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It is shown that the generalized discrete nonlinear Schrödinger equation can be reduced in a
small amplitude approximation to the KdV, mKdV, KdV(2) or the fifth-order KdV equations,
depending on values of the parameters. In dispersionless limit these equations lead to wave breaking
phenomenon for general enough initial conditions, and, after taking into account small dispersion
effects, result in formation of dissipationless shock waves. The Whitham theory of modulations of
nonlinear waves is used for analytical description of such waves.
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I. INTRODUCTION

Dissipationless shock waves have been experimentally observed or their existence has been theoretically predicted
in various nonlinear media – water [1], plasma [2], optical fibers [3], lattices [4]. In contrast to usual dissipative shocks
where combined action of nonlinear and dissipation effects leads to sharp jumps of the wave intensity, accompanied by
abrupt changes of other wave characteristics, in dissipationless shocks the viscosity effect is negligibly small compared
with the dispersive one, and, instead of intensity jumps, the combined action of nonlinear and dispersion effects leads
to formation oscillatory wave region (for review see e.g. [5]). Since intrinsic discreteness of a solid state system gives
origin to strong dispersion, which can dominate dissipative effects in wave phenomena, it is of considerable interest
to investigate details of formation of dissipationless shocks in lattices.
As a model, in the present paper we choose the general discrete nonlinear Schrödinger (GDNLS) equation

iq̇n + (1 − η|qn|2)(qn+1 + qn−1 − 2qn) + 2(ρ2 − |qn|2)qn = 0 (1)

introduced by Salerno [6, 7]. Eq. (1) turned out to be an important model not only because of its property to provide
a one-parametric transition between an integrable Ablowitz-Ladik (AL) model and the so-called discrete nonlinear
Schrödinger (DNLS) equation (η = 1 and η = 0, respectively), but also because of a number of physical application
for a review of which we refer to [8].
Obviously, (1) has a constant amplitude solution qn = ρ. It was shown in [9, 10], that in a small amplitude, |a| ≪ ρ,

and long wave (so that the discrete site index n can be replaced by a continuous coordinate x) limit, evolution of
small amplitude perturbations with respect to this constant background,

qn(t) = (ρ+ a(x, t)) exp(−iφ(x, t)), (2)

is governed by the Korteweg-de Vries (KdV) equation for the amplitude a(x, t):

at −
2(3− 4ηρ2)
√

1− ηρ2
aax +

√

1− ηρ2

12ρ
[3(1− ηρ2)− ρ2]axxx = 0 (3)

which is written in the reference system moving with velocity 2ρ
√

1− ηρ2 of linear waves in dispersionless limit. It
is well known (see, e.g. [1]) that if the initial pulse is strong enough, so that the nonlinear term dominates over the
dispersive one at the initial stage of the pulse evolution, then the dissipationless shock wave develops after the wave
breaking point. The theory of such waves, described by the KdV equation, is well developed (see, e.g. [5]). Existence
of the respective shock waves for model (1) has been predicted analytically and observed in numerical simulations in
[9, 10]. Moreover, as it is shown in [11] a nonlinear Schrödinger equation of a rather general type can bear “KdV-type”
shock waves. In this context the results presented below in the present paper although being mostly related to model
(1) display some general characteristic features of a lattice of a nonlinear Schrödinger type.
The coefficients of (3) depend on two parameters η and ρ and can vanish at special choice of these parameters,

so the KdV equation looses its applicability for these values of η and ρ. Physically acceptable values of η and ρ are
limited by the inequalities

0 ≤ η ≤ min{1, 1/ρ2}, 0 < ρ <∞, (4)

http://arxiv.org/abs/nlin/0306061v1
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FIG. 1: Diagram showing different continuous limits of the GDNLS equation. The abbreviations are explained in the text.

and this region of the (ρ, η) plane is depicted in Fig. 1.
Along the line

η =
3

4ρ2
(5)

the coefficient before the nonlinear term in (3) vanishes. This means that implied in derivation of the KdV equation
approximation limited to only quadratic nonlinearities fails and higher nonlinearities have to be taken into account
for accurate description of the wave dynamics. Hence, one may expect that the modified KdV (mKdV) equation with
cubic nonlinearity arises for values of ρ and η related by (5).
Along the line

η =
1

ρ2
− 1

3
(6)

the coefficient before the dispersion term in (3) vanishes what means that higher order dispersion effects have to be
taken into account. In this case one may expect that evolution equation for a(x, t) contains quadratic nonlinear term
and linear dispersion term with fifth-order space derivative of a(x, t).
The most interesting point corresponds to the values

