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Abstract

We consider a large N limit of the Hitchin type integrable systems. The first system
is the elliptic rotator on GLN that corresponds to the Higgs bundle of degree one over an
elliptic curve with a marked point. This system is gauge equivalent to the N -body elliptic
Calogero-Moser system, that is derived from the Higgs bundle of degree zero over the same
curve. The large N limit of the former system is the integrable rotator on the group of
the non-commutative torus. Its classical limit leads to the integrable modification of 2d
hydrodynamics on the two-dimensional torus. We also consider the elliptic Calogero-Moser
system on the group of the non-commutative torus and consider the systems that arise after
the reduction to the loop group.
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1 Introduction

In this paper we analyze two related integrable models - a modified integrable two-dimensional
hydrodynamics on a torus and the large N limit of the elliptic Calogero-Moser system (ECMS)
with spin. The former system is also the large N limit of the integrable GL(N,C) elliptic rotator
(ER) proposed in Ref. [1]. Integrable models are among the main scientific interests of Sergey
Novikov and his contribution to this subject is widely recognized.

It was established in Ref. [2] that for finite N ECMS is gauged equivalent to ER. The both
systems are particular examples of the Hitchin construction [3, 5, 4]. Namely, they are derived
from the Higgs bundles of rank N over an elliptic curve. The corresponding bundle for ECMS
has degree zero while the bundle corresponding to ER has degree one. The gauge equivalence
is determined by the upper modification that transforms the trivial bundle into the bundle of
degree one.

We analyze the both systems in a similar way trying to establish the structures that were al-
ready known for the open finite-dimensional Toda chain. Namely, for the open finite-dimensional
Toda chain there exists a limit to the infinite chain [6], reduction of the infinite chain to the
periodic, and the dispersionless version of the infinite chain [7, 8].

Here we consider a special limit N → ∞ that corresponds to the passage from GL(N,C)
to the infinite-dimensional group of the non-commutative torus (NCT). We consider first ER 1.
This system is an example of the integrable Euler-Arnold tops (EAT) on the group SL(N,C).
EAT are Hamiltonian systems defined on coadjoint orbits of groups [10]. Particular examples
of such systems are the Euler top on SO(3), its integrable SO(N) generalization [11, 12] and
the hydrodynamics of the ideal incompressible fluid on a space M . The corresponding group
of the latter system is SDiff(M). We consider here the case when M is a torus T 2. EAT are
completely determined by their Hamiltonians, since the Poisson structure is fixed to be related
to the Kirillov-Kostant form on the coadjoint orbits. The Hamiltonians are determined by the
inertia-tensor operator J mapping the Lie algebra g to the Lie coalgebra g∗. Special choices of J
lead to completely integrable systems (see review [13]). In the case of the 2d hydrodynamics J
has the form of the Laplace operator and it turns out that the theory is non-integrable [14]. One
of the goals of this paper are integrable EAT related to SDiff. Some integrable models related
to SDiff were considered in [8, 15, 16].

Integrable models on SDiff(M) can be described as the classical limit (dispersionless limit) of
integrable models when the commutators in the Lax equations are replaced by Poisson brackets.
This approach was proposed in Ref. [17, 18], and later developed in numerous publications (see,
for example, the review [19]).

Here we use the same strategy defining an integrable system on the non-commutative torus
(NCT) and then taking the classical limit to SDiff(T 2). In analogy with ER on GL(N,C) we
consider a special limit N → ∞ of GL(N,C) that leads to the group Gθ of the NCT, where θ is
the non-commutative parameter. 2 The Hamiltonian is defined by the inertia-tensor operators
depending on the module τ, Imτ > 0 of an elliptic curve. This curve is the basic spectral curve
in the Hitchin description of the model. The group Gθ is defined as the set of invertible elements

1This part is an extended version of the talk [9].
2For Manakov’s top limN → ∞ was considered in Ref.[20].
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of the NCT algebra Aθ. It can be embedded in GL(∞) and in this way Gθ can be described
as a special limit of GL(N,C). We define a family of EAT on Gθ parameterized by τ . Then,
we construct the Lax operator with the spectral parameter on an elliptic curve with the same
parameter τ .

In the classical limit θ → 0, Gθ →SDiff(T 2) and the inertia-tensor operator J takes the form
∂̄2. The conservation laws survive in this limit while commutators in the Lax hierarchy become
the Poisson brackets. It turns out that the classical limit is essentially the same as the rational
limit of the basic elliptic curve, so that the product of the Planck constant θ and the half periods
of the basic curve are constant.

We also construct ECMS system related to NCT. In both cases of we discuss the systems
that arise after the reduction to the loop algebra L̂(GL(N,C)).

2 The Lie algebra of the non-commutative torus

Here we reproduce some basic results about NCT and related to it the Lie algebra sinθ [21].
1. Non-commutative torus.
NCT Aθ is an unital algebra with two generators (U1, U2) that satisfy the relation

U1U2 = e(−θ)U2U1, e(θ) = e2πiθ, θ ∈ [0, 1) . (2.1)

Elements of Aθ are the double sums

Aθ = {x =
∑

m,n∈Z
am,nU

m
1 U

n
2 , am,n ∈ C} ,

where am,n are elements of the ring S of the rapidly decreasing sequences on Z2

S = {am,n | supm,n∈Z(1 +m2 + n2)k|am,n|2 <∞, for all k ∈ N} . (2.2)

The trace functional tr(x) on Aθ is defined as

tr(x) = a00 . (2.3)

The dual space to S is

S′ = {sk,j |
∑

m+j=0, n+k=0

am,nskj <∞, am,n ∈ S} . (2.4)

The associative algebra Aθ can be regarded as the quantization of the commutative algebra
of smooth functions on the two-dimensional torus

T 2 = {R2/Z⊕ Z} ∼ {0 < x ≤ 1, 0 < y ≤ 1}. (2.5)

by means of the identification
U1 → e(x), U2 → e(y), (2.6)

where the multiplication of functions on T 2 is the Moyal multiplication:

(f ∗ g)(x, y) := fg +

∞∑

n=1

(πθ)n

n!
εr1,s1 . . . εrn,sn(∂

n
r1...rn

f)(∂ns1...sng). (2.7)
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The trace functional (2.3) in the Moyal identification is the integral

trf =

∫

Aθ

fdxdy = f00 . (2.8)

Another representation of Aθ is defined by the operators, that act on the space of Schwartz
functions on R

U1 → e(−2πθ∂ϕ), U2 → exp(iϕ) . (2.9)

Finally, we can identify U1, U2 with matrices from GL(∞). We define GL(∞) as the asso-
ciative algebra of infinite matrices ajkEjk such that

supj,k∈Z|ajk|2|j − k|n <∞ for all n ∈ N .

Consider the following two matrices from GL(∞)

Q = diag(e(jθ)), Λ = Ej,j+1, j ∈ Z .

