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3NEC Laboratories (retired)

4Princeton University, Applied and Comput. Mathematics/Mathematics

October 15, 2018

Abstract

In “equation-free” multiscale computation a dynamic model is given at a fine,
microscopic level; yet we believe that its coarse-grained, macroscopic dynamics
can be described by closed equations involving only coarse variables. These vari-
ables are typically various low-order moments of the distributions evolved through
the microscopic model. We consider the problem of integrating these unavailable
equations by acting directly on kinetic Monte Carlo microscopic simulators, thus
circumventing their derivation in closed form. In particular, we use projective
multi-step integration to solve the coarse initial value problem forward in time as
well as backward in time (under certain conditions). Macroscopic trajectories are
thus traced back to unstable, source-type, and even sometimes saddle-like station-
ary points, even though the microscopic simulator only evolves forward in time.
We also demonstrate the use of such projective integrators in a shooting bound-
ary value problem formulation for the computation of “coarse limit cycles” of the
macroscopic behavior, and the approximation of their stability through estimates
of the leading “coarse Floquet multipliers”.

Keywords: Projective Integration, Kinetic Monte Carlo.
Mathematical Reviews Index Classification: 65C05. Numerical Simulation,

Monte Carlo Methods.
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1 Introduction

In previous work (introduced in [28] and developed in a sequence of publications [18, 19,
25, 26, 5, 7, 23, 29, 16]) whose underlying principles are discussed in detail in [14], we have
used coarse time-stepping as a tool for the computer-assisted analysis (under appropriate
conditions) of macroscopic process evolution, even when the model of the process is only
known at a fine (atomistic, stochastic, microscopic) level. When coarse-grained, closed
descriptions exist, but are not available in closed form, our so-called “equation free”
approach may provide a framework for bridging microscopic modeling and traditional
continuum numerical analysis. The quantities necessary for “systems level” numerical
tasks are estimated using short bursts of appropriately initialized microscopic simula-
tions, and tools from systems theory (identification, filtering, variance reduction etc.).
This “closure on demand” procedure, coupled with matrix-free techniques of modern
iterative large scale linear algebra, enables microscopic simulators to directly perform
tasks like accelerated integration, fixed point computation, stability/parametric and bi-
furcation analysis, controller design and optimization directly, without ever obtaining
the coarse level equations in closed form. The extraction of macroscopic dynamics from
microscopic simulators is a subject of intense current research interest in disciplines rang-
ing from mathematics to materials science, and from computational biology to weather
prediction. An extensive discussion with references can be found in [8]; we mention here,
in particular, the early work of Chorin and coworkers on optimal predictors ([1, 2].

A coarse timestepper is based on a pair of transformations between the microscopic
(fine) and macroscopic (coarse) descriptions: (a) lifting, µ, which takes a macroscopic
initial state into consistent (usually higher-dimensional) microscopic descriptions; and
(b) restriction, M, which goes in the other direction, giving macroscopic observations
of detailed microscopic states. A coarse time step effectively computes the change in
the expected, macroscopic description over a time horizon ∆T = nδt where δt is the
time step of the microscopic model. One coarse time step starting from the macroscopic
initial condition Y (T ) consists of

1. Lifting to one (or possibly an ensemble of) consistent initial conditions at the
microscopic level: y(T ) = µY (T )

2. Integrating forward (evolving) at the microscopic level for n time steps to y(T +
nδt).

3. Restricting the final answer to the coarse variables Y (T +∆T ) = My(T + nδt).

Applied directly to long time simulation, the coarse time-stepper would do nothing to
reduce the cost of computing at the microscopic level. Neither would there be any point
to performing lifting operations after the initial one, since detailed microscopic states
are available from the end of the previous coarse time step. It is when coarse time-
stepping is used in conjunction with other techniques that it provides computational
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and analytical benefits. These techniques are based on the observation that estimates
of certain additional quantities (e.g. of the time-derivative of the coarse evolution, or
even Fréchet derivatives, i.e. the action of the linearization of the coarse evolution) can
be relatively systematically obtained. The time-derivative of the coarse solution can be
estimated through the coarse time-stepper using (in the simplest of several approaches)
the chord of the solution over a time interval N∆T for integer N . Thus, stationary state
problems can be approximately solved by finding a state, Y ∗, such that the chord slope is
zero. More importantly for the purpose of this paper, the chords can be used as inputs to
an outer integrator of the macroscopic variables in a process we called coarse projective