η = 1, ρ =
√
3/2 (7)

when both nonlinear and dispersion coefficients vanish. Since Eq. (1) with η = 1 coincides with the completely
integrable Ablowitz-Ladik equation, one may expect that in a small amplitude approximation this equation with the
parameters equal to (7) reduces again to a completely integrable equation. The KdV equation (3) with η = 1 is valid

for all interval 0 < ρ < 1 except for some vicinity of the point ρ =
√
3/2, and therefore one can suppose that at the

point (3) one has to obtain the second equation of the KdV hierarchy KdV(2) in which the higher order nonlinear
and dispersion effects play the dominant role.
The aim of this paper is two-fold. At first, in Sec. II we derive the evolution equations for the whole region (4) and

show that along the line (5) the small-amplitude approximation reduces to the mKdV equation (Sec II B), along the
line (6) to a nonlinear equation with the dispersion of the fifth-order (Sec II C), and at the point (7) to the KdV(2)
equation (Sec IID). The last result sheds some new light on the nature of higher equations of the KdV hierarchy—
they arise as small amplitude approximations to completely integrable equations, if lower orders of nonlinear and
dispersion contributions vanish at some values of the parameters of the equation under consideration.
The second aim of the paper is to develop a theory of shock waves (Sec III) for the mKdV (Sec III A)and KdV(2)

(Sec III B) equations analogous to that developed earlier for the KdV equation. This theory permits one to described
in details the behavior of shocks after the wave breaking point for different values of the parameters entering into
Eq. (1). The results are summarized in Conclusion.
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II. SMALL AMPLITUDE APPROXIMATION

Using ansatz (2) and replacing a discrete index n by a continuous variable x, we rewrite Eq. (1) as

iat + (ρ+ a)φt − 4ρ2a− 6ρa2 + [1− η(ρ+ a)2]

×{(ρ+ a(x+ 1, t)) exp[−i(φ(x+ 1, t)− φ(x, t))]

+(ρ+ a(x− 1, t)) exp[−i(φ(x− 1, t)− φ(x, t))]} = 0.

(8)

In the linear approximation, this equation yields for the harmonic wave solution

a(x, t) ∝ exp[i(Kx− Ωt)], φ(x, t) ∝ exp[i(Kx− Ωt)],

the dispersion relation [9, 10]

Ω = ±4
√

1− ηρ2 sin
K

2

[

ρ2 + (1− ηρ2) sin2
K

2

]1/2

∼= ±2ρ
√

1− ηρ2K ·
[

1 +
3(1− ηρ2)− ρ2

24ρ2
K2 +O(K4)

]

,

(9)

where expansion in powers of K corresponds to taking into account different orders of the dispersion effects. In the
lowest order, when the dispersion effects are neglected, linear waves propagate with constant velocity

v = ±2ρ
√

1− ηρ2. (10)

To evaluate contribution of small (for |a| ≪ ρ) nonlinear effects, it is convenient to introduce a small parameter ε ∼ a
and pass to such scaled variables in which nonlinear and dispersion effects make contributions of the same order of
magnitude into evolution of the wave. Since the choice of these scaled variables depends on values of the parameters,
we shall consider the relevant cases separately.

A. KdV equation

For the sake of completeness we start by reproducing briefly some results of [9]. We expand a(x±1, t) and φ(x±1, t)
into the Taylor series around x, introduce scaling indexes

a ∼ ε, t ∼ ε−α, x ∼ ε−β, φ ∼ εγ , (11)

and demand that in the reference frame moving with velocity (10) of linear waves the lowest quadratic nonlinearity
has the same order of magnitude as the second term in the expansion (9) of the dispersion relation,

a ∼ φx, at ∼ aax ∼ axxx,

which yield

α = 3
2 , β = γ = 1

2 .

Thus, the scaled variables have the form

τ = ε3/2t, ξ = ε1/2(x+ vt), v = ±2ρ
√

1− ηρ2, (12)

and a(x, t) and φ(x, t) should be looked for in the form of expansions

a = εa(1) + ε2a(2) + ε3a(3) + . . . ,

φ = ε1/2φ(1) + ε3/2φ(2) + ε5/2φ(2) . . .
(13)

Then in the lowest order in expansion of Eq. (8) in powers of ε we obtain the relationship

φ
(1)
ξ =

4ρ

v
a(1), (14)
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where we have chosen the upper sign of v in (12), and in the next order the KdV equation (3) written in terms of the
scaled variables. The nonlinear term changes its sign at (5) and the dispersion term changes its sign at (6). Hence,
there can be as bright solitons against a background (a(x, t) > 0) or dark solitons (a(x, t) < 0) of the GDNLS equation
approximated by the KdV equation (3). In both cases it is possible to pass to new dependent variable

a = − 1− ηρ2

12ρ− 16ηρ3
[3(1− ηρ2)− ρ2]u (15)

and change time as t→
√

1−ηρ2

12ρ [3(1− ηρ2)− ρ2] t such that the KdV equation takes the standard form

ut + 6uux + uxxx = 0. (16)

B. mKdV equation

At η = 3/4ρ2 the quadratic nonlinearity in Eq. (3) becomes zero and in order to describe the wave in the vicinity
of the breaking point the scaling should be chosen to take into account cubic nonlinearity which is now must have the
same order of magnitude as axxx,

a ∼ φx, at ∼ a2ax ∼ axxx.

