
ar
X

iv
:n

lin
/0

30
60

58
v1

  [
nl

in
.S

I]
  2

7 
Ju

n 
20

03

A Cantor set of tori with monodromy

near a focus-focus singularity

Bob Rink
∗

21st November 2018

Abstract

We write down an asymptotic expression for action coordinates in an integrable
Hamiltonian system with a focus-focus equilibrium. From the singularity in the
actions we deduce that the Arnol’d determinant grows infinitely large near the
pinched torus. Moreover, we prove that it is possible to globally parametrise the
Liouville tori by their frequencies. If one perturbs this integrable system, then the
KAM tori form a Whitney smooth family: they can be smoothly interpolated by a
torus bundle that is diffeomorphic to the bundle of Liouville tori of the unperturbed
integrable system. As is well-known, this bundle of Liouville tori is not trivial. Our
result implies that the KAM tori have monodromy. In semi-classical quantum
mechanics, quantisation rules select sequences of KAM tori that correspond to
quantum levels. Hence a global labeling of quantum levels by two quantum numbers
is not possible.

1 Introduction

In this paper we study singular Lagrangean foliations of focus-focus type in two
degree of freedom integrable Hamiltonian systems. Such foliations consist of a non-
trivial bundle of two-dimensional regular Liouville tori and one singular surface, a
pinched torus, see also [3], [19] or later in this paper. This type of foliation has
been found in various two degree of freedom Hamiltonian systems, see for instance
[3], [5], [13] and [14]. The most famous example is perhaps the spherical pendulum,
see [6].

Some authors have studied what happens in a perturbation of a Hamiltonian
system with such a foliation. Horozov [9] was the first to show that for the spherical
pendulum the so-called Arnol’d determinant is nonzero at every regular value of the
energy-momentum map. This nondegeneracy condition is traditionally called the
Kolmogorov condition and it makes the KAM theorem work. In [16] it was proved
by Tien Zung that the Kolmogorov condition is satisfied in a full neighbourhood
of any pinched torus of focus-focus type. In this paper the results of [16] will be
made more specific. Based on a computation of Vu Ngoc [19], we shall explicitly
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describe the limiting behaviour of the frequency map and the Arnol’d determinant
near a pinched torus. The latter grows infinitely large. The Kolmogorov condition
requires that the Liouville tori of an integrable system can locally be parametrized
by their frequencies. We will see that in the vicinity of a pinched torus, this can
even be done more or less globally.

What happens to the singular foliation if one perturbs the integrable system?
The pinched torus, being a high dimensional homoclinic connection, most likely
breaks up into a homoclinic tangle with complinated geometry. A Cantor set of
Liouville tori survives as KAM tori.

It is well-known, see [3], [6], [11], [17], that the Liouville tori near a pinched
torus do not form a trivial torus bundle, but have monodromy. In [5] the question
was posed whether this global geometry remains present in the KAM tori of the
perturbed system. In this paper we will show that this is the case. It turns out
that the KAM tori in the perturbed system form a Whitney smooth family that is
diffeomorphic to the bundle of Liouville tori in the integrable system. This means
that the KAM tori have monodromy. The geometry of KAM tori in nearly inte-
grable Hamiltonian systems is also discussed in [1]. The approach in that paper is
completely different: the authors use a partition of unity for glueing together local
Whitney smooth families of KAM tori.

The fact that KAM tori can have monodromy is particularly interesting for
semi-classical quantum mechanics. Quantum monodromy in integrable systems
has been analysed using the quantum energy-momentum map, see [4], [5], [14] and
[18]. Semi-classical quantisation theory selects regular sequences of Liouville tori
in the classical integrable system which correspond to quantum levels in the quan-
tum system. In the semi-classical limit, with Planck’s constant going to zero, these
quantum levels form locally a regular lattice of which the points can be labeled
by quantised actions. But if monodromy is present in the Liouville tori, then any
global labeling of the quantum levels by two quantum numbers is impossible, since
there is a shift in the global lattice structure, see [4] and [18].

