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The amplification of magnetic fields in a highly conducting fluid is studied numerically. During
growth, the magnetic field is spatially intermittent: it does not uniformly fill the volume, but is
concentrated in long thin folded structures. Contrary to a commonly held view, intermittency of
the folded field does not increase indefinitely throughout the growth stage if diffusion is present.
Instead, as we show, the probability-density function (PDF) of the field strength becomes self-
similar. The normalized moments increase with magnetic Prandtl number in a powerlike fashion.
We argue that the self-similarity is to be expected with a finite flow scale and system size. In the
nonlinear saturated state, intermittency is reduced and the PDF is exponential. Parallels are noted
with self-similar behavior recently observed for passive-scalar mixing and for map dynamos.

PACS numbers: 47.27.Gs, 91.25.Cw, 47.27.Eq, 47.65.+a, 95.30.Qd

We consider the problem of magnetic-energy amplifica-
tion by a homogeneous isotropic turbulence in a conduct-
ing fluid. This effect is known as the small-scale turbulent

dynamo, and it is important to the dynamics of magnetic
fields in astrophysical objects. It is, in fact, a generic
property of random (in time and/or space) flows that
they can amplify magnetic fluctuations at scales smaller
than the scale of the flow itself. The amplification is a net
result of stretching of the field lines by the local random
strain associated with the flow [1, 2, 3]. The fields gener-
ated by this mechanism have a characteristic structure:
they concentrate in flux folds containing antiparallel field
lines that reverse direction at the resistive scale and re-
main straight up to the flow scale [4, 5, 6]. It is because
of the direction reversals that the magnetic energy in the
wave-number space is predominantly at the resistive scale
[7, 8]. The growing folded fields also concentrate in small
parts of the system’s volume: a phenomenon called inter-
mittency. These properties of the small-scale dynamo are
most pronounced for systems where the fluid viscosity is
much larger than magnetic diffusivity (magnetic Prandtl
number Prm = ν/η ≫ 1), i.e., where magnetic fields re-
verse direction at scales much smaller than the viscous
cutoff. This regime is realized in many astrophysical plas-
mas: examples are warm interstellar medium, intraclus-
ter and intergalactic plasmas. In this Letter, we study the
volume-filling properties of the dynamo-generated fields,
i.e., the distribution of the field strength.
Consider the equations of incompressible MHD:

d

dt
u = ν∆u−∇p+B · ∇B+ f , ∇ · u = 0, (1)

d

dt
B = B · ∇u+ η∆B, (2)

where d/dt = ∂t+u ·∇. The pressure p and the magnetic
field B are normalized by ρ and (4πρ)1/2, respectively,

where ρ = const is density. Turbulence is excited by
the forcing f . The spatial scale of the forcing is usually
much larger than the diffusion scales of the fields. In
our simulations, we solve Eqs. (1–2) by a pseudospectral
method. The forcing f is chosen to be random, white (δ-
correlated) in time, and restricted to k/2π = 1, 2. The
code units are based on box size 1 and mean injected
power 〈u · f〉 = 1.
If diffusion is ignored (η = 0), Eq. (2) has the following

formal solution in the comoving frame:

ln [B(t)/B0] =

∫ t

0

dt′ b̂b̂ : ∇u (t′), (3)

where b̂ = B/B. The Central Limit Theorem suggests
that B should have a lognormal PDF with both the mean
〈lnB〉 ∝ t and dispersionD ∝ t [cf. Eq. (4)]. This implies
that 〈Bn〉 ∝ exp(γnt), where the growth rates depend
quadratically on the order: γn ∝ n(n+3) [2, 9, 10]. Thus,
in the diffusion-free case, the intermittency of the field-
strength distribution increases in time in the sense that
the kurtosis 〈B4〉/〈B2〉2 and all other normalized mo-
ments 〈Bmn〉/〈Bm〉〈Bn〉 grow exponentially. In space,
intermittency means that the growing fields do not uni-
formly fill the volume (compared to, e.g., a Gaussian field
with the same energy). Assuming the equivalence of en-
semble and volume averages, we may roughly interpret
〈B4〉/〈B2〉2 as an inverse volume-filling fraction.
In the limit of small but finite η, the small-scale dy-

namo can still operate, but analytical description is much
harder than for the diffusion-free case. The traditional
approach that makes Eq. (2) solvable in the diffusive
regime is to consider a model random velocity field that
is linear in space [2] and white in time [7]. The mo-
ments of B can then be related to the distribution of
the finite-time Lyapunov exponents associated with the

http://arxiv.org/abs/nlin/0306059v3
http://arxiv.org/abs/nlin/0306059


2

FIG. 1: Evolution of normalized moments of the magnetic-
field strength. The (square root of) kurtosis of the velocity
field is given for comparison. The kinematic (growth) and
nonlinear (saturation) stages are demarcated in the plot.