Then, using scaling (11) we find

α = 3, β = 1, γ = 0,

so that instead of (12) we have the following scaled variables

τ = ε3t, ξ = ε(x+ vt), v = ±ρ, (17)

where value of velocity is found by substitution of (5) into (10), and instead of the second expansion in (13) we have

φ = φ(1) + εφ(2) + ε2φ(3) + . . . .

Then in the lowest order in expansion of Eq. (8) in powers of ε we obtain

φ
(1)
ξ =

4

v
a(1) (18)

what coincides with Eq. (14) after substitution of v = ρ. In the next order we get the relationship

φ
(2)
ξ = 4a(2) +

6

ρ
a(1)2, (19)

and finally in the highest relevant order we obtain the mKdV equation

a(1)τ +

(

4 +
21

ρ2

)

ρ a(1)2a
(1)
ξ +

1

32ρ

(

1− 4ρ2

3

)

a
(1)
ξξξ = 0. (20)

Since along the line (5) we have ρ >
√
3/2, the coefficient before the dispersion term is always negative and hence

Eq. (20) can be transformed to the following standard form

ut − 6u2ux + uxxx = 0, (21)

where

a(1) =
1

4

√

(4ρ2 − 3)

(4ρ2 + 21)
u (22)

and we renormalize the time variable

t→ 1

32ρ
(1− 4

ρ2

3
)t . (23)
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C. Fifth-order KdV equation

At η = 1/ρ2 − 1/3 the first order dispersion effects in Eq. (3) disappears and in this case scaling should be chosen
so that the quadratic nonlinearity has the order of magnitude of a(V ),

a ∼ φx, at ∼ aax ∼ a(V ),

which yields

α = 5
4 , β = 1

4 , γ = 3
4 ,

so that the scaled variables are given by

τ = ε5/4t, ξ = ε1/4(x+ vt), v = ±2ρ2√
3
, (24)

where velocity v is found by substitution of (6) into (10), and now the condition of cancellation of terms in the second
order demands that expansions of a and φ have the form

a = εa(1) + ε3/2a(2) + ε2a(3) + . . . ,

φ = ε3/4φ(1) + ε5/4φ(2) + ε7/4φ(2) . . .
(25)

Then in the lowest order in expansion of Eq. (8) in powers of ε1/2 we get again

φ
(1)
ξ =

2
√
3

ρ
a(1) (26)

what can be obtained from Eq. (14) by substitution of (6). In the next order we get the relationship

φ
(2)
ξ =

2
√
3

ρ
a(2) − 1

2
√
3ρ
a
(1)
ξξ (27)

and finally in the highest relevant order we obtain the equation

a(1)τ +
2
√
3

ρ

(

1− 4ρ2

3

)

a(1)a
(1)
ξ +

√
3ρ2

270
a
(1)
ξξξξξ = 0 (28)

Here the nonlinear term can be obtained from the corresponding term in the KdV equation (3) by substitution of (6)
and dispersion term reproduces the expansion of the dispersion relation (9) at the same value of η.

D. KdV(2) equation

At the point (7) both the quadratic nonlinear and first order dispersion terms disappear, so that now the cubic
nonlinearity must be of the same order of magnitude as a(V ),

a ∼ φx, at ∼ a2ax ∼ a(V ),

which yield

α = 5
2 , β = γ = 1

2 ,

and the scaled variables are given by

τ = ε5/2t, ξ = ε1/2(x+ vt), v = ±
√
3

2
, (29)

where v is the velocity of linear waves at the point (7). The variables a(x, t) and φ(x, t) have the same form of
expansions (13) as in the KdV equation case. In the lowest order we obtain, as one should expect, Eq. (18); in the
next order we get the relationship

φ
(2)
ξ = 4a(2) + 4

√
3 a(1)2 − 1

3a
(2)
ξξ ; (30)
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and at the last relevant order we obtain the equation

a(1)τ + 16
√
3a(1)2a

(1)
ξ − 4

3 a
(1)
ξ a

(1)
ξξ − 2

3 a
(1)a

(1)
ξξξ +

√
3

360
a
(1)
ξξξξξ = 0. (31)

