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Different Time Scales in Wave Function Intensity Statistics
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Unstable periodic orbits scar wave functions in chaotic systems. This also influences the associated
spectra, that follow the otherwise universal Porter–Thomas intensity distribution. We show here how
this deviation extend to other longer periodic orbits sharing some common dynamical characteristics.
This indicates that the quantum mechanics of the system can be described quite simply with few
orbits, up to the resolution associated to the corresponding length.

PACS numbers: PACS numbers: 05.45.-a, 03.65.Sq, 05.45.Mt

Chaos is a well defined phenomenon in classical me-
chanics, but its manifestations at quantum level are
not fully understood yet [1]. The pioneering work of
Gutzwiller [2], showing how the eigenvalues density of
chaotic systems can be obtained from classical periodic
orbits (PO), constitutes an important landmark in the
investigation of “quantum chaos”. Later Heller demon-
strated that, contrary to reasonable conjectures, unsta-
ble POs have a profound influence in the distribution of
quantum probability density of a non–vanishing class of
wave functions, which appear highly localized over these
classical paths [3]. The wave functions exhibiting this lo-
calization are said to be “scarred”, and they play a very
important role in semiclassical theories [4]. Recently,
several methods, based on very different strategies, have
been described in the literature [5, 6] for the systematic
construction of non–stationary wave functions highly lo-
calized on POs. These novel tools also provide new in-
sight towards the understanding of the role of scarring
in the quantum mechanics of chaotic systems [7]. Scars
also condition spectra. Recurrences in the correlation
function originated by the linearized dynamics around
unstable POs are the reason for the existence of marked
low resolution structure in the spectra of chaotic sys-
tems. Heteroclinic orbits have also been demonstrated
to be important when extending this theory beyond the
linearized regime [8, 9].

Another main achievement in quantum chaos is un-
doubtedly Random Matrix Theory (RMT) [10], which
accounts for many properties in the quantum spectra of
chaotic systems, such as the widespread nearest neighbor
energy level spacing, which for all strong mixing systems
follows the Wigner surmise [11]. The beauty of many
RMT results is their universality, which turns out to be
also its drawback, since they are independent of the ini-
tial state preparation details and its dynamics. Other
measures sensitive to them, such as the distribution of
spectral intensities, seem then, in principle, better suited
to elucidate relevant features in a given spectrum. How-
ever, the statistical fluctuations of quantum transition
strengths in stochastic systems was also found to be de-

scribed by another RMT universal formula, the Porter–
Thomas (PT) distribution [12]. In this respect, Alhassid
and Levine demonstrated [13] that the PT distribution
can be simply obtained from the principle of maximum
entropy of the strength distribution, with the only con-
strain of the ever present sum rule for the total strength
of the transition. Sibert and Borondo [14] showed that
the same result can be derived by imposing the dynam-
ical constrains implied by the short time motion of the
system. Later Kaplan [15] found that, although the tail
of wave function intensity distribution in phase space is
dominated by scarring associated with the least unstable
PO, when the low resolution modulation induced by it is
removed, the remaining distribution matchs the standard
PT expression.

In this Letter we report an study on the intensity dis-
tribution statistics for the stadium scar wave functions,
calculated with the method of Ref. 5. We show that the
information contained in it about POs is far richer than
assumed in the previously existing literature [10, 14, 15],
actually extending to times much longer than that of the
local short term dynamics dictated by the least unsta-
ble PO. However, this view is based on few POs, thus
representing an important conceptual simplification over
other approaches (see for example [8, 9]), which can be
very useful in future developments of scar theory.

In our study we use a system consisting of a particle of
mass 1/2 enclosed in a desymmetrized stadium billiard of
radius r = 1 and area of 1+π/4, with Newman boundary
conditions on the symmetry axes (only even–even parity
eigenfunctions will be considered).

We consider the dynamics influenced by the horizontal
PO running along the x axis with y = 0. For this purpose
we start from a symmetry adapted initial wave packet:

〈x, y|φ(0)〉 = aGx0,y0,P 0
x ,P 0

y
+ bG−x0,y0,−P 0

x ,P 0
y

+ cGx0,−y0,P 0
x ,−P 0

y

+ dG−x0,−y0,−P 0
x ,−P 0

y
+ c.c.