integration [5]. In the same spirit, a coarse limit cycle can be found by solving a two-
point boundary value problem at the macroscopic level using the same coarse projective
integrators in a shooting formulation - i.e., by converging on the fixed point of a coarse
Poincaré map.

In computing the chord slope we do not, usually, take just one coarse step, but per-
form several preliminary ones after the initial lifting operation, and then compute the
chord slope of the final one. This is done to allow the initial lifted values to “heal”
- that is, to allow for higher-order moments of the microscopically evolving distribu-
tions to get “slaved to” (i.e. become functionals of) the lower-order “master” moments
used to parametrize the coarse description. The basic assumption is that an attracting
“slow manifold” underpins the coarse dynamics; this manifold is parametrized by a set
of “coarse variables” (typically the first few moments of the microscopically evolving dis-
tributions). In principle, the expected values of the remaining moments can be plotted
as an unspecified function of the coarse variables; if detailed simulations are initialized
away from this manifold, they quickly evolve towards it and then approximately “on it”.
A simple but important observation is that in general, if this “slaving” does not occur
quickly (compared to the observation time of the simulator/experimenter), the system
cannot be deterministically described in terms of the current set of coarse variables; this
means that no deterministic macroscopic equations exist and close at this level of descrip-
tion. This picture, and its association with the ideas of approximate inertial manifolds
[3, 27] is discussed in more detail in [14, 7, 18, 13].

Since (in the simplest implementation) the values of the macroscopic variables are
only needed for the chord computation, the restriction operation only need be performed
at the two points needed to compute the chord. Thus the chord calculation process
to find the slope, S, of a chord of the solution through the points Y (T + n1δt) and
Y (T + n2δt) starting from Y (T ) is:

1. Lift from Y (T ) to (possibly several) consistent y(T )

2. Perform n1 microscopic simulation steps to get y(T + n1δt). This is the settling

or healing time that allows the initially lifted distribution to “settle” to a realistic
distribution before estimating the slope. Alternatively, this is the time for the
simulations to approach the coarse slow manifold (i.e. for the higher order moments
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to become functionals of the lower order, governing moments).

3. Restrict to get Y (T + n1δt).

4. Perform n2 − n1 more microscopic simulation steps to get y(T + n2δt).

5. Restrict to get Y (T + n2δt).

6. Compute S = (Y (T + n2δt)− Y (T + n1δt))/((n2 − n1)δt).

If the microscopic model is stochastic, the chord slope of the coarse time-stepper will
be noisy. The variance of this noise can be reduced in several ways: the size (number
of particles or other components) of the microscopic model can be increased, multiple
copies of the microscopic model can be run (in parallel!) and the results averaged, and/or
- the method we will use here - the chord can be computed by fitting a straight line to
the output of a number of (coarse) time steps. Other approaches to variance reduction
are discussed in [20, 21]. In our case the chord calculation process is

1. Lift from Y (T ) to y(T )

2. Perform n1 microscopic simulation steps to get y(T + n1δt).

3. Restrict to get Y (T + n1δt).

4. Repeat the next two steps for q = 1, 2, · · · , m

5. Perform n3 more microscopic simulation steps to get y(T + (n1 + qn3)δt).

6. Restrict to get Y (T + (n1 + qn3)δt).

7. Compute S as the slope of the least-squares linear fit to Y (T + (n1 + qn3)δt) for
q = 1, 2, · · · , m.

The process is illustrated in Fig. 1. In Sections 2 and 3 of this paper we will use this
form of chord computation process to perform high-order multistep integration and limit
cycles, respectively.