We have the following identification

U1 → Q, U2 → Λ . (2.10)

2. sin-algebra
Define the following quadratic combinations of the generators

Tm,n =
i

2πθ
e
(mn

2
θ
)
Um
1 U

n
2 . (2.11)

Their commutator has the form of the sin-algebra [21]

[Tm,n, Tm′n′ ] =
1

πθ
sinπθ(mn′ −m′n)Tm+m′,n+n′ . (2.12)

We denote by sinθ the Lie algebra with the generators Tm,n over the ring S (2.2)

ψ =
∑

m,n

ψm,nTm,n, ψm,n ∈ S , (2.13)

and by Gθ the group of invertible elements from Aθ. The coalgebra sin∗θ is the linear space

sin∗θ = {S =
∑

jk

sjkTjk, sjk ∈ S′} .

In the Moyal representation (2.7) the commutator of sinθ has the form

[f(x, y), g(x, y)] = {f, g}∗ :=
1

θ
(f ∗ g − g ∗ f) . (2.14)

The algebra sinθ has a central extension ŝinθ. The corresponding additional term in (2.12)
has the form of the star-brackets

(am+ bn)δm,−m′δn,−n′ , a, b ∈ C . (2.15)
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In other words, the commutator in ŝinθ takes the form

[f, g] = {f, g}∗ + c
1

4π2

∫

Aθ

f(a∂xg + b∂yg) .

3. Loop algebra L̂(sl(N,C)).
Let θ be a rational number θ = p/N , where p,N ∈ N are mutually prime. In this case Aθ

has the ideal
IN = {

∑
c(l)m,n(U

m
1 U

n
2 − Um+Nl

1 Un
2 ) = 0 , l = 1, N} .

The factor-algebra Aθ/IN can be represented by embedding in GL(∞). Represent an arbitrary
element of GL∞ as

ψm.ne(
mn

N
)Um

1 U
n
2 .

In the factor-algebra one has ψNs+k,n = ψk,n. Then any element from Aθ/IN takes the form

∑

l∈Z
a
(l)
j,rEj,j+Nl+r , j = 1, N , r = −N + 1, N − 1 ,

where a
(l)
j,r =

∑N
k=1 ψk,Nl+re(

kj
N
). We put in correspondence the current from L(sl(N,C))

g(t) =
∑

l∈Z
g
(l)
j,rEj,j+rt

Nl+r .

After the gauge transform by diag(1, t, . . . , tN−1) we kill the factor tr and then by replacing
w = tN we come to the loop algebra with the principle gradation

g(w) =
∑

l∈Z
g(l)wl .

The central extension
∮
Tr(g1(w)∂wg2(w)

dw
w

is proportional to the cocycle (2.15) for a = 0,
b = 1. Here Tr is the trace in the fundamental representation of sl(N,C).

3 2d-hydrodynamics on Aθ

1. 2-d hydrodynamics
Let v = (Vx, Vy) be the velocity of the ideal incompressible fluid on a compact manifold M

(dim(M) = 2, divv = 0) and curlv = ∂xVy − ∂yVx be its vorticity. 3 The Euler equation for 2d
hydrodynamics takes the form [10]

∂tcurlv = curl[v, curlv] . (3.1)

Define the stream function ψ(x, y) as the Hamiltonian function generating the vector field v

ivdx ∧ dy = dψ .

In other words
Vx = ∂yψ , Vy = −∂xψ . (3.2)

3For simplicity we assume that the measure on M is dx ∧ dy, though all expressions can be written in a
covariant way.
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Let g be the Poisson algebra of the stream functions g = {ψ} on M defined up to constants
g ∼ C∞(M)/C

{ψv1
, ψv2

} = −iv1
dψ2. = .

Consider the Lie algebra SV ectM of vector fields divv = 0 on M . We have the following
interrelation between the Lie algebras g and SV ect(M)

ψ[v1,v2] = {ψv1
, ψv2

} ,

0 → C2 → SV ect(M) → g → 0 ,

where the map SV ect(M) → g is defined by (3.2) and the image of C2 is generated by the two
fluxes (c1∂1, c2∂2).

Let g∗ be the dual space of distributions on M . The vorticity S = curlv of the vector field v

S = −∆ψ

can be considered as an element from g∗. The Euler equation (3.1) in terms of the Poisson
brackets has the form

∂tS = {S, ψ}, or ∂tS = {S,∆−1S} . (3.3)

We can view (3.3) as the Euler-Arnold equation for the rigid top related to the Lie algebra
g, where the Laplace operator is the map

∆ : g → g∗

that plays the role of the inertia-tensor. The phase space of the system is a coadjoint orbit of
the group of the canonical transformations SDiff(M). The equation (3.3) takes the form

∂tS = ad∗∇HS , (3.4)

where ∇H = δH
δS = ψ is the variation of the Hamiltonian

H = −1

2

∫

M

S∆−1S =

∫

M

ψ∆ψ . (3.5)

There is infinite set of Casimirs defining the coadjoint orbits:

Ck =

∫

M

Sk . (3.6)

Consider a particular case, when M is a two-dimensional torus (2.5) equipped with the
measure −dxdy

4π2 . In terms of the Fourier modes sm,n of the vorticity

S =
∑

m,n

sm,ne(−mx− ny)

the Hamiltonian (3.5) is

H = −1

2

∑

m,n

1

m2 + n2
sm,ns−m,−n , (3.7)

and we come to the equation

∂tsm,n =
∑

j,k

jn− km

j2 + k2
sjksm−j,n−k . (3.8)
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2. 2d hydrodynamics on non-commutative torus.
We can consider the similar construction by replacing the Poisson brackets by the Moyal

brackets (2.14) [22, 23]. Introduce the vorticity S as an element of sin∗θ

S =
∑

m,n

sm,nT−m,−n. (3.9)

The equation (3.3) takes the form

∂tS(x, y) = {S(x, y),∆−1S(x, y)}∗ ,

or for the Fourier modes

∂tsm,n =
1

8π3θ

∑

j,k

sin(πθ(jn − km))

j2 + k2
sj,ksm−j,n−k . (3.10)

This system is EAT on the group Gθ of invertible elements of Aθ and the coadjoint orbits are
defined by the same Casimirs (3.6) as for SDiff(T 2). In the limit θ → 0 (3.10) reproduces (3.8).