As one should expect, the main nonlinear term here coincides with that of the mKdV equation (20) at the point (7),
and linear dispersion term with the corresponding term of the fifth-order KdV equation (28) at the same point.
By means of replacements

a(1) = − 1

8
√
3
u, τ = −30

√
3 t, ξ = x

Eq. (31) can be transformed to standard form of the second equation of the KdV hierarchy—KdV(2) (see, e.g. [5]):

ut =
15
2 u

2ux + 5uxuxx + 5
2uuxxx +

1
4u

(V ) (32)

Thus, the completely integrable AL equation reduces in the small amplitude approximation either to the KdV
equation beyond some vicinity of the point (7), or to the second equation of the KdV hierarchy at the point (7), so
that approximate equations remain completely integrable in both cases. This observation suggests that the property
of complete integrability preserves in framework of singular perturbation scheme, which is a known phenomenon (see
e.g. [13]). Then higher equations of some hierarchy may arise as approximate equations. This happens if at some
values of the parameters of the underline completely integrable problem nonlinearity and, hence, dispersion of lower
equations of the hierarchy vanish. This phenomenon can be viewed as physical meaning of the higher equations of
hierarchies of integrable equations.

III. DISSIPATIONLESS SHOCK WAVES

In dispersionless limit when dispersion effects can be neglected compared with nonlinear ones, all derived above
equations reduce in the leading approximation to the Hopf-like equation

ut + unux = 0, (33)

where n = 1 for the KdV and fifth-order KdV equations and n = 2 for mKdV and KdV(2) equations. It is well-known
(see, e.g. [5]) that Eq. (33) with general enough initial condition leads to formation of the wave breaking point after
which the solution becomes multi-valued function of x. This means that near the wave breaking point one cannot
neglect the dispersion effects. If we take them into account, then the multi-valued region is replaced by the oscillatory
region of the solution of the full equation. This oscillatory region is called dissipationless shock wave and its analytical
description is the aim of this section.
Existing theory of dissipationless shock waves can be applied in principle to completely integrable equations only.

Among equations derived in the preceding section, however, fifth-order KdV equation (28) does not belong to this
class. Fortunately, just this case of zero first-order dispersion was studied numerically in [9, 10]. We also bear in mind
that the dissipationless shock waves of the KdV equation are already described in literature (see e.g. [5]). Therefore
we shall not consider this equation here and concentrate our attention on the completely integrable models.
The analytical approach is based on the idea that the oscillatory region of the dissipationless shock wave can be

represented as a modulated periodic solution of the equation under consideration. If the parameters defining the
solution change little on a distance of one wavelength and during the time of order of one period, one can distinguish
two scales of time in this problem – fast oscillations of the wave and slow change of the parameters of the wave. Then
equations which govern a slow evolution of the parameters can be averaged over fast oscillations what leads to the
so-called Whitham equations [1] and their solution subject to appropriate initial and boundary conditions describes
evolution of the dissipationless shock wave. This approach was suggested in [12] and now it is well developed for the
KdV equation case (see, e.g. [5]). The results of this theory can be applied to shocks in GDNLS equation when it is
reduced to the KdV equation (3) or (16). Since this theory is presented in detail in [5], we shall develop first analogous
theory for the mKdV and KdV(2) equations and after that compare the results obtained for different equations.

A. Dissipationless shock wave in the mKdV equation (21)

At first we have to express a periodic solution of the mKdV equation (21) in a form suitable for the Whitham
modulation theory. Such a form is provided automatically by the finite-gap integration method which is used here to
find the one-phase periodic solution of the mKdV equation.
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The finite-gap integration method (see, e.g. [5]) is based on the complete integrability of the mKdV equation,
following from a possibility to represent this equation as a compatibility condition Ψxt = Ψtx of two linear systems

Ψx = UΨ, Ψt = VΨ, Ψ =

(

ψ1

ψ2

)

,

U =

(

−iλ iu
−iu iλ

)

, V =

(

A B
C −A

)

,

A = −4iλ3 − 2iu2λ, B = 4iuλ2 − 2uxλ− iuxx + 2iu3, C = −4iuλ2 − 2uxλ+ iuxx − 2iu3,

(34)

where λ is a free spectral parameter. The linear systems (34) have two basis solutions Ψ± = (ψ±

1 , ψ
±

2 ), from which
we build the so-called ‘squared basis functions’

f = − i

2
(ψ+

1 ψ
−

2 + ψ−

1 ψ
+
2 ), g = ψ+

1 ψ
−

1 , h = −ψ+
2 ψ

−

2 . (35)