The model problem considered here was chosen (for validation purposes) to be one
for which we do know the coarse-grained macroscopic equations - so that comparisons
can be made between a coarse stochastic integration based on the microscopic model and
the “true” deterministic macroscopic equations for the expected dynamics. We chose one
of the examples used in [18]; it is a kinetic Monte Carlo (kMC) realization (using the
stochastic simulation algorithm of Gillespie [9, 10]) of a simple surface reaction model for
which the mean field evolution equation for the surface coverages (θi) of the participating
species are known [18].

4



dθA
dt

= αθ∗ − γθA − 4krθAθB

dθB
dt

= 2βθ2
∗
− 4krθAθB

dθC
dt

= µθ∗ − ηθC (1)

This is a simplified model of the oxidation of CO (A) by dissociatively adsorbing oxygen
(B) on a Pt catalyst surface in the presence of an additional inert species (C). Here
θ∗ = 1 − θA − θB − θC . For our computations the values of the parameters are set as
follows: µ = 0.36, η = 0.016, α = 1.6, γ = 0.04, kr = 1.0; β was set as cited in the text.

The kMC simulations were performed as described in [18] using N = (1000)2 adsorp-
tion sites and computing the average over several realizations, typically 100. Compar-
isons were made with numerical integration of the deterministic model eq. (1) using the
implicit solver ODESSA [15].

In the next Section we will describe the multi-step coarse projective integration
method we use and some preliminary tests that were made to decide on an appro-
priate order for the projective method. In Section 3 we will discuss the computation of
coarse limit cycles through shooting with a coarse projective integrator. In Section 4
we will show how to perform reverse coarse projective integration through forward kMC
simulation, and show that the reverse trajectories approach (in negative time) unstable
stationary points. We will conclude with a summary and brief discussion.

2 Forward Projective Integration

Projective integration was introduced in [5]. Its first-order form when used with the
estimation of the chord slope from a stochastic integrator is shown in Fig. 2.

In practice we need to use a higher order method. Here we will use an explicit
multistep method similar to the Adams-Bashforth method, which can be found in any
standard textbook [4]. The third-order method is

Y (T +H) = Y (T ) +
H

12
(23Ẏ (T )− 16Ẏ (T −H) + 5Ẏ (T − 2H))

where H is the step size. This formula assumes that we have estimates of the derivatives
Ẏ that are at least second-order accurate at three places: T , T −H , and T −2H . Higher
order methods require correspondingly more derivative estimates of correspondingly
higher accuracy (p-th order accurate estimates for an order p + 1 integration method).
The formula also assumes that the spacing, H , between the integration points is constant.
Neither of these assumptions is strictly correct in the stochastic chord slope estimator we
are using. Referring to Fig. 1 we see that if the microscopic simulation starts at the point
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T , we will actually estimate the slope of the chord between T+n1δt and T+(n1+mn3)δt.
This is a first-order accurate estimate of the derivative at T + (n1 +mn3/2)δt, not at T .
Hence, we need to modify the Adams-Bashforth method in two ways.

To describe the modifications, let us define Tn+1 = Tn+H where H is the “projective
step size,” that is, the distance between successive groups of inner steps. Let Tn be the
center of the chord computed via a least-squares fit. Let Sn be the computed slope of
that chord. Then we need to integrate from Tn to Tn +H − (n1 +mn3/2)δt to get an
approximation to the Y value at the start of the next stochastic computation as shown
in Fig. 1. This is our first modification to the Adams-Bashforth method. The first order
method, which is Euler’s method, is straightforward:

Y (Tn +H0) ≈ Y (Tn) +H0Sn

where H0 = H− (n1+mn3/2)δt. As long as Sn is a zeroth-order accurate approximation
to Ẏ (Tn), this is a first-order method. Second and higher-order methods must reflect
the fact that the final step is less than the spacing, H , between the past points. For
example, the second-order method is

Y (Tn +H0) ≈ Y (Tn) +H0(Sn +
H0

2H
(Sn − Sn−1)).