4 SL(N,C)-elliptic rotator

1. Elliptic rotator (ER) on SL(N,C)
Now we consider differential equations related to SL(N,C) apriori not coming from the

hydrodynamics. The elliptic SL(N,C)-rotator is an example of EAT [10]. It is defined on
sl(N,C)∗ and its phase space is a coadjoint orbit of SL(N,C):

Rrot = {S ∈ sl(N,C), S = g−1S(0)g} . (4.1)

The phase space Rrot is equipped with the Kirillov-Kostant symplectic form

ωrot = tr(S(0)Dgg−1 ∧Dgg−1) . (4.2)

The Hamiltonian has the form

Hrot = −1

2
Tr(SJ(S)) , (4.3)

where J is a linear operator on sl(N,C). The inverse operator is called the inertia tensor. The
equation of motion takes the form

∂tS = [S, J(S)]. (4.4)

A special form of J provides the integrability of the system [1, 2]. Represent S in the form

S = −4π2

N3

∑

m,n

Sm,nT−m,−n ,

where Tm,n is the basis of sl(N,C), similar to the basis of the sin-algebra (2.11)

Tm,n =
iN

2π
e(
mn

N
)Qm

NΛn
N ,

(m,n) ∈ Z̃
(2)
N = {(Z/NZ ⊕ Z/NZ) \ (0, 0)} .
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Here ΛN , QN are defined by (A.7). Let

J(S) =
∑

m,n∈Z
Jm,nSm,nT−m,−n ,

where

J = {Jm,n} =

{
℘

[
m
n

]}
, ℘

[
m
n

]
= ℘

(
m+ nτ

N
; τ

)
. (4.5)

Then (4.4) takes the form

∂tSm,n =
∑

k,l∈Z
Sk,lSm−k,n−l℘

[
k
l

]
sin
( π
N

(ml − kn)
)
. (4.6)

It was observed in Ref. [5] that ER is a Hitchin system corresponding to the vector bundle
E of rank N and degree one over the elliptic curve Eτ with the marked point z = 0. To prove
this fact we first demonstrate that (4.6) is equivalent to the Lax equation

∂tL
rot(z) = [Lrot(z),M rot(z)] ,

and then show that Lrot(z) is the Higgs field in corresponding bundle (see Appendix A). The
Lax matrices in the basis Tm,n of gl(N,C) are represented as

Lrot =
∑

m,n∈Z
Sm,nϕ

[
m
n

]
(z)Tm,n, ϕ

[
m
n

]
(z) = e(

nz

N
)φ(

m+ nτ

N
; z) , (4.7)

M rot = −
∑

m,n∈Z
Sm,nf

[
m
n

]
(z)Tm,n, f

[
m
n

]
(z) = e(

nz

N
)∂uφ(u; z)|u=m+nτ

N
. (4.8)

They lead to the Lax equation for the matrix elements

∂tSm,nϕ

[
m
n

]
(z) =

∑

k,l∈Z
Sm−k,n−lSklϕ

[
m− k
n− l

]
(z)f

[
k
l

]
(z) sin

π

N
(nk −ml) .

Using the Calogero functional equation (B.14) we rewrite it in the form (4.6).
The phase space Rrot (4.1) is the result of the Hamiltonian reduction of the GLN Higgs

bundle of degree one. In this case there is no moduli degrees of freedom except the Jacobian of
the determinant bundle (A.4). In fact, the determinant bundle coincides with the theta-bundle
and therefore has degree one. It implies that the gauge fixing is complete and the reduced phase
space is the orbit O (see (A.9)). In the symplectic form (A.10) survives only the last term that
coincides with (4.2). For a generic orbit dimR(1) = N(N − 1). The transition functions can be
chosen in the form (A.6). The transition functions (A.6) allow us to define the Lax operator
depending only on the orbit variables. It can be checked directly that the Lax operator (4.7) is
a meromorphic gl(N,C)-valued one form on Eτ

ResLrot|z=0 = S ,

that satisfies the quasi-periodicity conditions with the transition functions (A.7)

Lrot(z)−QNL
rot(z + 1)Q−1

N = 0 , Lrot(z)− ΛNL
rot(z + τ)Λ−1

N = 0 .

8



It follows from the general prescription that we have N(N−1)
2 independent integrals of motion

(A.20). In particular,
1

2
tr(Lrot(z))2 = − iπ

N
Hrot + trS2℘(z) .

The equations of motion, corresponding to the higher integrals has the Lax form (A.19).
The properties of Ms,j(z) can be read of from the equation of motion (A.17) restricted to Rred

Ms,j(z)−QNMs,j(z + 1)Q−1
N = 0 .

For s = 0 we have
M0,j(z)− ΛNM0,j(z + τ)Λ−1

N = 2πi(L)j−1(z) . (4.9)

If s 6= 0 then Ms,j(z) is quasi-periodic

Ms,j(z)− ΛNMs,j(z + τ)Λ−1
N = 0 ,

and its singular part is defined by the singular part of Lj−1
N zs

(Ms,j(z))− =
(
Lj−1
N zs

)
−
. (4.10)

5 Elliptic rotator on Aθ

1. Description of the system.
It follows from (2.10) that the non-commutative torus Aθ corresponds to a special limit

N → ∞ of the SL(N,C). Consider ER related to the group of NCT Gθ and assume that θ is
a irrational number. We replace the inverse inertia-tensor ∆−1 of the hydrodynamics on the
operator J : S → ψ acting in a diagonal way on the Fourier coefficients (3.9):

J : sm,n → ·sm,n = ψm,n , (s00 = 0) , ℘

[
m
n

]
= ℘ ((m+ nτ)θ; τ) . (5.1)

We consider EAT on the group Gθ with the inertia-tensor defined by J−1 (5.1). The corre-
sponding coadjoint orbit is

OS0 = {S ∈ sin∗θ | S = h−1S0h, h ∈ Gθ, S0 ∈ sin∗θ} (5.2)

equipped with the Kirillov-Kostant symplectic form

ωθ =

∫

Aθ

S0Dhh−1 ∧Dhh−1 .

The Poisson structure on the coalgebra sin∗θ is defined by the Moyal brackets

{S,S ′} = {S,S ′}∗ .

Let
S = −4π2θ3

∑

m,n∈Z
sm,nT−m,−n ∈ sin∗θ , (s0,0 = 0) ,

and

J(S) =
∑

m,n∈Z
s−m,−n℘

[
m
n

]
Tm,n ∈ sinθ .
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The Hamiltonian is determined by the integral over Aθ (2.8)

Hθ = −1

2

∫

Aθ

SJ(S) = −1

2

∑

m,n∈Z
℘

[
m
n

]
sm,ns−m,−n . (5.3)

We define the phase space below assuming now that the Hamiltonian Hθ is finite. The equation
of motion has the standard form of the Moyal brackets, or the commutator in GL(∞)

∂tS = {S,J(S)}∗ = [S,J(S)] . (5.4)

In the Fourier components it takes the form

∂tsm,n =
1

πθ

∑

j,k∈Z
sjksm−j,n−k × ℘

[
j
k

]
sin (πθ(jn− km)) . (5.5)

2. Integrability of elliptic rotator on Aθ .
We will prove that the Hamiltonian system of ER (5.4), (5.5) has an infinite set of involutive

integrals of motion in addition to the Casimirs (3.6). It will follow from the Lax form

∂tLθ = [Lθ,Mθ] (5.6)

of the equations (5.4), (5.5). The Lax operators are similar to the corresponding Lax matrices
for the elliptic rotator (4.7), (4.8)

Lθ =
∑

mn∈Z
sm,nϕ

[
m
n

]
(z)Tm,n , Mθ = −

∑

mn∈Z
sm,nf

[
m
n

]
(z)Tm,n , (5.7)

where

ϕ

[
m
n

]
(z) = e(nθz)φ((m+ nτ)θ, z) , (5.8)

f

[
m
n

]
(z) = e(nθz)∂uφ(u, z)|u=(m+nτ)θ , (5.9)

and φ(u, z) is defined in (B.8). The equivalence of (5.6) and (5.5) follows from the Calogero
functional equation (B.14).

