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Is Arnold diffusion relevant to global diffusion?
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Global diffusion of Hamiltonian dynamical systems is investigated by using a coupled standard
maps. Arnold web is visualized in the frequency space, using local rotation numbers, while Arnold
diffusion and resonance overlaps are distinguished by the residence time distributions at resonance
layers. Global diffusion in the phase space is shown to be accelerated by diffusion across overlapped
resonances generated by the coupling term, rather than Arnold diffusion along the lower-order
resonances. The former plays roles of hubs for transport in the phase space, and accelerate the
diffusion.
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Understanding in global dynamic behavior in Hamil-
tonian systems is a fundamental issue in nonlinear dy-
namics and statistical physics. In nonintegrable Hamil-
tonian systems, two mechanisms for instabilities leading
to global diffusion in the phase space are well known;
Arnold diffusion [1, 2, 3, 4] and resonance overlap [2, 5].
In a Hamiltonian system in general, there are resonance
conditions

∑

i miωi + M = 0 , where mi’s and M are
arbitrary integers and ωi is radial frequency of i-th ele-
ment. The conditions form resonance lines in the phase
space, around which the motion is stochastic, giving rise
to a layer, while the interwoven resonance layers form
so-called “Arnold web”. Arnold diffusion is the motion
along the resonance layers, and is a universal behavior
in the systems with more than two degrees of freedom.
Resonance overlap, on the other hand, derives from de-
struction of tori which divide each resonance layers, and
results in global transport in the phase space, as has been
studied in detail in 2-dimensional mappings [2, 5].
In a system with many degrees of freedom in general,

both the two mechanisms coexist, and it is not so easy
to separate them out, to unveil which part is relevant to
global transport in the phase space. In this letter, we
study this problem by extracting out each mechanism
separately. First, we introduce a novel visualization pro-
cedure to detect the structure of Arnold web and res-
onance overlaps in the frequency space[6, 7, 8]. With
the aid of this representation, we measure residence time
distributions at each resonance layer, to distinguish the
dynamics by Arnold diffusion from the resonance over-
lap. Then, to clarify relevance of Arnold diffusion and
resonance overlap to global transport in the phase space,
we compute transition diagrams in the frequency space.
Following these results, the global diffusion coefficient in
the phase space is studied.
As a simple model for Hamiltonian system with several

degrees of freedom, we have chosen Froeschlé map [8, 9,
10, 11], given by

{

pi(n+ 1) = pi(n) +K sin(qi(n)) + b sin(
∑2

k=1
qk(n))

qi(n+ 1) = qi(n) + pi(n+ 1)
(1)

where i = 1, 2. qi(n) is the displacement of i-th element
and pi(n) its conjugate momentum. Here, K represents
nonlinearity of each element and b gives the coupling
strength.
Froeschlé map could be taken as a coupled system con-

sisting of standard maps. The standard map, each ele-
ment dynamics with b = 0, is studied as a prototype of a
Poincaré map for Hamiltonian dynamics with two degrees
of freedom. Similarly the above Froeschlé map could be
regarded as a Poincaré map of Hamiltonian system with
three degrees of freedom, and provides a prototype model
for such system.
Here, the rotation numbers

ωi ≡ lim
T→∞

qi(T )− qi(0)

2πT
= lim

T→∞

T
∑

n=1

pi(n)

2πT
(2)

are defined to each i-th element. Later we are mainly in-
terested in time evolution in the frequency space. Thus,
we employ the local rotation numbers computed over fi-
nite time length T by

ωi(jT ) ≡
jT+T−1
∑

n=jT

pi(n)

2πT
. (3)

In the term of rotation numbers, the resonance condition
of Froeschlé map is given by m1ω1 + m2ω2 + M = 0,
where mi’s and M are arbitrary integers, and the order
of resonances is defined by

∑

i |mi|+ |M |. The value of T
must be chosen large enough to assure the convergence of
each rotation number to a certain resonance, but not too
large so that transition between the resonance layers is
detected. In this letter, we choose T typically as 103, but
change of it within a moderate range does not influence
our results to be reported.
To visualize the resonances and Arnold web, we use

the density plot in the frequency space, as follows: First,
we compute the rotation numbers modulo 1 over a finite
time interval from trajectories to describe the structures.
Then, the distribution of the rotation number is com-
puted as the histogram of the local rotation numbers. By
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FIG. 1: Arnold web in the 2-dimensional frequency space.
The histogram of local rotation numbers, computed by the
number of times visited at each local rotation number with
512× 512 bins for 1010 iterations with T = 103. (a) K = 0.9,
b = 0.002 (b) K = 0.5 and b = 0.1.