If Sn and Sn−1 are first-order accurate approximations of the derivative, this is a second-
order method. Similar modifications apply to higher-order methods, and can be found
via routine algebra.

The second modification is due to the fact that we do not compute approximations of
the derivatives, but of the slopes of a least-squares linear fit. It is clear that these are first-
order approximations to the derivative at the center, so no further adjustment is needed
to these integration formulae through second order. However, the order of the difference
between Sn and Ẏ (Tn) is O(mn3δt) (ignoring the stochastic noise). The error thereby
introduced is of order O(H2(mn3δt/H)). In practice, whether or not an additional
correction is needed depends on the size of mn3δt/H . If it is small, the additional error
is unimportant, but if the projective step is not moderately large compared to the length
of microscopic integration used to estimate the chord slope, additional corrections to the
integration formula are needed if the integration order is higher than two.

Figures 3 and 4 compare the results of projective integration for a trajectory in
the vicinity of the periodic oscillations observed at β = 20.8, using n1δt = 0.0175,
mn3δt = 0.005, and H0 = 0.02 (H = 0.04) with an accurate integration using ODESSA.
The length of the “settle time”, n1δt, was based on the size of the fastest time constant
corresponding to an eigenvalue around -6. The projective integrator was based on the
second-order Adams-Bashforth methods. The order, as well as the projective step size,
H , were chosen via the comparisons between different order and step sizes shown in
Table 1. The values in this table were computed as follows: a point, (θA, θB, θC), in the
interior of the attractor in each of the three projected phase-plane plots (as shown in
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Projective Step size Euler AB 2nd AB 3rd AB 5th

0.02 0.00025 0.00015 0.00014 0.00017
0.04 0.00102 0.00086 0.00078 unstable
0.06 0.00205 0.00221 0.00301 unstable

Table 1: Average radial deviation from the attractor, for different time-steps and different
projective integration methods.

Fig. 4 for the θA−θB projection) was chosen. Then, the difference between the distances
from this point to the “true” limit cycle (as computed by ODESSA) and to the result of
a stochastic integration was computed at each integrated output point (or at a sampling
of them where they were densely packed). A plot of one such set of errors is shown in
Fig. 5. The norm of this error was computed over one limit cycle in each phase plane
and the average from the three projected phase planes was used as the error estimate in
Table 1.

3 Coarse Limit Cycle Computation

When we wish to compute the limit cycle from the output of a coarse time stepper, the
main challenges are the noisy nature of the trajectories given by the coarse time-stepper
and the fact that the time stepper can only be iterated forward in time.

In order to compute a limit cycle (i.e., write a fixed point algorithm that will converge
on the limit cycle), we use the Poincaré map of the trajectory. The Poincaré map is
defined by the successive intersections of the time-stepper trajectory with a codimension-
1 surface (for this 3D problem we choose conveniently a plane P (~Y )) transversal to the
flow. For the Poincaré map, a stable periodic trajectory of the original flow becomes an
attracting fixed point.

Assuming that P is defined by {~Y ∈ Rn : Yj = C} for the j − th variable, a
crossing of the Poincaré plane can be detected when the quantity (C − Yj) changes sign
[12]. One is only interested in crossings of the surface by the trajectory in the same

direction. For noisy systems, care needs to be taken to avoid the detection of false
crossings. Uncertainty in any state variable renders the computation of sign changes
on such variables unreliable. However, in the presence of sufficient variance reduction,
we expect that the ensemble average of many stochastic realizations to be much more
reliable, and devise the following procedure to detect a crossing of the Poincaré surface:

1. Monitor the difference |Yj − C| along the trajectory.

2. If |Yj − C| < δ at some time (t0), gather a fixed number of points (M, until
t = t0+M∆t) along the trajectory. With these points, approximate the trajectory
of the state variables (k = 1, 2, ..., n) via a linear mapping: Yk = akt+ bk.
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3. Assisted by this local model, confirm that a crossing has occurred. That is, Yj = C
for some t ∈ [t0, t0 +M∆t]. If this condition is not met, return to step 1.