Consider the holomorphic vector bundle E of infinite rank over Eτ with the structure group
Gθ. We assume that it is similar to the GL(N,C) bundle of degree one (see Appendix A), where
GL(N,C) is replaced by Gθ. It means that the transition functions gα, α = 1, 2 have the form

g1 = Q , g2 = Λ̃ = e((−1

2
τ + z)θ)Λ .

The Higgs bundle is (T ∗E, OS0), where the coadjoint orbit OS0 is defined by (5.2). The cotan-
gent bundle T ∗E is described by the Higgs field Φ = f−1(z)Lθf(z). The Lax operator Lθ

satisfies the moment constraint equation

∂̄Lθ = 0, ResLθ|z=0 = S , (5.10)

Lθ(z + 1) = QLθ(z)Q
−1 , Lθ(z + τ) = ΛLθ(z)Λ

−1 . (5.11)
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The reduced phase space is described by solutions of (5.10), (5.11) such that

Is,j =

∫

Eτ

∫

Aθ

(Lθ)
jµs,j <∞ , (s ≤ j, j ∈ N) , (5.12)

and µs,j are defined by (A.14) and (B.22). The integrals Iers,j can be extracted from the expansion
over the basis of the elliptic functions (B.20)

∫

Aθ

(Lθ)
j(z) = I0,j +

j∑

r=2

Ir,j℘
(r−2)(z), (j = 2, . . .) .

In particular, ∫

Aθ

(Lθ)
2(z) = I0,2 + ℘(z)

∫

Aθ

S2 , I0,2 = 2π2θ2Hθ .

Note that

Ij,j ∼ Cj =

∫

Aθ

Sj

are the Casimirs (3.6).
Consider, for example, the integrals, that have the third order in the field S. It follows from

(B.18) that in terms of the Fourier modes S = {sm,n} the integrals take the form

I2,3 =
∑

∑
mj=

∑
nj=0

3∏

j=1

smjnj

(
ζ

[
m1

n1

]
+ ζ

[
m2

n2

]
+ ζ

[
m3

n3

])
, (5.13)

(ζ

[
m
n

]
= ζ((m+ nτ)θ; τ)) ,

I0,3 =
∑

∑
mj=

∑
nj=0

3∏

j=1

smjnj
× (5.14)

×
(
−1

2
℘′
[
m3

n3

]
− ℘

[
m3

n3

]
[ζ

[
m1

n1

]
+ ζ

[
m2

n2

]
+ ζ

[
m3

n3

]
]

)
.

The functionals (5.12) play the role of Hamiltonians for the infinite hierarchy on the phase
space OS0 (5.2)

∂s,jS = {∇Is,j,S}∗ (∂s,j = ∂ts,j , ∇Iers,j =
δIers,j
δS ) . (5.15)

It contains (5.4), (5.5) for I0,2.

3. Classical limit.
In the classical limit S becomes a function on T 2

S =
∑

m,n∈Z
sm,n exp(2πi(−mx− ny)) .

In our case the classical limit essentially is the same as the rational limit of the basic spectral
curve Eτ . Replace for a moment the half periods (12 ,

τ
2 ) of Eτ on ω1, ω2. The rational limit

means that ω1, ω2 → ∞. The Weierstrass function degenerates as

℘(u) → 1

u2
.
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Consider the double limit θ → 0, ω1, ω2 → ∞ such that limω1θ = 1, limω2θ = τ . Then

℘

[
m
n

]
→ 1

(m+ nτ)2
.

The quadratic Hamiltonian in the double limit takes the form

H = −1

2

∫

Aθ

ψ(∂̄)2ψ = −1

2

∑

m,n∈Z

sm,nsm,n

(m+ nτ)2
, (5.16)

where ∂̄ = 1
2πi(∂x + τ∂y). The operator ∂̄2 plays the role of the inertia-tensor. It replaces the

Laplace operator ∆ ∼ ∂∂̄ of the standard hydrodynamics. We call this system the modified
hydrodynamics.

In the classical limit the Lax equation assumes the form

∂tL(x1, x2; z) = {L(x1, x2; z),M(x1, x2)} ,

where

L(x, y; z) = ∂̄−1S(x, y) + 1

z
S(x, y) , (5.17)

and
M(x, y) = −∂̄−2S(x, y) . (5.18)

The integrals of motion (5.12) survive in this limit. We already pointed the form of the
Hamiltonian H (5.16). The third order integrals take the forms

I2,3 =
∑

∑
mj=

∑
nj=0

3∏

j=1

sm,jnj

∑

j

1

mj + njτ
,

I0,3 =
∑

∑
mj=

∑
nj=0

3∏

j=1

smj ,nj
×

(
− 1

(m3 + n3τ)3
− 1

(m3 + n3τ)2
[

1

m1 + n1τ
+

1

m2 + n2τ
+

1

m3 + n3τ
]

)
.

4. Reduction to the loop algebra
Let θ be a rational number θ = p/N . As it was explained in Section 2.3 we can pass to the

factor-algebra L(gl(N,C)) or its central extension L̂(gl(N,C)). In the first case we have a family
of non-interacting ER parameterized by w ∈ S1. If the central charge nonzero the situation is
drastically changed [2, 27]. The Lax operator is no longer a one-form, but a connection on S1

∂w + L(z, w) , (w ∈ S1) . (5.19)

The integrals of motion can be calculated from the expansion of the trace of the monodromy
matrix for the linear system

(∂w + L(z, w))Ψ(z, w) = 0 .

