n (,Z
with integrals

I = B?2%y?2® — ABayz(x —y + 2) — A(A+ C)(zy — 2 + y2)

—C(A+O) (= + 9>+ 2°) (13)
I, = B*2%y*2? — C*(ay + vz +yz) + ABC(2x2 — 22y°2 — y) + A*(B — O)y?

—BC*(* + P+ 22t tytztayzr+y+z])

+2AB%zy*2 — B*Cayz(zyz + 1) — AC*(x + y)(y + 2) (14)

We close this section with the following remark.

Remark The mapping (@) under the coordinate transformation X = z 4+ y,Y = y + z can be
reduced to a two-dimensional area-preserving mapping, i.e.

(e—7Y +¢

Li: X'=Y, VYV =-X- 3V 7 (15)
with the second integral, I», becoming
I = BXY?2+B(e—7)(X?Y + XY?) + (e —29)( X%+ Y?)
+[BE + (e = 1)(e = 29)]XY + £(e = 29)(X +Y). (16)

Note that the first integral, I;, does not reduce under this transformation.
In fact, the mapping () is a member of a recently-discovered hierarchy of integrable mappings
given in [, the three-dimensional asymmetric mapping® being

;o Bly+2)%+ely+2)+ &
¥ = —x—
By +2)+ %
;o B ) He@ + )+
vo= B+ 2) +m
g, BEHyP @ +y)+ & (17)

B +y') + 72
3 Three-Dimensional Measure-Preserving Mappings

In this section we apply the processes of reparametrization and replacement to the three-dimensional
volume-preserving integrable mappings constructed above to construct measure-preserving integrable
mappings. These examples illustrate how integrable three-dimensional families of mappings can be
embedded in larger (i.e. higher number of parameters) integrable three-dimensional families of map-
pings via the processes of reparametrization and replacement.

Consider the mapping @) when o =0 and € =, i.e.

x =

o g 2Pyrtaly )+
Bly+z)+y
4This symmetry is due to [].
5In [B] this asymmetric mapping was shown to be obtained as a composition of three involutions. We believe that
this guarantees the reversibility of this mapping. It seems, more generally, that a mapping obtained from a composition
of involutions is reversible, see [6] for examples of such mappings.

(18)




which has integrals

L = Blay+zz+yz)’ +v@+y)(@+2)(y +2) + E(zy + x2 +yz) (19)
L = B+Nh(E®+y?+22—ay—yz+az)+E(x + 2)]
—|—[B%x—l—z)—l—ﬁ*y(x—l—z—l—1)+”yz][xy+xz+yz—y2]. (20)

Notice that the parameters 8,7 and £ now appear linearly in the integral I;. Reparametrizing the
parameters, i.e. B — Bo+ 1K, v —= o+ K, € = &+ &K and the integral Iy — I} = I + po+ 11 K,
we obtain the mapping

€T =
S 2(80 + iK)yz + (o + EK)(y +2) + & + &K
(Bo + B1E)(y + 2) + (o + 1K) -
Using I;(z,y,2) = 0 (as Ii(z,y,2) = 0 = L(2',y',2') = 0) a new integral K = k(z,y, z) can be
defined. Define the map Lx to be the map [II) with replacement K = k(x,y,z). The map Lk has
two integrals k(z,v, 2) and Ir = Ix(z,y, 2)| K=k(w,y,z)s 1-€.

(21)

_Bolzy + 22 +y2)* +y0(x +y) (@ +2)(y + 2) +o(zy + 22 +yz) + 1o

k =
Br(zy +zz+yz)? + (e +y)(@+2)(y+2) +&lzy + 2z +yz) +
(22)
I = {[Bo+1+ B +7)EK][(v0+mnK)(@®+y> +2° —ay —yz + x2)
+ (6o + & K) (@ + 2)] + [(Bo + B1K)* (x + 2)
+ (Bo + 1K) (o + nK)(z+2z+1)
+ (0 + nE))fzy + 22 + ¥z — I k—k(e .- (23)
The map Ly is also measure preserving with
on1!
m(z,y,z) = [a—K] . (24)
Consider the mapping @) when o =0 and e =y = j3, i.e.
=y
y =z
B2yz +y+2)+¢
I e 25
: T Byt =
which has integrals
L = Bllay+az+yz)* + (@ +y) (@ +2)(y + 2)] + E(zy + 22 +y2) (26)
I, = Bla+2)(z+z+ay+azt+yz—y®) +&(x+2). (27)