The only problem is that most two degree of freedom Hamiltonian systems are
not integrable, even though it might be possible to approximate them by an inte-
grable system. Our result explains that monodromy is also present in nonintegrable
systems that are perturbations of an integrable system with a focus-focus singular-
ity. Semi-classical quantisation theory states that the quantum levels are in this
case described by sequences of KAM tori, see [10]. Monodromy in these KAM tori
will again constitute an obvious obstruction to the global labeling of the quantum
levels by two quantum numbers. The problems with the global labeling of quantum
levels and the phenomenon of redistribution of quantum states have been studied
extensively and have also been found experimentally, see for instance [5], [8] and
[14].

In [13] it was shown that focus-focus equilibria, pinched tori and monodromy
can also occur in the Birkhoff normal form of the famous Fermi-Pasta-Ulam (FPU)
lattice. Remarkably, their influence could also be observed in numerical integrations
of the original lattice equations, even at rather high energy and in lattices of high
dimension, where one would usually question the validity of a normal form approxi-
mation. This indicates that maybe an exceptional amount of KAM tori will persist
in perturbations of integrable Hamiltonian systems with focus-focus singularities.
A detailed study is necessary to prove this and this paper can be considered as a
starting point for such an analysis.
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2 Mathematical background

Let us recall the Hamiltonian monodromy theorem. Let M be a four dimensional
real analytic symplectic manifold with symplectic form σ. Suppose that we have two
real analytic Poisson commuting Hamiltonians H1,H2 : M → R, so {H1,H2} = 0.
The map H = (H1,H2) : M → R

2 is called the energy-momentum map. We
want study how the level sets H−1(h) of the energy-momentum map foliate the
symplectic manifoldM . At regular points, this foliation is Lagrangean, because H1

and H2 commute. A point m ∈M is called a focus-focus equilibrium if XH1(m) =
XH2(m) = 0 and there are canonical coordinates (q, p) (that is σ =

∑2
i=1 dqi ∧ dpi)

near m such that (q, p)(m) = 0 and

H1 = a(q1p2 − q2p1) + b(q1p1 + q2p2) + higher order terms

H2 = c(q1p2 − q2p1) + d(q1p1 + q2p2) + higher order terms

where ad− bc 6= 0. Let us moreover assume that H has the following properties:

1. There is an open neighbourhood U ⊆ R
2 of 0 such that 0 is the only critical

value of H in U .

2. For every u ∈ U\{0}, the fiber H−1(u) is connected and compact.

3. The singular fiber H−1(0) is connected and compact and m is its only
singular point.

The foliation of H−1(U) in level sets of H is a singular Lagrangean foliation with
one singular point. The Arnol’d-Liouville theorem says that the regular fibers
H−1(u) (u ∈ U\{0}) form a smooth bundle of two-dimensional tori. The Hamil-
tonian monodromy theorem states that this bundle is not trivial. In fact, using
a suitable basis for the fundamental group of the torus H−1(ū) (ū ∈ U\{0}) and
identifying this torus with the lattice R

2/Z2, the monodromy map of the bundle is

given by the matrix

(
1 −1
0 1

)
. The Hamiltonian monodromy theorem was proved

by Matveev [11] and Tien Zung [17]. The monodromy of the bundle is an obvious
obstruction to the existence of global action angle coordinates on H−1(U\{0}), see
[6].

The singular fiber H−1(0) is a pinched torus: an immersed sphere with one
point of transversal self-intersection. Its set of nonsingular points, H−1(0)\{m} is
diffeomorphic to a cylinder.

Let us write

K1 = q1p2 − q2p1 , K2 = q1p1 + q2p2 and K = (K1,K2) .