They define the hierarchy of the ER on the coadjoint orbits of L̂(GL(N,C)). For N = 2 this
top is just the Landau-Lifshitz equation

∂tS =
1

2
[S, J(S)] + 1

2
[S, ∂wwS]. (5.20)

Here S ∈ L∗(sl(2,C)).
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6 Elliptic Calogero-Moser system on Aθ

1. SL(N,C)-Elliptic Calogero-Moser system (CMN )
The elliptic CMN system was first introduced in the quantum version [24] and then in

the classical [25]. We consider its generalization - CMN system with spin. The elliptic CMN

corresponds to the trivial Higgs bundle over the elliptic curve Eτ [26]. Its phase space is

RCMN = {C2N , Õ} , (6.1)

where Õ = O//D is the symplectic quotient of the coadjoint orbit of SL(N,C)

O = {p ∈ sl(N,C) | p = h−1p0h, h ∈ SL(N,C) , p0 ∈ D} (6.2)

with respect to the action of the diagonal subgroup D of SL(N,C). The moment constraint
imply that the diagonal matrix elements of the orbit vanish pjj = 0. The space RCMN has the
same dimension dimRred

(0) = N(N − 1) as for the elliptic rotator.
The Poisson structure has the form

{vj , uk} = δj,k , {pk,l, pj,n} = δj,lpk,n − δn,kpj,l , (6.3)

where = −→v = (v1, . . . , vN ), −→u = (u1, . . . , uN ) are canonical coordinates on C2N .
The Hamiltonian, that has the second order with respect to the momenta v, has the form

HCMN

2 =
1

2

N∑

j=1

v2j +
∑

j>k

pjkpkj℘(uj − uk; τ) . (6.4)

It describes the interaction of N particles with complex coordinates u1, . . . , uN on the elliptic
curve Eτ (B.1). The pair-wise potential is defined by the Weierstrass function. The spin degrees
of freedom pjk looks like EAT with the inertia-tensor determined by ℘(uj − uk; τ), but the
corresponding phase subspace in contrast with standard EAT is the symplectic quotient O//D.

The equation of motion with respect to HCM
2 has the Lax form ∂tL

CMN = [LCMN ,MCMN ]
with

LCMN = P +X, where P = diag(v1, . . . , vN ), Xjk = pjkφ(uj − uk, z) , (6.5)

(φ is defined by (B.8)) and

MCMN = −D + Y, where D = diag(Z1, . . . , ZN ), Yjk = y(uj − uk, z) , (6.6)

Zj =
∑

k 6=j

℘(uj − uk), y(u, z) =
∂φ(u, z)

∂u
.

The equivalence of the Lax equation and the equations of motion is based again on (B.14) and
(B.12).

We use relations from Appendix A to derive the elliptic CMN system and its Lax represen-
tation via the Hitchin construction [26]. If d =degree(Est

N ) = 0, then the transition functions gα
can be gauge transformed to the constant matrices (A.5). The Lax operator is a meromorphic
matrix-valued one-form. Its quasi-periodicity properties are defined by the transition functions
(A.5)

LCMN (z + 1) = LCMN (z) , LCMN (z + τ) = exp(−→u )LCMN (z) exp(−−→u ) .

It has a simple pole at z = 0 such that

Resz=0(L
CMN (z)) = LCMN

−1 = p ∈ Õ . (6.7)
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The integrals of motion Is,j (A.20) produce CMN hierarchy

∂s,jL
CMN = [LCMN ,MCMN

s,j ] . (6.8)

The properties of MCMN

s,j can be extracted from the equations of motion (A.17)

MCMN

s,j (z + 1) =MCMN

s,j (z) ,

MCMN

0,j (z)− exp(−→u )MCMN

0,j (z + τ) exp(−−→u ) = 2πi(LCMN )j−1 − ∂0,j−→u . (6.9)

For s 6= 0 we have

MCMN

s,j (z)− exp(−→u )MCMN

s,j (z + τ) exp(−−→u ) = −∂s,j−→u ,

and the singular part of MCMN

s,j (z) has the form

(MCMN

s,j (z))− = (LCMN (z))j−1zs)− .

In particular, I0,2 = HCM
2 and MCMN

0,2 =MCMN (6.6).
Let f(z) be the gauge transformation that diagonalaized g2. It is defined up to the con-

jugation by a constant diagonal matrix. This remnant gauge freedom is responsible for the
symplectic reduction of the orbit Õ = O//D.

2. Equilibrium configuration
We prove now that the following configuration of particles and spins is an equilibrium set

with respect to the Hamiltonian HCMN

2 (6.4). Consider N = n2 particles and the orbit variables
enumerated by the pair of integer numbers a, b = 1, . . . , n

pa,b, c,d = ν , va,b = 0 , ua,b =
a+ bτ

N
a, b = 1, n . (6.10)

From the identity

℘(Nz|τ) = 1

N2


℘(z|τ) +

N∑

j=1

(

N−1∑

k=1

℘(z +
j + kτ

N
|τ)) + ℘(z +

j

N
|τ)


 . (6.11)

one obtains
N∑

j=1

(
N−1∑

k=1

℘(
j + kτ

N
|τ)) + ℘(

j

N
|τ) = 0 . (6.12)

It follows from (B.13) and (6.11) that

℘′(
j + kτ

N
|τ) +

∑

m6=j,n 6=k

℘′(
j + kτ

N
− m+ nτ

N
|τ) = 0 . (6.13)

Then (6.13) implies that (6.10) is the equilibrium set in RCMN with respect to HCMN

2 (6.4).
Moreover, (6.12) means that the Hamiltonian (6.4) vanishes at this point

HCM
2 = 0 . (6.14)

Note, that configuration (6.10) is preserved by the action of the higher integrals Is,k.
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3. Symplectic Hecke correspondence
There exists a canonical transformation (Symplectic Hecke correspondence) that defines the

pass from CMN model related to the Higgs bundle of degree zero to ER on GL(N,C) related
to Higgs bundle of degree one [2]. It is a singular gauge transformation Ξ with a special form
of its kernel. An eigen-vector of the residue LCMN

1 (6.7) is annihilated by the kernel. Then this
gauge transform

Ler = Ξ−1LCM
2D Ξ . (6.15)

preserves the order of the pole. The matrix Ξ has the following form. Let p0 = diag(p1, . . . , pN )
be the diagonal matrix defining the coadjoint orbit (6.2) in the elliptic CMN system. Then
Ξ = Ξ(pl) depends on a choice of the eigen-value pl. Consider the following (N × N)- matrix
Ξ̃(z, u1, . . . , uN ; τ) :

Ξ̃ij(z,u; τ) = θ

[
i
N

− 1
2

N
2

]
(z −Nuj, Nτ) ,

where θ

[
a
b

]
(z, τ) is the theta function with characteristics (B.24). Then

Ξ(z,u, pl; τ) = Ξ̃(z)× diag


(−1)l

pl

∏

j<k;j,k 6=l

ϑ(uk − uj , τ)


 . (6.16)

Consider the case N = 2. The phase space has dimension two, since the orbit variables (6.2) are
gauged away. Let ν2 be the value of the Casimir of the orbit. Then the transformation takes
the form 




S1 = −v θ10(0)
ϑ′(0)

θ10(2u)
ϑ(2u) − ν

θ2
10
(0)

θ00(0)θ01(0)
θ00(2u)θ01(2u)

ϑ2(2u)
,

S2 = −v θ00(0)√
−1ϑ′(0)

θ00(2u)
ϑ(2u) − ν

θ200(0)√
−1θ10(0)θ01(0)

θ10(2u)θ01(2u)
ϑ2(2u) ,

S3 = −v θ01(0)
ϑ′(0)

θ01(2u)
ϑ(2u) − ν

θ2
01
(0)

θ00(0)θ10(0)
θ00(2u)θ10(2u)

ϑ2(2u) ,

(6.17)

where ν2 = 1
2(S

2
1 + S2

2 + S2
3).