Notice that the parameters § and ¢ now appear linearly in both integrals. Reparametrizing the
parameters and the integrals, ie. ﬂ — ﬂo + ﬂlKl + BQKQ, g — 50 + §1K1 + €2K2, Il — jl =
I + po + p1 K1 + pe Ko and In — I, = I + vy + 11 K1 + 2 Ko, we obtain the mapping

¥ =y
y = =z
S e (Bo + B1K1 + BoKo)(2yz +y + 2) + o + &1 K1 + &Ko (28)

(Bo + B1EK1 + B2 Ko)(y + 2+ 1)

with integrals I (z,v, 2) and Iy(z,y, ). Setting I;(z,y,2) = 0 and I>(x,y,2) = 0 it is possible to solve
for K1 = kyi(z,y, 2) and Ko = ka(x,y,2) as I; and I are linear in K; and K. Define the map L, r,



to be the map ([28) with replacements K7 = ki (x,y, z) and K5 = ka(x,y,2). The map Lk, i, has the
integrals K7 = ki(x,y,2) and Ky = ka(x,y, 2). The map Lk, k, is also measure preserving with

—1

8j1 8j1
m(z,y,2) = | G G (29)
0Ky 0K

The integrals to the above maps can be shown to be functionally independent and in involution with
respect to the following Poisson structure [I]

0 or oI
oI o B?y
m(xayvz) ~ 0z 0 oz ) (30)
or o1 0
oy ox

where I is either one of integrals and m(z,y, z) is the measure.

Finally, we consider the mapping (@l). As noted in the remark at the end of Section 2 we can use a
coordinate transformation, i.e. X = x4y and Y = y+ z, to reduce the mapping to a two-dimensional
mapping. Importantly, however, the three-quadratic integral, I, does not reduce under this coordinate
transformation and as a result if we use the processes of reparametrisation and replacement on this
integral then the resulting mapping, L., is not reducible to a two dimensional mapping, although for
every fixed K it is. The remark at the end of Section 2 also shows that the reduced mapping has a
biquadratic integral and thus can be explicitly integrated®, see [7]. This result can be used to integrate
the mapping L, also but this time curve-wise (leaf-wise).”
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Appendix

Our work on multidimensional integrable mappings (particularly [6]) has lead us to the following ob-
servation about the degree of the variables that occur in the integrals :

A 2n-dimensional volume-preserving integrable mapping with variables vg, ..., van—1, which has
one n-quadratic integral, possesses an additional (n — 1) integrals of the following form

« 2,2 —
IQ = EAQM___OQ’%L’UO 2. v2n7711 5 (0421, ceey, 22 = O, SN ,4)

: (31)

Q1 Qn,2n _

In =3 AcprananVo - Von 21y (s som2n =0,...,2n).
While a (2n+1)-dimensional volume-preserving integrable mapping with variables vo, . . . , Vo, which
has one n-quadratic integral, possesses an additional n integrals of the following form
_ a Q2 2041 _
IQ = ZAa21~~~a2,2n+1U021 < Ugy N (0421,...,042)2714_1 = 0,...,4)
: (32)
_ Qnt1,1 Qnt1,2n+1 _
InJrl - Z Aan+1,1»»»an+1,2n+1v0n o .1)2;; " ) (o‘nJrl,la sy Ot 1 2n+1 = 0, BRI 2n + 2)

In the case we have considered in this paper, the power of the first and last variables ranges from 0
to 2.

6This also is true for its asymmetric form.
"We believe that the maps considered in Case 2 of [B Section 3] can be integrated in this way also.
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