Note that this algorithm also gives information about the direction of the crossing (the
sign of the slope of the local model for xi); thus, the relevant crossings at the Poincaré
surface (the ones having the same sign of ai) are obtained.

In the neighborhood of a simple stable periodic trajectory, the dynamics on the
Poincaré section will appear as a sequence of points approaching the fixed point. Im-
plementing a Newton-Raphson-type contraction mapping on the coarse return map, the
convergence to the fixed point of the sequence (i.e., to the periodic trajectory of the flow)
can be accelerated. This contraction map is defined as follows. Let x be the vector of
components of Y excluding Yi used to define the Poincaré section.

xk+1 = xk = −J(xk)−1(xk − xk−1)

where J is the Jacobian of the linearization of the Poincaré map (corresponding to the
monodromy matrix for the limit cycle).

The Jacobian can be estimated by applying perturbations around the current Poincaré
crossing. A “centered difference” ensemble of perturbations are used to estimate numer-
ical derivatives, which are naturally sensitive to noise. For problems with many coarse
variables, Newton-Krylov type methods based on coarse timesteppers are being explored
(such as the Recursive Projection Method of Shroff and Keller, or Newton-Picard meth-
ods [24, 17]); the sensitivity of these matrix-free methods to noise is an important focus
of current research.

3.1 Results

The kMC simulations were performed as described in Section 2 using N = (1000)2

adsorption sites and computing the average over 100 realizations for β = 20.24 1. The
deterministic (mean-field approximation) system exhibits, at these conditions, a single,
attracting periodic trajectory. Observing on a Poincaré map defined by the plane θA =
0.33 and considering only crossings with negative slope, the fixed point of the Poincaré
section is found at (θB, θc) = (0.027947, 0.61173). It is indicated with a filled square in
Fig. 6. In addition to the ubiquitous Floquet multiplier at 1, the leading multiplier is
0.72147 while the second multiplier is 2.92× 10−8. The return time is 183.89 time units.
For the selected value of β, trajectories converge very slowly on the limit cycle.

3.1.1 Converging to the Limit cycle

Note the drastic time-scale separation implied by the orders of magnitude difference of
the Floquet multipliers of the deterministic, mean field limit cycle. This suggests that

1β = 20.24 was used for the fixed-point iteration because the differential equation solution converges
very slowly to the limit cycle, thus making the problem more challenging.
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perturbations along one direction of the two-dimensional Poincaré section decay very
quickly. In order to avoid large numerical sensitivity during the Jacobian estimation,
we exploit this separation of time scales by resorting to an effectively one-dimensional
approach. In the time interval of even a single return time, we can consider that θC
at the Poincaré crossing becomes slaved to θB . This fast slaving is “embodied” in the
eigenvector of the fast (strongly stable) Floquet multiplier (we can “read” it in the
corresponding eigenvector of the linearization around the fixed point for the deterministic
– mean-field – system). The resulting line equation (see Fig. 6 all points of the NR
iteration lie on it) is:

θC = (1.0− 2.63149316θB)/1.51747895

Performing the contraction mapping computations in the remaining one dimension
converges to the coarse fixed point with an an error O(10−4), commensurate with the
expected uncertainty level from the kMC simulation. Our convergence criterion (maxi-
mum deviation) was set to 0.0001 on the coarse iteration variable θB. Our contraction
mapping converges after 4 iterations (point 0 on Fig. 6 is the initial point). The deriva-
tives of the map were estimated using three perturbations around the current point and
fitting a least-squares line (3 points); the perturbations were 0.0005, 0.0, and -0.0005 on
θB. The estimated coarse leading multiplier was 0.7274 and the coarse return time 188.19
time units; the location of the coarse fixed point is estimated to be at (0.0282, 0.6101),
all in good agreement with the mean-field approximation.