They satisfy the following linear systems

fx = −ug − uh, gx = −2uf − 2iλg, hx = −2uf + 2iλh, (36)

and

ft = −iCg + iBh, gt = 2iBf + 2Ag, ht = −2iCf − 2Ah, (37)

and have the following integral

f2 − gh = P (λ) (38)

independent of x and t. The periodic solutions are distinguished by the condition that P (λ) be a polynomial in λ and
we shall see that one-phase solution corresponds to the sixth degree polynomial in even powers of λ,

P (λ) =

3
∏

i=1

(λ2 − λ2i ) = λ6 − s1λ
4 + s2λ

2 − s3. (39)

Then f, g, h, satisfying (36)-(38) should be also polynomials in λ,

f = λ3 − f1λ, g = iu(λ− µ1)(λ − µ2), h = −iu(λ+ µ1)(λ + µ2), (40)

where µj are new dependent variables. Substitution of (40) into (38) gives the conservation laws (sj are constants)

2f1 + u2 = s1, f2
1 + u2(µ2

1 + µ2
2) = s2, u2µ2

1µ
2
2 = s3, (41)

and substitution into (36) and (37) yields the following important formulae

ux = 2iu(µ1 + µ2), (42)

ut = 2(2f1 + u2)ux. (43)

¿From (43) and the first equation (41) we see that u depends only on the phase

u = u(θ), θ = x+ 2s1t, (44)

and from (42) and the other equations (41) we find

u2θ = u4 − 2s1u
2 ∓ 8

√
s3u+ s21 − 4s2 ≡ Q(u), (45)

where the zeroes ui of the polynomial Q(u) are related with the zeroes λi of the polynomial P (λ) by the formulae

u1 = ±(λ1 + λ2 + λ3), u2 = ±(λ1 − λ2 − λ3), u3 = ±(−λ1 + λ2 − λ3), u4 = ±(−λ1 − λ2 + λ3). (46)

If we order the zeroes λi according to

λ1 > λ2 > λ3 > λ4, (47)
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then for the upper choice of the sign in (45) and (46) we have

u1 > u2 > u3 > u4 (48)

and u oscillates within the interval

u3 ≤ u ≤ u2, (49)

where Q(u) ≥ 0. For the lower choice of the sign in (45) and (46) we have

u1 < u2 < u3 < u4 (50)

and u oscillates within the interval

u2 ≤ u ≤ u3. (51)

We are interested in wave trains against positive constant background which corresponds to the lower choice of sign
in (45) and (46). In this case Eq. (45) yields the periodic solution

u(θ) =
(u3 − u1)u2 − (u3 − u2)u1sn

2(
√

(u4 − u2)(u3 − u1) θ/2,m)

u3 − u1 − (u3 − u2)sn2(
√

(u4 − u2)(u3 − u1) θ/2,m)
, (52)

where

m =
(u3 − u2)(u4 − u1)

(u4 − u2)(u3 − u1)
=
λ21 − λ22
λ21 − λ23

, θ = x+ 2s1t = x+ 2(λ21 + λ22 + λ23)t. (53)

At λ2 = λ3, when m = 1, the solution (52) transforms into soliton solution of the mKdV equation

us(θ) = λ1 −
2(λ21 − λ22)

λ1 − λ2 + 2λ2 cosh
2(2

√

λ21 − λ22 θ)
, θ = x+ 2(λ21 + 2λ22)t. (54)

In a modulated wave the parameters λi become slow functions of x and t. It is convenient to introduce new variables

r1 = λ23, r2 = λ22, r3 = λ21, (55)

so that Whitham equations can be written in the form (see, e.g. [5])

∂ri
∂t

+ vi(r)
∂ri
∂x

= 0, vi =

(

1− L

∂iL
∂i

)

V, i = 1, 2, 3, (56)

where V = −2(r1 + r2 + r3) is the phase velocity of the nonlinear wave (52) and

L =
K(m)√
r3 − r1

, m =
r3 − r2
r3 − r1

(57)

is the wavelength.
Now our task is to consider the solution of the mKdV equation after the wave-breaking point. As it follows from

(20), before this point in dispersionless approximation the evolution of the pulse obeys the Hopf equation

ut − 6u2ux = 0 (58)

with the well-known solution

x+ 6u2t = f(u2), (59)

where f(u2) is determined by the initial condition. At the wave-breaking point, which will be assumed to be t = 0,
the profile u2(x) has an inflexion point with vertical tangent line,

∂x

∂u2

∣

∣

∣

∣

t=0

= 0,
∂2x

∂(u2)2

∣

∣

∣

∣

t=0

= 0.
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FIG. 2: Formation of multi-valued solution of the mKdV equation in dispersionless limit (58). The initial data correspond to
the cubic curve x = −(u2

− u
2

b)
3 (see Eq. (60)).