(1)
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where

Gq0,P0 =
∏

j

(πα2
j )

−1/4e−(qj−q0j )
2/2α2

j eiP
0

j (qj−q0j ), (2)

(the coefficients a, b, c, and d are obtained by imposing
Newman boundary conditions at the symmetry axes),
and compute the (infinite resolution) spectrum

I∞(E) =
∑

n

|〈n|φ(0)〉|2δ(E − En), (3)

with (x0, y0, P 0
x , P

0
y )=(1, 0, k0, 0) and αx=αy=1.603/k

1/2
0

(h̄ is set equal to 1 throughout this paper). Kets |n〉 rep-
resent the eigenstates of the system, which have been ob-
tained using the scaling method [16]. The aspect of the
obtained I∞(E) is rather irregular (see results below),
due to the highly chaotic nature of the dynamics in this
system. However, when examined closely, the contribut-
ing “sticks” are seen to come grouped in clumps. This
indicates the existence of a clear underlying structure,
which is due to recurrences in the associated correlation
function, C(t) = 〈φ(0)|φ(t)〉, induced by the horizontal
PO used to select the initial position of the wave packet.
This regularity shows up as well defined bands in the low
resolution version of the spectrum, IT (E),

IT (E) =
1

2π

∫ ∞

−∞

dt WT (t)C(t) exp(iEt), (4)

where WT (t) is a suitable smoothing window function,
filtering out the dynamics of the system for times longer
than T . Moreover, the positions of these bands are given
by the usual Bohr–Sommerfeld quantization condition,

km =
2π

Lµ

(

m+
νµ
4

)

, (5)

with Lµ=4 and νµ=3. The wave functions associated to
these bands correspond to a series of scar functions on the
PO with an increasing excitation along it, as discussed
elsewhere [5, 17, 18].
To efficiently study the characteristics of the spectra

corresponding to this band structure we define a “scar
spectrum” in the following way. Using the procedure
described above, we calculate spectra at all energies,
k0=km, quantized with the Bohr–Sommerfeld formulae
and construct a new spectrum, Ĩ∞(E), by taking only
the central clump from each one of them:

Ĩ∞(E) =
∑

m

Ibandm =
∑

m

∑

{En}

′|amn |2 δ(E − En), (6)

where the prime indicates that the sum is only carried
out for states in the range (Em–Em−1)/2<En<(Em+1–
Em)/2. In this way the spectrum statistics is improved,
since the constrain imposed by the finite width of the
initial wave packet is eliminated. Our calculations were

23500 E 25000

~ I 
(E

)
τ

FIG. 1: Scar spectrum, Ĩτ (E), at infinite (stick) and low res-
olution: τ = 1 and 4.5 (solid lines), corresponding to a wave
packet initially centered on the horizontal axis of a desym-
metrized stadium billiard with r = 1, area 1+π/4, and New-
man boundary conditions at the symmetry axes.

performed in the range k=50–250, which includes ap-
proximately 8400 stadium eigenstates. Similarly to what
was done in eq. (4), we can now define a low resolution
version of this spectrum which, for a Gaussian window
function, takes the form

Ĩτ (E) = 2τT0π
−1/2

∑

{En}

′|an|2 e−2τ2T 2

0
(E−En)

2

, (7)

where τ is an adimensional smoothing parameter and T0

the period of the scarring orbit. The corresponding re-
sults, in the range E=23250–25300, are shown in Fig. 1,
for τ=1 and 4.5. The first value of the smoothing param-
eter corresponds approximately to the smallest smooth-
ing which washes out all substructures. The required
time scales with the inverse of the Lyapunov exponent
[3]. When the resolution is increased to τ=4.5 another
superimposed intra–band structure is then exposed, thus
revealing the relevance of longer time dynamics.
To quantitatively examine the implication of this re-

sult, we consider next the statistics of intensities in our
scar spectrum. According to RMT the distribution of
“dynamically normalized” intensities in a fully chaotic
system is given by the usual χ2 (PT) fluctuations [12],

P (x) = (2πx)−1/2e−x/2. (8)

However, and as stated in the introduction, one crucial
point when performing this analysis is to eliminate the
modulation due to any obvious low resolution structure
present in the spectrum, so that all intensities are com-
pared on the same relative scale. This can be acom-
plished by “renormalizing” the intensities with the cor-
responding value of the envelope [14, 15],

xn = N |an|2/Ĩτ (En), (9)
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FIG. 2: Variance from the Porter–Thomas results of the
wave function intensity distribution for the scar spectrum of
Fig.1, calculated using the first 1000 (dotted), 2000 (dotted–
dashed), 4000 (dashed), and 8000 (full line) states of the scar
spectrum of Fig. 1.

where, coherently with eq. (8), the number of states in
the spectrum, N , has been included, in order to obtain
a mean value of unity. In Ref. 14 it was shown that this
task can be performed systematically by monitoring the
corresponding variance from the PT distribution, σ2, as
a function of the smoothing time.