Near m, the following linearisation result holds and is due to Eliasson [7]. There
exist real analytic canonical coordinates x = (q, p) : W → T ∗

R
2 in a neighbour-

hood W of m such that x(m) = 0 and H = λ ◦K ◦ x for some real analytic local
diffeomorphism λ of R2. This means that in W , K ◦ x and H define the same level
sets. We also say that K ◦ x is a momentum map for the foliation given by the
energy-momentum map H. But this implies that K ◦ x has a unique extension
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to a function on H−1(W ) that is constant on the level sets of H. By the local
submersion theorem, this extension is analytic too. We conclude that K ◦ x can
be extended to a global real analytic momentum map for the Lagrangean foliation
near the pinched torus. In other words, since we will only be interested in a neigh-
bourhood of the pinched torus, we can and will assume that H|W = K ◦ x.

Let F0 :M → R be an arbitrary real analytic Hamiltonian function which Pois-
son commutes with H1 and H2, that is F0 is a function of H1 and H2 only. We
also write F0 for F0 ◦H. Clearly, the Hamiltonian vector field XF0 is integrable: its
flow leaves the level sets of H invariant. The motion in the Liouville tori is simply
periodic or quasi-periodic. One may wonder whether this quasi-periodic behaviour
persists when we perturb the Hamiltonian function F0. In order to apply the KAM
theorem, one must show that the Liouville tori of the integrable system defined
by F0 can locally be parametrised by their frequencies. We shall show that this is
possible under the assumption that m is a linearly unstable equilibrium point of
XF0 .

Moreover, we want to study the geometry in the KAM tori by giving a smooth
torus bundle that interpolates them. Theorems providing interpolation results for
KAM tori usually only work for perturbations of integrable systems admitting
global action-angle coordinates. This type of theorem will be used at an interme-
diate stage. This paper then provides an example of a nontrivial Whitney smooth
bundle of KAM tori.

3 Global action-angle coordinates

Vu Ngoc in [19] derives an expression for action coordinates near a pinched torus
from a local analysis near the focus-focus singularity in Eliasson’s canonical coor-
dinates (q, p). We recall this result here.

Let us first define the function arg : R2\{0} → R by arg : (r cosφ, r sinφ) 7→ φ.
Note that arg is of course a multivalued function. Over a positively oriented circle
around the origin its value increases 2π. But after choosing a fixed branch, arg
becomes locally a uniquely defined analytic function. We have the following

Proposition 3.1 There exists a real analytic function s = s(H) defined on an

open neighbourhood Ũ ⊂ R
2 of {H = 0} such that

a1(H) = H1 , a2(H) =
1

2π
(H2 ln |H|+H1 argH) + s(H) =: ψ(H)

define a set of local action coordinates near every point in Ũ\{0}.

The proof can be found in [19]. Obviously, a1(H) = H1 (= K1 in Eliasson’s
coordinates) defines a Hamiltonian vector field in Eliasson’s coordinates which has
a 2π-periodic flow. Therefore it is an action. The other action is obtained as the
Arnol’d integral

a2(H) =
1

2π

∫

γh

α ,

where α is a one-form such that dα = σ, see [6]. Such a one-form exists locally
near every Liouville torus since the foliation in tori is Lagrangean. γh is a closed
curve on the Liouville torus H−1(h) which is chosen so that an integral curve of
Xa1 = XH1 and γh together form a basis of the fundamental group of the torus

4



H−1(h). Obviously, this integral depends analytically on H, hence the function s
is analytic. In [19] it was shown that the Taylor expansion of s− s(0) classifies the
singular Lagrangean foliation in an open neighbourhood of the pinched torus, up
to a symplectomorphism.