Hence, in its vicinity we can represent (59) as

x+ 6u2t = −(u2 − u2b)
3, (60)

where ub = u(xb, tb). Note that the mKdV equation is not Galileo invariant and therefore we cannot eliminate the
constant parameter u2b , in contrast to the case of a KdV equation (see, e.g. [5]).
For t > 0 solution (60) becomes multi-valued function of x. Formation of this multi-valued region is shown in

Fig. 2. For t ≥ 0 we cannot neglect dispersion and have to consider full mKdV equation. Due to effect of dispersion
the multi-valued region is replaced by the region of fast oscillations which can be represented as a modulated periodic
solution of the mKdV equation (21). We rewrite this solution [see Eqs. (52), (53)] in terms of the slowly varying
functions ri(x, t), i = 1, 2, 3,

u(x, t) =
(
√
r3 +

√
r1)(

√
r2 +

√
r1 −

√
r3) + (

√
r3 −

√
r2)(

√
r1 +

√
r2 +

√
r3)sn

2(2
√
r3 − r1 θ,m)

√
r1 +

√
r3 − (

√
r3 −

√
r2)sn2(2

√
r3 − r1 θ,m)

, (61)

where

m =
r3 − r2
r3 − r1

, θ = x+ 2s1t = x+ 2(r1 + r2 + r3)t. (62)

and functions ri(x, t) are governed by the Whitham equations (56). We have to find such solution of these equations
that the region of oscillations matches at its end points corresponding to m = 0 and m = 1 to the dispersionless
solution (60) which we rewrite in the form

x+ 6rt = −(r − rb)
3, r = u2, rb = u2b . (63)

This means that the solution of Eqs. (56) written in implicit form

x− vi(r)t = wi(r), i = 1, 2, 3, (64)

must satisfy the boundary conditions

v1|r2=r3
= −6r1, v3|r2=r1

= −6r3; (65)

w1|r2=r3
= −(r1 − rb)

3, w3|r2=r1
= −(r1 − rb)

3. (66)

Then, as we shall see from the results, mean values of u will match at these boundaries to the solution of dispersionless
mKdV equation.
To find the solution (64) subject to the boundary conditions (65),(66), we shall follow the method developed earlier

for KdV equation (see, e.g. [5]). We look for wi in the form similar to (56),

wi =

(

1− L

∂iL
∂i

)

W, i = 1, 2, 3, (67)
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and find that W satisfies the Euler-Poisson equation

∂ijW − 1

2(ri − rj)
(∂iW − ∂jW ) = 0, i 6= j. (68)

For our aim it is enough to know a particular solution of this linear equation W = const/
√

P (r), where P (r) is a
polynomial with zeroes ri and it can be identified with polynomial (39) with taking into account Eqs. (55). The series
expansion of this solution in inverse powers of r,

W =
−4r3/2

√

(r − r1)(r − r2)(r − r3)
=

∞
∑

n=0

W (n)

rn
, (69)

can be considered as generating function of sequence of solutions,

W (1) = −2s1, W (2) = 2s2 − 3
2s

2
1, W (3) = 3s1s2 − 2s3 − 5

4s
3
1, (70)

where s1, s2, s3 are the coefficients of the polynomial (39) expressed in terms of r1, r2, r3:

s1 = r1 + r2 + r3, s2 = r1r2 + r1r3 + r2r3, s3 = r1r2r3. (71)

It is easy to find that the resulting velocities

w
(n)
i =

(

1− L

∂iL
∂i

)

W (n), i = 1, 2, 3, (72)

have the following limiting values

w
(1)
1

∣

∣

∣

r2=r3
≡ v1|r2=r3

− 6r1, w
(1)
3

∣

∣

∣

r2=r1
≡ v3|r2=r1

= −6r3; (73)

w
(2)
1

∣

∣

∣

r2=r3
= − 15

2 r
2
1 , w

(2)
3

∣

∣

∣

r2=r1
= − 15

2 r
2
3 ; (74)

w
(3)
1

∣

∣

∣

r2=r3
= − 35

4 r
3
1 , w

(3)
3

∣

∣

∣

r2=r1
= − 35

4 r
3
3 . (75)