velocity-gradient matrix ∇u, which is a function of time
only [2, 9]. The result is that the growth rates of 〈Bn〉
still increase with n as γn ∼ n2, i.e, intermittency contin-
ues to grow with time [9]. It has so far been an accepted
view that this model adequately describes the turbulent
dynamo in the large-Prm limit. In fact, the picture of
increasing intermittency is not borne out by numerical
experiments.
In order to understand why, it is crucial to appreciate

that the results obtained in the linear-velocity model ap-
ply only as long as magnetic fluctuations are “unaware”
of the finiteness of the flow scale (system size). The most
intuitive, albeit nonrigorous, argument as to why finite-
scale effects should be important is as follows.
The fields everywhere are stretched exponentially, but

with fluctuating stretching rates, so any occasional dif-
ference in field strength between different substructures
tends to be amplified exponentially. Intermittency can
grow with time if the system is infinite because for each
moment 〈Bn〉, an ever smaller set of substructures can
always be found in which the field has exponentially out-
grown the rest of the system and which, therefore, dom-
inantly contribute to 〈Bn〉. By contrast, in a finite sys-
tem, only a finite number of exponentially growing sub-
structures can exist, so the contribution to all moments
must eventually come from the same fastest-growing one.
The statistics of B should, therefore, be self-similar, with
〈Bn〉 growing at rates proportional to n, not n2, and all
normalized moments 〈Bmn〉/〈Bm〉〈Bn〉 saturating [20].

This is exactly what happens in our simulations. Af-
ter initial diffusion-free growth, the normalized moments
saturate (Fig. 1). The PDF of the magnetic-field strength
becomes self-similar: namely, the PDFs of B/Brms (here
Brms = 〈B2〉1/2) collapse onto a single stationary profile
throughout the kinematic stage of the dynamo (Fig. 2).
The large-B tail of the PDF of B/Brms is reasonably well
fitted by a lognormal distribution. Namely, suppose the
PDF of z = lnB is

Pz(z) = (πD)−1/2 exp
[

−
(

z − 〈lnB〉
)2
/D

]

. (4)

Then 〈Bn〉 ∝ exp
[

〈lnB〉n+Dn2/4
]

, so D =

ln
(

〈B4〉1/2/〈B2〉
)

. In the diffusive regime, D = const
and the field-strength statistics become self-similar: the
PDF of ζ = ln(B/Brms) is stationary:

Pζ(ζ) = (πD)−1/2 exp
[

−
(

ζ +D/2
)2
/D

]

. (5)

The lognormal fit in Fig. 3 is obtained by calculating D
from the numerical data and comparing the profile (5)
with the numerically calculated PDF. The fit is qualita-
tive but decent, considering the simplicity of the cho-
sen profile (5), large statistical errors in determining
〈B4〉/〈B2〉2 (Fig. 4), and dealiasing-induced numerical
errors in resolving the field structure [6]. The PDF at low
values of B appears to be powerlike (Fig. 2b), but there
may be an unresolved lognormal tail at even smaller B.
Note that the large-B tail describes the straight segments
of the folds, while the small-B tail gives the field-strength
distribution for the weak fields in the bends [5].
The plots in Figs. 1–3 are for a 2563 simulation of

Eqs. (1–2) with ν = 5×10−2 and Prm = ν/η = 500. The
Reynolds number for this run is Re = 〈u2〉1/2/νk0 ≃ 2,
(here k0 = 2π is the box wavenumber). Thus, the veloc-
ity field, while random, is smooth in space. This is the
so-called viscosity-dominated regime, which is the only
physical setting in which large Prm can be resolved nu-
merically. Interestingly, results for larger Re (“real tur-
bulence”) and Prm & 1 are very similar, especially in
the kinematic regime. The reason for this is that the
small-scale dynamo is always driven by the fastest eddies
— the viscous-scale ones [8], — and essentially the same
field-stretching mechanism applies in both synthetic one-
scale dynamos [2, 3, 4, 5, 7] and in turbulent systems
with Prm ≥ 1. In runs with Prm = 10, Re ≃ 100, and
even with Prm = 1, Re ≃ 450 (not shown), we have
found behavior analogous to that described above: satu-
ration of normalized moments in the kinematic diffusive
regime and self-similar field-strength PDFs fairly well fit-
ted by the lognormal profile (5). In fact, the lognormal
fit worked even better in these cases, which are some-
what less violently fluctuating, because velocity is not as
strongly coupled to the forcing. More detailed compar-
isons will be reported in a future paper [6].
The hypothetical lognormal PDF (4) becomes self-

similar only if its dispersion D does not depend on time.
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FIG. 2: (a) Evolution of the PDF of the magnetic-field strength. (b) The PDFs of B/Brms in the kinematic regime: collapse
onto a self-similar profile. The PDF in the saturated state is also shown.