Let us examine the coordinate transformation H 7→ a in more detail. We shall
for convenience write

Ψ : (H1,H2) 7→ (a1, a2) = (H1, ψ(H1,H2))

If we choose a branch of arg, then Ψ is a single valued real analytic map on the
domain R

2
∗ := R

2\R≥0(1, 0) intersected with Ũ . The Jacobi determinant of Ψ is

detDΨ(H) =
∂ψ(H)

∂H2
=

1

2π
(ln |H|+ 1) +

∂s(H)

∂H2

which is obviously negative and hence nonzero in a small enough open neighbour-
hood of {H = 0}. Let us choose a little annulus V := {ρ1 < |H| < ρ2} in this
neighbourhood. It is easy to verify that Ψ : V∗ := V \R≥0(1, 0) → R

2 is injective,
because the map H2 7→ ψ(a1,H2) has strictly negative derivative and makes a neg-
ative jump at H2 = 0 if a1 > 0. Therefore, Ψ is a real analytic diffeomorphism
between V∗ and A := Ψ(V∗). Ψ ‘opens’ V∗, that is at different branches of arg, the
boundary half line R≥0(1, 0) is mapped by Ψ to different half lines, see Figure 1.

Ψ
V A

Figure 1: The map Ψ : V∗ → A.

Let us write MV := H−1(V ) ⊂ M for the nontrivial bundle of Liouville tori over
V .

Proposition 3.2 There exist global action-angle coordinates on the subbundle H−1(V∗)
⊂MV . This means that there exist an open set A ⊂ R

2 and a C∞ diffeomorphism

Φ0 : H
−1(V∗) → A×T 2 with the properties that Φ∗

0(da∧dφ) = σ and p◦Φ0 = Ψ◦H.

Here p : A× T 2 → A denotes the projection on the first coordinate.

Proof. Note that V∗ is contractible on itself to a point. Therefore the bundle
H−1(V∗) over V∗ is topologically trivial, see [15] pp. 53. This implies that there is
a homotopy between the identity map on H−1(V∗) and a map that sends H−1(V∗)
to a single Lagrangean fiber. Hence σ|H−1(V∗) is exact by the homotopy principle.
Finally, Ψ : V∗ → A is a diffeomorphism. According to Theorem 2.2 in [6] these facts
are sufficient for the existence of C∞ global action-angle coordinates on H−1(V∗).
�
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4 Frequencies

Under the assumption that the focus-focus equilibrium point m is linearly unstable
for the vector field XF0 , we will show that the frequency map ω := ∂F0

∂a
: A →

Ω := ω(A) is a real analytic diffeomorphism. Knowing that Ψ : V∗ → A is a
diffeomorphism, we only need to show that ω ◦ Ψ : V∗ → Ω is a diffeomorphism.
We explicitly calculate ω ◦ Ψ as follows. First of all, note that ω(a) = ∂F0(a)

∂a
=

∂F0(H)
∂H

∣∣∣
H=H(a)

∂H(a)
∂a

where

∂H(a)

∂a
=

(
∂Ψ(H)

∂H

∣∣∣∣
H=H(a)

)−1

=

(
1 0

∂ψ(H(a))/∂H1 ∂ψ(H(a))/∂H2

)−1

.

Using the fact that

∂ψ(H)

∂H1
=

1

2π
argH +

∂s(H)

∂H1
and

∂ψ(H)

∂H2
=

1

2π
(ln |H|+ 1) +

∂s(H)

∂H2
,

we arrive at the following expression for ω ◦Ψ : H 7→ ω(H):

ω1(H) =
∂F0(H)

∂H1
−
∂F0(H)

∂H2

1
2π argH + ∂s(H)

∂H1

1
2π (ln |H|+ 1) + ∂s(H)

∂H2

(4.1)

ω2(H) =
∂F0(H)

∂H2

1
1
2π (ln |H|+ 1) + ∂s(H)

∂H2

Note that limH→0 ω(H) = (∂F0(0)/∂H1, 0). Recall that this limit is taken over
H ∈ R

2
∗ and that we have chosen a fixed branch of arg. The following proposition

describes the limiting behaviour of the derivative matrix ∂ω(H)
∂H

near H = 0.

Proposition 4.1

lim
H→0

(
ln |H| 0

0 ln2 |H|
2π

)
∂ω(H)

∂H

(
H2 −H1

−H1 −H2

)
=
∂F0(0)

∂H2
Id (4.2)

This follows from a straightforward analysis based on (4.1). We are now in position
to show that ω ◦Ψ : V∗ → Ω is a diffeomorphism if V is chosen close enough to the
origin H = 0.