Thus, we see that if we take

wi(r) = −r3b − 1
2r

2
bw

(1)
i (r) + 2

5rbw
(2)
i (r) − 4

35w
(3)
i (r), i = 1, 2, 3, (76)

then formulae (64) satisfy all necessary conditions and define dependence of r1, r2, r3 on x and t in implicit form. In
Fig. 3 we have shown the dependence of r1, r2, r3 on x at t = 0.5 and rb = 5. It is clearly seen that r2 and r1 coalesce
at the right boundary x+, where m = 1, and r2 and r3 coalesce at the left boundary x−, where m = 0. Dispersionless
solution is depicted by dashed line and r1 matches this solution at x− and r3 matches it at x+.
Let us find the laws of motion x±(t) of the boundaries of the region of oscillations. At the right boundary we have

the condition

dx

dr1

∣

∣

∣

∣

m=1

=
dx

dr2

∣

∣

∣

∣

m=1

= 0, (77)

which yields the expression

t = 12
35r

2
1 +

4
35r1r3 +

3
70r

2
3 − 4

5r1rb − 1
5r3rb +

1
2r

2
b , (78)

and substitution of this expression into Eqs. (64) with r1 = r2 gives the coordinate x+ expressed in terms of the
Riemann invariants r1 and r3:

x+ = 1
35

[

−32r31 + 2r33 − 8r1r3(r3 − 7rb)− 8r21(4r3 − 7rb)− 7r23rb − 35r3b
]

. (79)
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< <

FIG. 3: Dependence of the Riemann invariants r1, r2, r3 on x at some fixed value of time. The plots are calculated according
to formulae (64) with rb = 5 and t = 0.5. A dashed line represents the dispersionless solution which matches the Riemann
invariants at the boundaries x± of the region of oscillations.

On the other hand, this value of x+ must coincide with coordinate obtained from the dispersionless solution (63) with
t equal to Eq. (78),

x+ = −6r3t− (r3 − rb)
3 = 1

35

[

−72r21r3 + 26r33 − 24r1r3(r3 − 7rb)− 63r23rb − 35r3b
]

. (80)

Comparison of these two expressions for x+ yields the relation between r1, r2 and r3 at m = 1:

(4r1 + 3r3)m=1 = 7rb. (81)

Substitution of r1 obtained from this equation into Eq. (78) gives

t = 3
20 (r3 − rb)

2. (82)

Hence

r3|m=1 = rb +
2
3

√
15t (83)

and again with the use of Eq. (81) we obtain

r1|m=1 = r2|m=1 = rb − 1
2

√
15t. (84)

These formulae give values of the Riemann invariants at the right boundary as functions of time t. Their substitution
into (79) or (80) yields the motion law of the right boundary

x+(t) = −6rbt+
4
3

√

5
3 t

3/2. (85)

In a similar way at the left boundary x− the conditions

dx

dr2

∣

∣

∣

∣

m=0

=
dx

dr3

∣

∣

∣

∣

m=0

= 0 (86)

yield

t = − 1
30r

2
1 − 4

15r1r3 +
4
5r

2
3 +

1
3r1rb − 4

3r3rb +
1
2r

2
b (87)

which substitution into Eqs. (64) and (63) gives, respectively,

x− = 1
5

[

−2r31 − 32r33 + 8r1r3(4r3 − 5rb) + 40r23rb − r3b + r21(−8r3 + 15rb)
]

(88)

and

x− = 1
5

[

6r31 + r21(8r3 − 25rb)− 8r1r3(3r3 − 5rb)− 5r3b
]

. (89)



12

Their comparison yields the relation

(r1 + 4r3)m=0 = 5rb (90)

which permits us to eliminate r3 from Eq. (87) to obtain

t = 1
20 (r1 − rb)

2. (91)

Hence

r1|m=0 = rb − 2
√
3t (92)

and again with the use of Eq. (81) we obtain

r2|m=0 = r3|m=0 = rb +
1
2

√
3t. (93)

Substitution of these formulae into (88) or (89) yields the motion law of the left boundary

x−(t) = −6rbt− 12
√
3 t3/2. (94)

The plots of x+(t) and x−(t) are depicted in Fig. 4. To the right from x+(t) and to the left from x−(t) the wave
is described by the dispersionless solution (63). Between x+(t) and x−(t) we have the region of fast oscillations
represented by Eq. (62) with ri(x, t), i = 1, 2, 3, given implicitly by Eqs. (76). The dependence of u on x at some fixed
moment of time is shown in Fig. 5. It describes dissipationless shock wave connecting two smooth regions where we
can neglect dispersion effects. At the right boundary the periodic wave tends to a sequence of separate dark soliton
solutions of the mKdV equation and at the left boundary the amplitude of oscillations tends to zero.

-30 -25 -20 -15 -10 -5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

t

x
x

(t)
(t)-

+

FIG. 4: Dependence of coordinates x± of boundaries of the region of oscillations on time for the mKdV equation case.