4. Elliptic CM system on Aθ

Consider the limit N → ∞ of CMN system CM∞ corresponding to Aθ. We identify the
coordinates of infinite number of particles in Eτ with the diagonal matrix in GL∞

~u = diag(. . . , u−N , . . . , u−1, u0, u1, . . . , uN , . . .) ,

and let
~v = diag(. . . , v−N , . . . , v−1, v0, v1, . . . , vN , . . .) .

be their momenta.
The Hamiltonian of CM∞ has the form

HCM∞ =
1

2
(~v,~v) +

∑

j<k,j,k∈Z
pjkpkj℘(uj − uk; τ) , (6.18)

where the orbit elements pjk is written in the terms of the generators Ejk. In spite of the
infinite number of the particles on the torus Eτ the Hamiltonian HCM∞ remains finite around
the equilibrium configuration (6.10), (6.14).

The phase space RCM∞ of CM∞ has the similar form as in the finite-dimensional case (6.1)

RCM∞ = {C∞ ⊕C∞; Õ∞} .
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Here Õ∞ = O∞//D is the symplectic quotient of the coadjoint orbit with respect to the Cartan
subgroup D ⊂ SINθ generated by Tm,0, m ∈ Z. The coadjoint orbit O∞ ⊂ sin∗θ of SINθ ⊂
GL∞ is

O∞ = {p ∈ sin∗θ | p = h−1p0h, h ∈ SINθ} .
We assume that ~v ∈ C∞ satisfies (6.23). There are additional restrictions coming from the
finiteness of the integrals (6.33) defined below.

In terms of coordinates on gl∗∞ the Poisson brackets on are given by the similar formulae as
(6.3)

{vj , uk} = δj,k , (6.19)

{pk,l, pj,n} = δj,lpk,n − δn,kpj,l . (6.20)

We express the coordinates of the particles in terms of the coordinates on Aθ−→u =
∑

j 6=0 ũjTj,0

uj =
i

2πθ

∑

k∈Z
ũke(jkθ) , ũk ∈ S . (6.21)

Evidently, uj is represented by the convergent series. Similarly,

vj = −2πiθ2
∑

k∈Z
ṽke(jkθ) . (6.22)

where ṽk ∈ S′ (2.4) and we assume that

∑

k∈Z
(vk)

j <∞ , j = 2, 3 . . . . (6.23)

Consider the generating functions

u(x) =
i

2πθ

∑

m∈Z
ũme(x)m , (6.24)

and
v(x) = −2πiθ2

∑

m∈Z
ṽme(x)−m , (6.25)

where we identify e(x) with the generator U1. In terms of coordinates (ṽm, ũl) the Poisson
brackets takes the form

{ṽm, ũn} = δm,n , (6.26)

or
{v(x),u(x′)} = δ(x− x′) , (6.27)

where δ(x) =
∑

m∈Z e(mθx).
Define the orbit variables in the basis Tm,n:

S(x, y) = −2πiθ2
∑

m,n

e

(
mnθ

2

)
sm,ne(x)

−m ∗ e(y)−n , (U1 ∼ e(x) , U2 ∼ e(y)) . (6.28)

It follows from (2.11) that in terms of the coordinates on the NCT sm,n the orbit variables are
expanded as

pj,j+n = −2πiθ2
∑

m∈Z
e
(
mθ(

n

2
− j)

)
sm,n . (6.29)
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Since pj,j = 0, sm,0 = 0 and S(x, 0) ≡ 0. The brackets (6.20) takes the form

{sm,n, sm′,n′} =
1

πθ
sin(πθ(mn′ −m′n))sm+m′,n+n′ . (6.30)

The Hamiltonian (6.18) can be rewritten in terms of the NCT variables. Using (6.21) and
(6.24) we find

℘(uj − uj+n; τ) = ℘(u(θj)− u(θ(j + n)); τ) .

Similarly to (6.29) we define the coefficients rm,n as

℘(u(θj)− u(θ(j + n))) =
∑

m∈Z
e
(
mθ(

n

2
− j)

)
rm,n .

and the corresponding function on Aθ

P(x, y) =
∑

m,n

e

(
mnθ

2

)
rm,ne(x)

−m ∗ e(y)−n .

Thus,

℘(uj − uj+n; τ)pj,j+n = −2πθ2
∑

m

e
(
mθ(

n

2
+ j)

)∑

k

sk−m,nrk,n .

It allows us to put in the correspondence to the product ℘(uj −uj+n; τ)pj,j+n the ”convolution”

(P ⊙ S)(x, y) := −2πθ2
∑

m,n

e(θ
mn

2
)

(∑

k

rk,nsk−m,n

)
e(x)−m ∗ e(y)−n .

Along with (6.25) and (6.28) it leads to the following expression for the Hamiltonian (6.18)

HCM∞ =
1

2

∫

Aθ

v(x)2dx+

∫

Aθ

(P ⊙ S)(x, y) ∗ S(x, y) .

The CM∞ comes from the trivial infinite rank Higgs bundle over Eτ with transition functions
g(z) ∈ SINθ. The whole procedure is similar to finite-dimensional case. In particular,

LCM∞ = P +X .

Here
P = diag(. . . , v−N , . . . , v−1, v0, v1, . . . , vN , . . .) , (6.31)

Xjk = pjkφ(uj − uk, z) pjk ∈ Õ∞ . (6.32)

Define the coefficients φ̃m,n by the expansion

φ(uj − uj+n; z) ≡ φ(u(θj) − u(θ(j + n)); z) =
∑

m

e(mθ(
n

2
− j))φ̃m,n(u; z) .

and construct the generating function

F(u, x, y; z) =
i

2πθ

∑

m,n

φ̃m,n(u; z)e(
mnθ

2
)e(x)−m ∗ e(y)−n .
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In the terms of the NCT LCM∞ has the form

LCM∞(x, y) = v(x) + (S ⊙ F(u, x, y; z))(x, y) ,

where v and S are defined by (6.25) and (6.28).
We have the infinite set of the integrals of motion

Is,j =

∫

Eτ

∫

Aθ

(LCM∞)jµs,j , (6.33)

and we assume that they are finite Is,j <∞. In particular,

∫

Aθ

(LCM∞)2(z) = I0,2 + ℘(z)I2,2 , I2,2 =

∫

Aθ

S2 , HCM∞ =
1

2
I0,2 .

The integrals (5.12) give rise to the hierarchy of the commuting flows ∂s,j ∼ {Is,j, }.