4 Reverse Projective Integration

Reverse projective integration, described in [6], is a version of projective integration in
which the inner integrator proceeds in the forward direction while the projective step is
taken in the reverse direction. It was used in [6] because of its unusual stability properties
that enabled us to find certain classes of stationary points. Here we use it to integrate
backward in time when the microscopic system can only be evolved forward in time,
either because of its nature or because it is defined by a legacy code which cannot easily
be modified.

Reverse integration is illustrated in Fig. 7 with a linear projective step. In [6] it was
shown that reverse projective integration damps components corresponding to large neg-
ative eigenvalues - components that would be unstable in normal reverse integration were
the latter possible. The reverse projective step causes the method to also be damping
for components corresponding to small positive eigenvalues since these decay in reverse
time. Thus reverse projective integration allows us to approach stationary points that
are stable or unstable (including saddle points), provided that the local eigenvalues in
the negative half plane have large negative real parts while any in the positive half plane
have small real parts.
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When the microscopic model is stochastic, it is usually inherently uni-directional in
time. For example, a random walk will give rise to effective diffusion, even if the sign of
all movements (and thus, time) was reversed. This has been exploited in [13] to guide
molecular dynamics simulations backwards on a free energy surface, and in the location
of transition states. Here, we will combine a stochastic microscopic model with a reverse
projective integrator to approach, backward in time, a stationary saddle point of a KMC
model.

Note that many types of fixed points can be located performing contraction map-
pings “wrapped around” the coarse timestepper (e.g. the Shroff and Keller RPM [24]).
That procedure, however, requires a good initial condition. Reverse integration gives
approximations to backward in time trajectories that will be attracted (in reverse time)
to these forwardly unstable points.

To illustrate this method we first use a further simplification of eq. (1) to a single
ODE that has an unstable stationary point (its sole eigenvalue is positive). It is given
in [18] as

dθ

dt
= α(1− θ)− γθ − kr(1− θ)2θ (2)

where now, α = 1.0, and γ = 0.01. In this case, eq. (2) can be integrated in reverse time
to find the unstable stationary point. Reverse projective integration can also be used to
find that stationary point. Fig. 8 shows the comparison between the reverse determinis-
tic and reverse projective-stochastic integrations for a particular initial condition. The
parameter kr was set to 5. The trajectories (starting at time=0.0) approach the unstable
fixed point at θ = 0.7357 whose eigenvalue is about 0.58. The deterministic trajectory
was obtained from ODESSA [15] with a reporting horizon of -0.02 units and a tolerance
of 1 × 10−9. The reverse projective method used the stochastic code forward for 0.02
units of time and then the Adams-Bashforth second-order formula, as described above,
with a time step of -0.12 time units. As before, we used for this example 106 adsorption
sites and the results are averaged over 100 simultaneous realizations.