Corollary 4.2 DXF0(m) has an eigenvalue off the imaginary axis if and only if
∂F0(0)
∂H2

6= 0. In this case the Arnol’d determinant det
(
∂ω(H)
∂H

)
goes to infinity as |H|

goes to zero. If the annulus V is chosen small enough, then the map ω◦Ψ : V∗ → Ω is

a real analytic diffeomorphism. Hence, ω : A→ Ω is a real analytic diffeomorphism.

Proof The first statement is trivial since

DXF0(m) =
∂F0(0)

∂H1
DXH1(m) +

∂F0(0)

∂H2
DXH2(m) ,
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and DXH1(m) and DXH2(m) commute and respectively have purely imaginary and
purely real eigenvalues. The second statement follows by taking the the determinant
of (4.2) which yields that

1

2π
|H|2 ln3 |H|det(

∂ω(H)

∂H
) → −(

∂F0(0)

H2
)2 6= 0

and hence det(∂ω(H)
∂H

) → ∞ as H → 0. According to Proposition 4.2 we can now
choose the annulus V in such a way that for every H ∈ V∗,

(
ln |H| 0

0 ln2 |H|
2π

)
∂ω(H)

∂H

(
H2 −H1

−H1 −H2

)
=
∂F0(0)

∂H2
( Id +M(H) )

for some matrix M(H) of which the elements each have norm less than 1
10 . This

clearly implies that det(∂ω(H)
∂H

) 6= 0 for H ∈ V∗. It is easy to show that this implies

that ω ◦Ψ : V∗ → Ω is injective. Pick H(1) and H(2) in V∗. We connnect H(1) and

H(2) by a curve γ consisting of a circle segment from H(1) to |H(1)|

|H(2)|
H(2) and a line

segment from |H(1)|

|H(2)|
H(2) to H(2). A straightforward but rather long computation

shows that ω(H(2)) − ω(H(1)) =
∫
γ

∂ω
∂H

· ds 6= 0, expressing that ω ◦ Ψ is injective.
This proves that ω ◦Ψ and ω are real analytic diffeomorphisms. �

We conclude that if DXF0(m) has an eigenvalue with nonzero real part, then it
is possible to choose the annulus V close enough to the origin H = 0 such that
both the action map Ψ : V∗ → A and the frequency map ω : A→ Ω are diffeomor-
phisms.

V∗, A and Ω are open, contractible, bounded sets with a piecewise smooth boun-
dary, see Figures 1 and 2.

A ω
Ω

Figure 2: The map ω : A→ Ω.

5 Monodromy in the KAM tori

We shall argue that if one perturbs the completely integrable Hamiltonian F0 on
M a bit, the monodromy of the Liouville tori in MV is still present in the surviving
KAM tori. It turns out that the KAM tori form a Whitney smooth torus bundle.
They can be interpolated by a smooth torus bundle that is diffeomorphic to MV .
This type of interpolation theorem is well-known for perturbations of an integrable
Hamiltonian system for which
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1. global action-angle coordinates exist.

2. the frequency map is a global diffeomorphism.

See [2] or [12]. Obviously, MV does not meet these requirements, since it is not a
trivial bundle. According to the previous paragraphs, the bundle H−1(V∗) ⊂ MV

does satisfy 1. and 2. We now apply the standard KAM theorem on this subbundle
and see that this suffices to get an interpolation result for all the KAM tori in MV .