5. Reduction to the loop algebra.
For a rational number θ = p/N one can pass to L̂(gl(N,C)). The Lax operator being a

one-form on S1 (5.19) acquires a form [2, 27]

LCM = − δij

2π
√
−1

(
vi
2
+
∑

α

pαiiE1(z − wα)

)
− 1− δij

2π
√
−1

∑

α

pαijφ(uij , z − wα) .

The integrals of motion can be calculated from the expansion of the trace of the monodromy
matrix for the linear system

(∂w + L(z, w))Ψ(z, w) = 0 .

They define the hierarchy of the elliptic CM field theory. For N = 2 the first non-trivial integral
has the form

H =

∮
dw

w

(
− v2

16π2
(1− u2w

h
) + (3u2w − h)℘(2u) − u2ww

4ν2

)
, (6.34)

where h is a Casimir corresponding to the co-adjoint orbit of L̂(GL(N,C)) and ν2 = h − u2w.
For an arbitrary N the quadratic Hamiltonians of the type I0,2 were calculated in Ref. [27].

Let LLL be the Lax operator for the Landau-Lifshitz equation and LCM
2D the Lax operator

corresponding to (6.34). Then (see(6.15))

LLL = Ξ−1∂wΞ+ Ξ−1LCM
2D Ξ ,

where Ξ is defined by (6.16) for N = 2. The explicit relations between the phase space variables
are given by (6.17).

7 Conclusion

There are four related subjects that are not covered here.
• We have not considered here the classical limit of the CM∞ model. One can try to describe

it independently as the Hitchin system with the structure group SDiff(T 2).
• It can be expected that the symplectic Hecke correspondence survives in the limit N →

∞. It would imply that CM system on the non-commutative torus Aθ and ER on Aθ are
symplectomorphic. It means in particular that the former system is not far from the non-
commutative modification of the 2D hydrodynamics. The symplectic Hecke correspondence
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just boil the particles degrees of freedom to the orbit variables. It can be suggested that the
correspondence survives in the classical limit.

• It will be interesting to define the both systems on the central extended algebra ŝinθ (2.15).
The central charge produces the additional dimension and the corresponding systems cover the
CM field theory and the Landau-Lifshitz model.

• Two different tori are incorporated in our construction - the gauge NCT Aθ and the basic
spectral curve Eτ . In the classical limit they become dual. It seems natural to replace Eτ on
another NCT Aθ′. In a general setting it means a generalization on the Higgs bundles over the
non-commutative base. The categories of holomorphic vector bundles on the non-commutative
torus were constructed in the recent paper [28]. One attempt in this direction was done in
Ref. [29].
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9 Appendix

9.1 Appendix A. Hitchin systems on an elliptic curve.

Let Est
N be a rank N stable holomorphic vector bundle over the elliptic curve Eτ (B.1). It can

be described by the holomorphic GL(N,C)-valued transition functions

g1(z) : z → z + 1 , g2(z) : z → z + τ , (A.1)

gα ∈ Ω0)(Uα,Aut
∗EN ) α = 1, 2 ,

(U1 is a neighborhood of [0, τ ] , U2 is a neighborhood of [0, 1]) .

They satisfy the cocycle conditions

g1(z)g2(z + 1)g−1
1 (z + 1 + τ)g−1

2 (z + τ) = Id .

Define the action of the gauge group GN = {f(z)} as

g1(z) → f(z)g1(z)f
−1(z + 1) , g2(z) → f(z)g2(z)f

−1(z + τ) . (A.2)

The moduli space of the stable holomorphic bundles MN (Eτ ) is defined as the quotient

MN (Eτ ) = GN\EN . (A.3)

The space MN (Eτ ) is a disjoint union of the components labeled by the corresponding de-

grees d = c1(detEN ) : MN (Eτ ) =
⊔
M(d)

N . The tangent space to M(Eτ ) is isomorphic to
h1(Eτ ,EndE

st
N ). Its dimension can be extracted from the Riemann-Roch theorem

dimh1(Eτ ,EndEN ) = dimh0(Eτ ,EndEN ) .

As a result we have
dimM(d)

N = g.c.d.(N, d) (A.4)
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The generic stable bundles can be transformed by (A.2) to the constant diagonal form. For the
trivial bundles (d = 0)

g
(0)
1 = Id , g

(0)
2 = f−1(z)diag expuf(z) . (A.5)

For d = 1 the transition functions can be chosen in the form

g
(1)
1 = f−1(z)QNf(z) , g

(1)
2 = f−1(z)Λ̃Nf(z) , Λ̃N = e(−

1
2τ + z

N
)ΛN , (A.6)

where

QN = diag(1, e(
1

N
), . . . , e(

1

N − 1
)) , ΛN =

∑

j=1,N, (mod N)

Ej,j+1 . (A.7)

Consider the cotangent bundle T ∗Est
N . We choose them in the following form.

ηα ∈ Ω(1,0)(Uα,End
∗Est

N ) α = 1, 2 ,

(U1 is a neiborhood of [0, τ ] , U2 is a neiborhood of [0, 1]) .

The bundle T ∗EN is called the Higgs bunle over Eτ .
We attribute to the marked point z = 0 a coadjoint orbit of SL(N,C)

O = {p ∈ sl(N,C) | p = h−1p0h, h ∈ SL(N,C), p0 ∈ sl(N,C)} . (A.8)

The unreduced phase space is the pair

R = (T ∗Est
N ,O) (A.9)

with the symplectic form

ω =
∑

α=1,2

∮

γα

tr(D(g−1
α ηα) ∧Dgα) + tr(D(h−1p0) ∧Dh) . (A.10)

Here the integrals
∮
is taken over contours γ1 ∼ [0, τ), γ2 ∼ [0, 1). We assume that the marked

point z = 0 lies inside the closed contour γ1(z)γ2(z + τ)γ−1
1 (z +1)γ−1

2 (z). The space R (A.9) is
called the Higgs bundle with the quasi-paraboloic structure at the marked point z = 0.