Figure 9 shows similar integrations for the “full” version, eq. (1). The parameter
β is set to 20.8. The reverse trajectories approach a saddle stationary point in reverse
time. The eigenvalues of the linearization of the flow along the deterministic trajectory
are presented in Fig. 10(a) and (b). In this case, the deterministic trajectory was also
calculated using reverse projective integration with ODESSA as the inner integrator in
the forward direction. (This was necessary because of the saddle nature of the stationary
point, meaning that direct reverse integration would be unstable and explode backward
in time.) ODESSA was used to integrate for one unit of time in the forward direction
and then a projective Adams-Bashforth step was used in the reverse direction for two
units of time. We confirmed, by starting at the “end” of the reverse trajectory, and
using ODESSA normally forward in time, that the reverse projective trajectory was
indeed traced by the code in forward time Fig. 12. The projective stochastic solution
was calculated with the same steps, but the forward evolution was carried out with the
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stochastic code. Significant numerical noise arises along the stochastic trajectory. This
noise can be partially explained by studying the linearization of the vectorfield (computed
or estimated) along the trajectory and in particular the eigenvalues closer to zero. A
small perturbation along the trajectory is amplified by the factors plotted in Fig. 10(c)
(these are eλδt for the largest λ, where δt is the total reverse integration time step). Even
when such perturbations (that are a natural part of the stochastic simulation results)
are not amplified, they decay very slowly. The choice of time-step is critical, as we need
to use a relatively long forward “inner” integration to damp the stiff eigencomponents
which would otherwise blow up the backward trajectory. Fig. 9(b) and (c) shows that the
deterministic and the stochastic reverse projective trajectories are similar when plotted
in phase-space.

Figure 11 shows the same results when the reverse trajectory is initiated closer to the
saddle point, beyond the region where perturbations are amplified (at the point of the
deterministic trajectory of Fig. 9 where time=-180 s). The agreement is better, although
still not noise-free. The important point is that the reverse trajectory asymptotically
tends to the saddle point.

5 Conclusion

We have demonstrated the use of projective integration techniques for simulating the
coarse dynamic behavior of models described by microscopic models. In this paper,
the “inner” microscopic model was a kinetic Monte Carlo simulation of surface reaction
schemes based on the Stochastic Simulation Algorithm of Gillespie. It is worth noting
more recent work by Gillespie on the so-called “tau-leaping” method, which can be used
under some circumstances to accelerate stochastic simulation algorithms (SSAs) [11].
Our coarse projective integration schemes are computational “wrappers” around “inner
evolution” schemes; as such, they can be wrapped around a “tau-leaping” inner SSA.
Implicit versions of coarse projective integrators have been introduced in [5]; studying the
analogies and differences between these methods and the “implicit tau-leaping” schemes
of Rathinam et al. [22] is a subject of current research.

Beyond the illustration of coarse projective integration in a kinetic Monte Carlo con-
text, the focus of this paper was in the use of such schemes to perform tasks beyond
direct simulation. Reverse coarse projective integration was demonstrated; its ability,
under certain circumstances, to approach unstable, saddle-like objects in coarse phase
space may prove helpful in the location of transition states in computational chemistry
(see the coarse MD example in [13]). We also illustrated the use of projective integra-
tion in the solution of coarse boundary value problems, in particular the location and
computer-assisted stability analysis of coarse limit cycles for the expected behavior of
the microscopic simulator.

Remarkably, these algorithms have counterparts in the case of continuum numerical
analysis also; these counterparts are particularly meaningful in the context of accel-
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erating legacy simulators for continuum problems (see for example the stability anal-
ysis in [5] and [6]). They also constitute the inspiration for further algorithms, like
telescopic projective integrators [5] for problems with several gaps in their eigenvalue
spectrum, as well as coarse Langevin-based acceleration techniques for problems whose
dynamics are governed by rare events. The extraction of macroscopic dynamics from
microscopic/stochastic simulators constitutes the current frontier in multiscale/complex
system computation [8]. Equation-free techniques, based on coarse time-stepping, aim
at solving these macroscopic equations without ever deriving them in closed form; as
such, techniques like the coarse projective integration illustrated here constitute a bridge
between traditional continuum numerical analysis and detailed physical modeling of com-
plex systems.
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Fellowships (RRM). Discussions with Profs. Li Ju, P. G. Kevrekidis, L. Petzold and Dr.
G. Hummer are gratefully acknowledged.

12



References

[1] Chorin, A. J., Kast, A. and Kupferman, R., Optimal prediction of underresolved
dynamics, Proc. Nat. Acad. Sci. USA, 95:4094-4098 (1998).