B. Dissipationless shock wave in the KdV(2) equation (32)

The theory of dissipationless shock wave for the KdV(2) equation is similar to that for the KdV and mKdV cases.
Therefore we shall present here only its main points.
The periodic solution of KdV(2) equation has the same form as in KdV equation case (see, e.g. [5]),

u(x, t) = r2 + r3 − r1 − 2(r2 − r1)sn
2
(√
r3 − r1 θ,m

)

, m =
r2 − r1
r3 − r1

, (95)

with phase velocity

θ = x− V t, V = 2s2 − 3
2s

2
1, (96)

corresponding to the second equation of the KdV hierarchy.
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2.4

2.6

u(x)

x

t = 0.5

FIG. 5: The dissipationless shock wave for the mKdV equation. The parameters are equal to rb = 5 and t = 0.5. The dashed
line represents the squared roots of the Riemann invariants which match the smooth solution u(x, t) of the dispersionless
equation at the boundaries of the region of oscillations.

Now the periodic solution (95) is parameterized by the Riemann invariants ri, i = 1, 2, 3, rather than by their
squared roots, as it was in mKdV equation case. Hence, the solution of the dispersionless equation

ut =
15
2 u

2ux (97)

near the wave breaking point should be taken in the form

x+ 15
2 u

2 = −(u− ub)
3. (98)

In fact, this form is equivalent near the wave breaking point to the solution (60), since (u2−u2b) ≃ 2ub(u−ub) and the
constant factor can be scaled out. Formation of multi-valued region is illustrated in Fig. 6. After taking into account
the dispersion effects it should be replaced by the dissipationless shock wave.

x

u(x)

t < 0

t=0

t > 0

FIG. 6: Formation of multi-valued solution of the KdV(2) equation in dispersionless limit (97). The initial data correspond to
the cubic curve x = −(u− ub)

3 (see Eq. (98)).

Within the shock wave we have modulated periodic solution (95) where ri are slow functions of x and t and their
evolution is governed by the Whitham equations (56) with V defined by Eq. (96). Their solution subject to the
necessary boundary conditions can be found by the same method as was used in the preceding subsection. As a result
we obtain

x− w
(2)
i t = u3b +

1
2u

2
bw

(1)
i − 2

5ubw
(2)
i + 4

35w
(3)
i , (99)

where w
(n)
i are defined by formulae (70)–(72). Equations (99) define implicitly the dependence of the Riemann

invariants ri, i = 1, 2, 3, on x and t. The resulting plots are shown in Fig. 7. At the right boundary x+ we have
soliton limit (m = 1) and at the left boundary x− we have a wave with vanishing modulation.
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FIG. 7: Dependence of the Riemann invariants r1, r2, r3 on x at some fixed value of time for the KdV(2) equation case. The
plots are calculated according to formulae (99) with ub = −0.5 and t = 0.25. A dashed line represents the dispersionless
solution which matches the Riemann invariants at the boundaries x± of the region of oscillations.
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FIG. 8: Dependence of coordinates x± of boundaries of the region of oscillations on time for the KdV(2) equation case.

The motion laws x±(t) can be found as in the preceding subsection, but the final formulae become now quite
complicated and we shall not write them down. The corresponding plots are presented in Fig. 8. Again the region
between x−(t) and x+(t) corresponds to expanding with time t dissipationless shock wave. It is illustrated in Fig. 9
where the dependence u(x) at fixed moment t is shown. Now at one boundary bright solitons are formed and at the
other boundary amplitude of oscillations tends to zero.

IV. CONCLUSION

We have shown that GDNLS equation with finite density boundary conditions can be reduced, depending on
values of the parameters η and ρ, to several important continuous models—KdV, mKdV, KdV(2) and fifth-order
KdV equations which describe different regimes of wave propagation in nonlinear lattice (Salerno model). The
KdV(2) equation appears at such values of the parameters for which nonlinear and dispersive terms in in the KdV
equation vanish, so that the main contribution in small amplitude long wave approximation is given by the third order
nonlinear and fifth-order dispersion effects. This point correspond to the AL equation case, and since the AL equation
is completely integrable and multi-scale method preserves complete integrability, we arrive at the second equation of
the KdV hierarchy. This observation explains physical meaning of higher equations of integrable hierarchies—they
give main contribution into wave dynamics if lower order effects vanish in small amplitude approximation of initial
integrable equation.
The evolution equations obtained as approximations to the GDNLS equation lead in dispersionless limit for general

enough initial pulses to wave breaking so that taking into account small dispersion effects leads to formation of
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FIG. 9: The dissipationless shock wave for the KdV(2) equation. The parameters are equal to ub = −0.5 and t = 0.25. The
dashed line represents the Riemann invariants which match the smooth solution u(x, t) of the dispersionless equation at the
boundaries of the region of oscillations.

dissipationless shock waves. We have developed the theory of these waves in framework of Whitham averaging
method. Analytical expressions are obtained which describe their main characteristics—trailing and leading end
points, amplitudes and wavelengths.
The phenomena described in the present paper are not restricted by the GDNL, but are characteristic features of

a large class of nonlinear Schrödinger lattices, which depend on one or more free parameters.
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