In contrast, in the diffusion-free regime, D ∼ γt, where
γ ∼ ∇u is the stretching rate (the turnover rate of the
viscous-scale eddies). In the case of η > 0 and linear ve-
locity field, the formula for 〈Bn〉 derived by Chertkov et

al. [9] is also consistent with a lognormal distribution for
which D ∼ γt. Both results are only valid transiently,
during the time that it takes magnetic fluctuations to
reach the resistive scale (in the former case) or the system
(flow) scale (in the latter case). Since the scale separation

is ∼ Pr1/2m and and the spreading over scales proceeds ex-
ponentially fast at the rate ∼ γ (e.g. [8]), the time during

which intermittency increases is t∗ ∼ γ−1 ln Pr1/2m . Physi-
cally, this is the time necessary to form a typical fold with
length of the order of the flow scale and field reversals at
the resistive scale — starting either from a flow-scale or
a resistive-scale fluctuation. We might conjecture that
this time determines the magnitude of the dispersion in
the self-similar regime: D ∼ γt∗ ∼ ln Pr1/2m , which im-
plies that the kurtosis 〈B4〉/〈B2〉2 = exp(2D) increases
with Prm in a powerlike fashion. The specific power law
depends on prefactors that may be non-universal. The
same holds for other normalized moments. Figure 4 is an
attempt to test this hypothesis for a sequence of simula-
tions with increasing Prm. The fluctuations in the kine-
matic regime are very large (see Fig. 1), so the error bars
are too wide to allow us to claim definite confirmation
of the powerlike behavior, but our results are consistent
with a 〈B4〉/〈B2〉2 ∼ Pr0.3m scaling [21].

We emphasize that the self-similarity reported here is
statistical, not exact. Namely, it does not imply that

FIG. 3: The PDF of B/Brms averaged over the kinematic
diffusive stage and the lognormal profile (5) with the same D.
Also given is the PDF in the saturated state.

the magnetic field is simply a growing eigenmode of the
induction equation (2). Such an eigenmode does exist
for some finite-scale non-random (and time-independent)
flows and maps, owing essentially to the fact that the dif-
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FIG. 4: The kurtosis 〈B4〉/〈B2〉2 during the diffusive kine-
matic and the nonlinear stages of a sequence of runs with
ν = 5 × 10−2 (low Re) and 25 ≤ Prm ≤ 2500. All averages
are over 20 time units (∼ 20 turnover times).

fusion operator has a discrete spectrum in a finite domain
[3]. The self-similar PDF we have found here is a natural
counterpart of this eigenmode dynamo for random flows.
Note that for the problem of passive-scalar decay,

self-similar behavior was also found in certain two-
dimensional maps (the so-called “strange mode” [11, 12,
13, 14]), two-dimensional non-smooth inverse-cascading
turbulence [15], and even in scalar-mixing experi-
ments [16]. In map dynamos studied by Ott et al. [4, 17],
moments of B also grew at rates ∝ n (these authors re-
lated such behavior to the flux-cancellation property of
the field, i.e, to the folded structure). We expect that
self-similar evolution is a fundamental property of pas-
sive advection of scalar and vector fields by finite-scale
flows.
A detailed discussion of the nonlinear saturation of the

dynamo and of the magnetic-field intermittency in the
saturated state is beyond the scope of this Letter. We
limit ourselves to mentioning that the nonlinearity leads
to a reduction of intermittency due to tighter packing of
the system domain by the saturated fields (Fig. 1). It
is not a surprising result: nonlinear back reaction im-
poses an upper bound on the field growth, and, once the
strongest fields in the dominant substructure saturate,
the weaker ones elsewhere have an opportunity to catch
up. The PDF of the saturated field turns out to be expo-
nential (Fig. 3, cf. [18, 19]). Accordingly, in the nonlinear
regime, the kurtosis does not depend on Prm (Fig. 4).
Furthermore, while Brms is not Prm-independent for fi-

nite values of Prm (though Brms does tend to a constant
value ∼ urms as Prm → ∞), the PDF of B/Brms turns
out to be the same for all Prm. Further results on the
nonlinear dynamo will be reported elsewhere [6].
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