[2] Chorin, A. J., Hald, O. H. and Kupferman, R., Optimal prediction and the
Mori-Zwanzig representation of irreversible processes, Proc. Nat. Acad. Sci. USA,
97:2968-2973 (2000).

[3] Constantin, P., Foias, C., Nicolaenko, B. and Temam, R., Integral Manifolds and

Inertial Manifolds for Dissipative Partial Differential Equations, Springer Verlag,
NY (1988).

[4] Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice Hall, Englewood Cliffs, NJ, 1971.

[5] Gear, C. W. and Kevrekidis, I. G, Projective Methods for Stiff Differential Equa-
tions: Problems with gaps in their eigenvalue spectrum, SIAM J. Sci. Comput.,
24:1091–1106 (2003).

[6] Gear, C. W. and Kevrekidis, I. G, Computing Stationary Points of Unstable Stiff
Systems, unpublished. Can be obtained at nlin.CD/0302055 at arXiv.org.

[7] Gear, C. W., Kevrekidis, I. G and Theodoropoulos, C., “Coarse” integra-
tion/bifurcation analysis via microscopic simulators: Micro-Galerkin methods,
Comput. Chem. Eng., 26:941–963 (2002).

[8] Givon, D., Kupferman, R. and Stuart, A., Extracting Macroscopic Dynamics: model
problems and algorithms. University of Warwick, Preprint 11/2003.

[9] Gillespie, D.T., General method for numerically simulating stochastic time evolution
of coupled chemical-reactions, J. Comput. Phys., 22:403–434 (1976).

[10] Gillespie, D.T., Exact stochastic simulation of coupled chemical reactions, J. Phys.
Chem., 81:2340–2361 (1977).

[11] Gillespie, D.T., Approximate accelerated stochastic simulation of chemically react-
ing systems, J. Chem. Chem., 115:1716–1733 (2001).

[12] Hénon, M., On the numerical computation of Poincaré maps, Physica D, 5:412-414
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Figure 1: Schematic of the coarse chord slope computation.

Figure 2: Schematic of first-order coarse projective integration.
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Figure 3: An illustration of forward coarse projective integration. Periodic trajectory of
the model system computed using the mean-field equations (solid line), and the kMC
simulator (dashed line). A second-order Adams-Bashforth integrator was used to com-
pute the kMC trajectory with n1δt = 0.0175, mn3δt = 0.005, and H0 = 0.02 (H = 0.04)
for the projective algorithm. For this example β = 20.8, other parameters of the model
were set as indicated in the text.
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Figure 4: Attractor comparison in the θA − θB projection for the results presented in
Fig. 3.
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Figure 5: Local errors (angle parametrization, around the point (0.22,0.07,0.7)) for the
θA−θB phase plane projection of the attractor. Results of several integrator orders using
the example illustrated in Fig. 3 are presented.
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Figure 6: Fixed point iteration and convergence to the coarse limit cycle with β = 20.24.
The initial point is marked 0, remaining points are given by a coarse Newton-type iter-
ation formula.
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Figure 7: Schematic of reverse coarse projective integration.
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Figure 8: Backward projective integration for the simplified model. The trajectory
approaches an unstable fixed point.
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Figure 9: Backward integration for the full model with β = 20.8. (a) Time-series of θA
evolution, (b) and (c) Projections of the trajectory in phase-space. The parameters of
the projective integrator, and other parameters of the model, are described in the text.
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Figure 10: Backward integration for the full model. (a) and (b) eigenvalues along the
trajectory. (c) amplification factor for perturbations at various locations along the tra-
jectory.
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Figure 11: Backward integration for the full model. (a) Time-series of θA evolution, (b)
and (c) Projections of the trajectory in phase-space.
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Figure 12: Comparison of backward and forward integration for the example in Fig. 9.
The forward integration trajectory (dashed line) was obtained by using, as a starting
point, the final point of the backward integration.
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