A well-known KAM interpolation theorem is for instance given in [12] by Pöschel.
The setting of Pöschel’s theorem is the following:

Let A ⊂ R
2 be an open subset. Consider the symplectic manifold A× T 2 with

symplectic form da∧dφ and real analytic Hamiltonian function F̃0(a). Assume that

ω = ∂F̃0
∂a

: A → R
2 is a global diffeomorphism on its image, which is the set of fre-

quencies Ω. Obviously, under the diffeomorphism Φ1 = ω−1×Id : Ω×T 2 → A×T 2,

the Hamiltonian vector field X
F̃0

= ∂F̃0
∂a1

∂
∂φ1

+ ∂F̃0
∂a2

∂
∂φ2

on A × T 2 pulls back to the
vector field

Φ∗
1XF̃0

= ω1
∂

∂φ1
+ ω2

∂

∂φ2

on Ω× T 2. Pöschel’s theorem says the following for perturbations of XF0 :

Theorem 5.1 (KAM) Let τ > 1 be a fixed given number. Then there exists a

positive constant δ such that for every small enough γ and every C∞ Hamiltonian

function F̃ (a, φ) with

||F̃ − F̃0|| < δγ2

the following holds: there exists a C∞ near identity diffeomorphism Φ2 : Ω× T 2 →
Ω×T 2 which on Ωγ×T

2 conjugates the vector field Φ∗
1XF̃

to the vector field Φ∗
1XF̃0

,

that is

Φ∗
2Φ

∗
1XF̃

∣∣
Ωγ×T 2 = (Φ1 ◦ Φ2)

∗X
F̃

∣∣
Ωγ×T 2 = Φ∗

1XF̃0

Here Ωγ is defined as the set of frequencies ω ∈ Ω that have distance at least γ to

the boundary of Ω and satisfy the Diophantine inequalities

|(ω, k)| ≥ γ|k|−τ ∀ k ∈ Z
2

By construction, Φ2(ω, φ) = (ω, φ) if ω has distance less than γ/2 to ∂Ω.

Remark 5.2 The norm || · || is a combination of a C∞ supremum norm and a C∞

Hölder norm for smooth functions on A× T 2, see [12] pp. 662-663 and 690.

Remark 5.3 Pöschel also assumes that F̃0 has a complex analytic extension to a
neighbourhood of A in C

2. We avoid this problem by switching to a smaller A if
necessary, which in our case can be arranged by choosing the annulus V appropri-
ately.

Remark 5.4 Pöschel uses the freedom in the Whitney extension theorem to con-
struct Φ2 such that Φ2(ω, φ) = (ω, φ) if ω has distance less than γ/2 to ∂Ω, see
[12] pp. 681-682. This has the effect that Φ2 becomes a C∞ diffeomorphism from
Ω× T 2 to Ω× T 2. We will see that the same property has more advantages.
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Remark 5.5 The domain Ω in section 4 of this paper is bounded and has a piece-
wise smooth boundary. Therefore one quickly derives from the definition of Ωγ that
the Lebesgue measure of Ω\Ωγ is of order γ. This means that there are positive
constants L and γ0 such that the Lebesgue measure of Ω\Ωγ is smaller then Lγ if
γ < γ0.

Theorem 5.1 says that the tori with frequencies ω in the Cantor set Ωγ ⊂ Ω survive
a small enough Hamiltonian perturbation. The surviving KAM tori form a Whit-
ney smooth family of tori, that is they can be interpolated by a smooth bundle of
tori that lie close to the original tori.

We can now simply apply Pöschel’s theorem for perturbations of a Hamiltonian
system on A × T 2, where A = Ψ(V∗). Then it is only a small step to our main
theorem:

Theorem 5.6 Let V be an annulus around {H = 0} such that Ψ and ω are real

analytic diffeomorphisms on V∗ and A = Ψ(V∗). According to the results of sections

3 and 4, such a V exists if DXF0(m) has an eigenvalue that is not purely imaginary.

Then there exists a positive constant δ such that for every small enough γ and every

C∞ Hamiltonian function F :MV → R with

||(F − F0) ◦Φ
−1
0 || < δγ2

the following holds: there exists a C∞ near identity diffeomorphism Φ :MV →MV

and a Cantor set Vγ ⊂ V such that

Φ∗XF

∣∣
H−1(Vγ) = XF0 .

The Lebesgue measure of V \Vγ is of order γ.