In Fig. 2 we show the results of this calculation when
using the first 1000, 2000, 4000, and 8000 states of the
scar spectrum of Fig. 1. In order to eliminate the con-
tribution from the tail of the distribution [15] and the
divergence at the origin of the PT expression, only values
in the range 1<xn<5 have been included in our statisti-
cal treatment. As can be seen, all curves fall off initially
quite rapidly as τ increases, and then start to stabililize
at τ≃1, indicating that, at least, an optimal fitting to
the PT surmise can be obtained when substracting from
the intensity distribution the low resolution envelope cor-
responding to the dynamics of the horizontal PO. This
result is in agreement with the conclusions of [15]. It is
worth to emphasize that the value of τ for which the PT
statistics starts to work is not directly related to the pe-
riod of the orbit. For instance, for an orbit with a very
small Lyapunov exponent, the value of τ would be much
greater than 1. More interesting is that, after this point,
more optimal values of σ2 are obtained for a range of val-
ues of τ , which extend in some sort of plateau or broad
minimum. Finally, the variance grows (approximately)
parabolically after a point τmax, indicating when we are
trying to describe the spectrum with too much “dynam-
ical” resolution (for the number of states that have been
included in the statistics). The relevance of this figure is
that it shows the existence of plateaus, whose extension
grow withN . Actually, τmax is found to scale, similarly to
the Heisenberg time, with

√
N , although it differs from

this expression by a factor of ≃10, indicating that our
statistical treatment should allow at least 10 states per

band in order to capture the fluctuations implied by the
PT distribution.
This result is further illustrated in Fig. 3, where, in

addition to that, the relation between Lmax, the corre-
sponding orbit length, and invariant classical structures
is also revealed. To interpret this figure one must take
into account that in the stadium, as in any other chaotic
system, Gutzwiller’s trace formulae, ρ(k) =

∑

n δ(k−kn),
gives the quantal density of states in terms of information
on all POs of the system. This process can be inverted,
by Fourier transform, to obtain the classical spectra of
orbits, f(L) =

∑

n exp(iknL). Figure 3 shows the square
of this magnitude computed for N=1000, 4000 and 8000.
The results in the first panel indicate that 1000 states
are barely enough to distinguish between the two PO
of length L≃6.5 plotted in the insets, which on the other
hand are fully resolved when N=4000. The central panel
shows how 4000 states are able to discern dynamical fea-
tures up to L≃9. And finally, the results of panel three
imply that the quantum mechanics of the system up to
L≃16 can be described with 8000 states.
In order to elucidate which POs, other than the orig-

inal horizontal one, are responsible for the plateaus ob-
served in Fig. 2, a similar analysis can be performed with
the scar spectrum of Fig. 1, by using the following strat-
egy. Instead of the global density of states, ρ(k), we em-
ploy now the local (around the horizontal PO in phase
space) version of it,

f̃(L) =
∑

n

|an|2 eiknL. (10)

The inclusion of the weights |an|2 it is not an irrelevant
point, since it implies that, contrary to what happens
in Gutzwiller’s original trace formula, only POs dynam-
ically linked to the initial one are allowed to enter in
our calculations [18]. The corresponding result is pre-
sented in Fig. 4, where it is seen that |f̃(L)|2 presents a
series of prominent peaks at multiples of a fundamental
length of 4, the length of the horizontal PO along which
the packet was initially launched. Moreover, the con-
tribution of other, longer POs is also clearly observed.
By considering the lengths of the different POs of the
stadium, we have been able to assign each of the (non–
trivial) contributing peaks, up to the fourth recurrence
of the horizontal orbit; the corresponding POs are pre-
sented in the left inset of the figure. Notice that all these
POs present some good portion ot their paths overlaping
significantly with the initial horizontal PO. Again the
degree of resolution of our calculation is related to the
maximum value of k included in the spectrum. This is il-
lustrated in the upper right inset to Fig. 4, where a blown
up of the fourth recurrence in |f̃(L)|2, calculated using
1000 and 8000 states of the scar spectrum of Fig. 1, is
presented.
One final point, worth mentioning, is the heights of the

peaks in Fig. 4. Since they contain information on the
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FIG. 3: |f(L)|2 computed from the eigenvalues density of the desymmetrized stadium with Newman boundary conditions for
N=1000 (thick solid line), 2000 (thin solid line), and 8000 (dashed line), and the corresponding periodic orbits.
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FIG. 4: |f̃(L)|2 computed from the stick scar spectrum of
Fig. 1. The different peaks has been assigned to the periodic
orbits plotted in the left inset. The right inset shows how
1000 states (thick solid line) is not enough to reproduce the

three central peaks of the fourth recurrence in |f̃(L)|2.

degree and phase of the interaction between the different
POs contributing to |f̃(L)|2, it must be possible to obtain
from them some clue of the scarring process beyond the
short time limit corresponding to the linearized dynamics
around the initial unstable fixed point. This interaction
can be evaluated, for example, as the Hamiltonian matrix
elements of the scar wave functions obtained with the
methods of Refs. 5, 6, 7, and this will be the subject of
a future publication.

In summary, we have shown how scar spectra, contain-
ing information about POs dynamically related, can be
constructed for highly chaotic systems. This information
is revealed by analyzing the associated intensity distri-
butions, which show, superimposed to the universal PT
behavior, low resolution structures in the range of time

scales of the corresponding periods.
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