The canonical transformations of (A.10) are (A.2) along with

ηα → f(z)ηα(z, z̄)f
−1(z), h→ hf(0) . (A.11)

The transformations are generated by the following first class constraints. Let Φ(z) be a mero-
morphic one-form on Eτ . Then

ηα = Φ(z) , Res(Φ(z))|z=0 = p , p ∈ O . (A.12)

The form Φ is the so-called the Higgs field. Moreover, the constraints imply the quasi-periodicity
of ηα

η1(z, z̄) = g1(z)η1(z + 1, z̄ + 1)g−1
1 (z) , η2(z, z̄) = g2(z)η2(z + τ, z̄ + τ̄)g−1

2 (z) . (A.13)

Let µjdz̄ ∈ Ω(−j,1)(Eτ ) be (−j, 1)-differentials on Eτ . We choose the representatives from
Ω(−j,1)(Eτ ) that form a basis in the cohomology space h1(Eτ ,Γ

j), (dimh1 = j)

µj = (µ0,j∂
j−1
z , µ2,j∂

j−1
z , . . . , µj,j∂

j−1
z ) . (A.14)
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The coefficients µs,j coincide with the basis fs (B.22) (µs,j = fs). The integrals

Is,j =

∫

Eτ

tr(Φj)µs,jdz̄ . (A.15)

are gauge invariant. The play the role of the Hamiltonians in the integrable hierarchy. The
equations of motion on the phase space R with respect to the Hamiltonian Is,j take the form

∂s,jΦ = 0 , (A.16)

(∂s,jgα)g
−1
α = Φj−1µs,j , (A.17)

∂s,jp = 0 .

Consider the symplectic quotient Rred = R//GN . Let f(z) be the gauge transform that
bring the transition function in the standard form ((A.5) for d = 0 and (A.6) for d = 1). The
Lax operator is the corresponding gauge transform of the Higgs field Φ

LN (z) = f(z)Φ(z)f−1(z) . (A.18)

Then the first equation (A.16) is equivalent to the Lax equation

∂s,jLN = [LN ,MN ;s,j] , (A.19)

where MN ;s,j = f−1∂s,jf .
In terms of the Lax matrix the integrals (A.15) have the form

Is,j =

∮
tr(L

(0)
N )jµs,j . (A.20)

They can be found from the expansion on the basis of the elliptic funstions

tr(LN )j(z) = I0,j +

N∑

s=2

Is,j℘
(s−2)(z) (℘(k)(z) = ∂kz℘(z)) . (A.21)

9.2 Appendix B. Elliptic functions.

We summarize the main formulae for elliptic functions, borrowed mainly from [30] and [31]. We
consider the elliptic curve

Eτ = C/Z+ τZ , q = e(τ) = exp 2πiτ . (B.1)

The basic element is the theta function:

ϑ(z|τ) = q
1

8

∑

n∈Z
(−1)neπi(n(n+1)τ+2nz) = (B.2)

q
1

8 e−
iπ
4 (eiπz − e−iπz)

∞∏

n=1

(1− qn)(1− qne2iπz)(1 − qne−2iπz) .

The Weierstrass functions

σ(z|τ) = exp(ηz2)
ϑ(z|τ)
ϑ′(0|τ) , (B.3)
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where

η(τ) = −1

6

ϑ′′′(0|τ)
ϑ′(0|τ) . (B.4)

ζ(z|τ) = ∂z log ϑ(z|τ) + 2η(τ)z , ζ(z|τ) ∼ 1

z
+O(z3) . (B.5)

℘(z|τ) = −∂zζ(z|τ) . (B.6)

℘(u; τ) =
1

u2
++

′∑

j,k

(
1

(j + kτ + u)2
− 1

(j + kτ)2

)
. (B.7)

The next important function is

φ(u, z) =
ϑ(u+ z)ϑ′(0)

ϑ(u)ϑ(z)
. (B.8)

It has a pole at z = 0 and

φ(u, z) =
1

z
+ ζ(u|τ) + 2η(τ)u +

z

2
((ζ(u|τ) + 2η(τ)u)2 − ℘(u)) + . . . , (B.9)

and
Relation to the Weierstrass functions

φ(u, z)−1∂uφ(u, z) = ζ(u+ z)− ζ(u) + 2η(τ)z . (B.10)

φ(u, z) = exp(−2η1uz)
σ(u+ z)

σ(u)σ(z)
, (B.11)

φ(u, z)φ(−u, z) = ℘(z)− ℘(u) . (B.12)

Particular values

℘′(z) = 0 for z =
1

2
,
τ

2
,
1 + τ

2
. (B.13)

Addition formula. (Calogero functional equation.)

φ(u, z)∂vφ(v, z) − φ(v, z)∂uφ(u, z) = (℘(v) − ℘(u))φ(u+ v, z) . (B.14)

In fact, φ(u, z) satisfies more general relation which follows from the Fay three-section formula

φ(u1, z1)φ(u2, z2)− φ(u1 + u2, z1)φ(u2, z2 − z1)− φ(u1 + u2, z2)φ(u1, z1 − z2) = 0 . (B.15)

A particular case of this formula is (B.12) and

φ(u1, z)φ(u2, z)− φ(u1 + u2, z)(ζ(u1) + ζ(u2)− 2η(τ)(u1 + u2)) + ∂zφ(u1 + u2, z) = 0 . (B.16)

It follows from (B.10), (B.12),(B.16) that for u1 + u2 + u3 = 0

φ(u1, z)φ(u2, z)φ(u3, z) = [℘(z)− ℘(u3)] [ζ(u1) + ζ(u2) + ζ(u3 − z) + ζ(z)] . (B.17)

Then

φ(u1, z)φ(u2, z)φ(u3, z)|z→0 =
1

z3
+

1

z2
[ζ(u1) + ζ(u2) + ζ(u3)] (B.18)
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−1

2
℘′(u3)− ℘(u3) [ζ(u1) + ζ(u2) + ζ(u3)] +O(z)

Basis of elliptic functions on Eτ .
We consider elliptic functions on Eτ with poles at z = 0. Any elliptic meromorphic function

F (z) is represented in the form

F (z) =
∑

j=0,2,3...

cje
j , (B.19)

where
e0 = 1, ej = ∂(j−2)

z E2(z) . (B.20)

The dual basis fk with respect to the pairing

〈∗|∗〉 =
∫

Eτ

, 〈fk|ej〉 = δjk (B.21)

has the form
f0 = (z̄ − z)(1− χ(z, z̄)) , (B.22)

fk = zk−1χ(z, z̄) , k > 1 ,

where χ(z, z̄) is a characteristic function of a small neighborhood U0 of z = 0

χ(z, z̄) =

{
1, z ∈ U0 , U ′

0 ⊃ U0

0, z ∈ Eτ \ U ′
0 .

(B.23)

Theta functions with characteristics.
For a, b ∈ Q put :

θ

[
a
b

]
(z, τ) =

∑

j∈Z
e
(
(j + a)2

τ

2
+ (j + a)(z + b)

)
. (B.24)

In particular, the function ϑ (B.2) is the theta function with a characteristic

ϑ(x, τ) = θ

[
1/2
1/2

]
(x, τ) . (B.25)

For the simplicity we denote θ

[
a/2
b/2

]
= θab, (a, b = 0, 1).
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