Proof. For the given Hamiltonians F0, F : MV → R, define F̃0 = F0 ◦ Φ−1
0 =

F0 ◦ Ψ
−1 and F̃ = F ◦ Φ−1

0 on A × T 2. Note that F̃0 is analytic if F0 is analytic,
since Ψ is analytic. According to Pöschel’s theorem, there is a positive constant
δ such that if ||F̃ − F̃0|| < δγ2, then there exists a near identity transformation
Φ2 : Ω× T 2 → Ω× T 2 such that

Φ∗
2Φ

∗
1XF̃

∣∣
Ωγ×T 2 = Φ∗

1XF̃0

But because Φ0 is symplectic, XF0 = Φ∗
0XF̃0

and XF = Φ∗
0XF̃

. It follows that

Φ∗
2Φ

∗
1(Φ

−1
0 )∗XF

∣∣
Ωγ×T 2 = Φ∗

1(Φ
−1
0 )∗XF0

and hence

( Φ−1
0 ◦Φ1 ◦Φ2 ◦Φ

−1
1 ◦Φ0 )

∗XF

∣∣
H−1(Vγ ) = Φ∗

0(Φ
−1
1 )∗Φ∗

2Φ
∗
1(Φ

−1
0 )∗XF

∣∣
H−1(Vγ) = XF0

where Vγ is defined as Vγ := (ω◦Ψ)−1(Ωγ). Thus,H
−1(Vγ) = (Φ−1

1 ◦Φ0)
−1(Ωγ×T

2).
The Lebesgue measure of Ω\Ωγ is of order γ. Because the Jacobi determinant of
(ω ◦Ψ)−1 is bounded on Ω, the Lebesgue measure of V \Vγ is of order γ too.

Let us now define the map Φ :MV →MV as follows:

Φ(m) =

{
( Φ−1

0 ◦Φ1 ◦Φ2 ◦Φ
−1
1 ◦Φ0 )(m) , if m ∈ H−1(V∗)

m , if m ∈ H−1(R≥0(1, 0))

9



Because Φ2(ω, φ) = (ω, φ) in an open neighbourhood of ∂Ω, Φ has the property
that in a full neighbourhood of the set H−1(V ∩ R≥0(1, 0)) it is the identity map.
Furthermore, Φ|H−1(V∗) : H

−1(V∗) → H−1(V∗) is a diffeomorphism. Hence, Φ is a
diffeomorphism. As we already argued, it has the required conjugation property on
H−1(Vγ). �

The diffeomorphism Φ : MV → MV in Theorem 5.6 maps the Liouville torus
H−1(v), (v ∈ Vγ) of the unperturbed integrable system defined by F0 to a KAM
torus of the perturbed system defined by F . This means that the KAM tori can be
interpolated by a family of tori that is diffeomorphic to MV : the KAM-tori have
monodromy.

6 Discussion

The results obtained in this paper generalize [16] in which it is proved that the
Kolmogorov condition is satisfied near a focus-focus singular value. We obtain
explicit quantitative estimates on the behaviour of the Arnol’d determinant near a
pinched torus and show that it grows to infinity. But there is more. By cutting
away a measure zero set of Liouville tori, we have obtained a trivial torus bundle
on which global action-angle coordinates exist. The tori in this bundle can globally
be parametrized by their frequencies. This enables us to use the standard KAM
theorem, which says that in a perturbed system certain tori survive and that these
tori are part of a smooth structure. By a simple gluing argument, we show that
the KAM tori near a pinched torus form a nontrivial Whitney smooth bundle
that is diffeomorphic to the original bundle of Liouville tori. This justifies the
statement that the KAM tori in a perturbed singular foliation of focus-focus type
have monodromy.
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[12] J. Pöschel, Integrability of Hamiltonian systems on Cantor sets, Comm. Pure
Appl. Math. 35 (1982), no. 5, 653–696.

[13] B. Rink, Direction-reversing traveling waves in the Fermi-Pasta-Ulam lattice,
J. Nonlinear Sci. 12 (2002), 479–504.
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