taking bins of some size over the frequency space [0, 1),
every visit at each bin is counted, to compute probability
density of the local rotation numbers.
The density in the frequency space obtained from a

single trajectory is shown in Fig.1. Vertical and horizon-
tal resonance lines miωi+M = 0 mean that each element
is resonant with external force. Among them, the low-
est order resonances are (ωi + 1 = 0)’s or (ωi = 1)’s,
and resonance is higher order with larger mi’s. Lines
∑

imiωi +M = 0 mean that two elements are resonant
with each other, thus indicating coupling resonances. In
Fig.1(a) with parameters K = 0.9 and b = 0.002, the
coupling resonance ω1 + ω2 = 0 is clearly visible, while
the other lowest-order coupling resonance ω1 − ω2 = 0 is
obscure. This is due to the coupling form of Froeschlé
map. The density structure in the frequency space with
weaker nonlinearity and stronger coupling is shown in
Fig.1(b). Therefore, coupling resonances of various order
and resonance overlaps are clearly visible.
With the representations of these resonance layers in

mind, we clarify quantitative differences between Arnold
diffusion and resonance overlap, by examining residence
time distributions ρ(t) at each layer, given by the reso-
nance condition m1ω1 +m2ω2 +M = 0. Since there are
fluctuations in local rotation numbers due to the finite
time average, we set some thresholdW for each resonance
condition, so that we compute the residence time during
which |m1ω1 +m2ω2 +M | < W is satisfied. The thresh-
old W is chosen to be around 0.0015, while moderate
change of its value yields almost the same distribution.

First, we investigate the dependence of residence time
distributions on the order of resonances, as shown in
Fig.2. For all the resonances with enough residences of
orbits to get sufficient statistics, the distribution decays
with a power law (ρ(t) ∼ t−α). The exponent α takes the
value 3/2 for lower order resonances, and 2 for higher
order resonances. The fraction of resonances with the
exponent 3/2 decreases with the increase of the coupling
strength b or the nonlinearity K, and it is replaced by
those with the exponent 2, as shown in Fig.2. These
change of the exponent corresponds to the transforma-
tion of structures in the frequency space from thin linear
layer to scattered points in 2-dimensional region. The
distribution at the former has the exponent 3/2, while
the latter has the exponent 2.

This power law distribution is understood by regard-
ing the motion at the resonance layer as Brownian mo-
tion. Lifetime of Brownian motion in a finite interval
decays with a power law with the exponent α = 3/2
in a 1-dimensional case and α = 2 in a 2-dimensional
case. Arnold diffusion is along the 1-dimensional reso-
nance line, which is prominent at lower-order resonances
when nonlinearity is weak. In fact, the motion with
the residence time distribution of the power 3/2 is ob-
served for low-order resonance with weak nonlinearity.
On the other hand, overlapped resonances allow the mo-
tion across resonances which leads to Brownian motion
at a 2-dimensional region. Indeed, the distribution with
the power 2 is observed at higher order resonances, and
is more frequently observed with stronger nonlinearity.
Hence, one can distinguish clearly the Arnold diffusion
from resonance overlap by the power of the residence time
distribution at each resonance condition.

Now we discuss the global transport process in the
phase space, which consists of the motions across and
along the resonance layers, based on the observed geo-
metric structures in the frequency space. For this pur-
pose we compute the transition diagram over resonance
lines measured in the frequency space by averaging the
momentum over a finite time. Here, we compute the
transition matrix among the lower-order resonances ωi =
1/mi and ωi = 1− (1/mi), where 1 ≤ mi ≤ 6, by coarse-
graining the value of ωi, so that each region contains
one junction of the lower-order resonances. As an exam-
ple, we computed the transition diagram in the course of
orbits starting from the region around the golden mean
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FIG. 2: Residence time distributions at certain resonances.
Both dependences on the order of resonances and coupling
resonances are shown. Distributions decay with a power law
(ρ(t) ∼ t−α). The exponent is α = 3/2 for lower order res-
onances with weak coupling (ω1 = 1/2, b = 0.002), while
α = 2 for higher order resonances (ω1 = 1/6, b = 0.002) or
with stronger coupling (ω1 = 1/2, b = 0.1). K = 0.8.

torus ωi ≈ (
√
5−1)/2 and reaching that around the torus

with 1 − (
√
5 − 1)/2). In other words, we study how a

transition occurs from a point near one KAM torus to
another distant KAM torus, through successive transi-
tions over resonance lines. We have computed the tran-
sition diagram from the start state to the goal state, over
randomly chosen 64 samples in the the frequency space.
The transition diagram depends on each sample, and that
with the shortest steps to arrive at the goal state is shown
in Fig.3(a)(b), corresponding to Fig.1(a)(b). Diagrams
of other samples with short time steps for the destina-
tion have a similar feature with Fig.3. It contains transi-
tions through the overlapped resonances across the cou-
pling resonances. Although resonance overlaps are not
so dominant in the phase space, the observed transition
diagrams always use these resonance overlaps.
Note that motions across the overlapped resonances

are faster than Arnold diffusion along the resonances and
always used in this global transition. Moreover, regions
with resonances overlap involving coupling resonances in-
evitably allow for transitions to a variety of directions.
In other words, these resonance overlaps play a role as
highly connected nodes, i.e., “hubs”[12] for the global
transport. By visiting the hub parts, thus, the global
transport is accelerated.

As the coupling strength is increased, the number of
overlapped resonances that act as such hubs increases,
and they become widespread and overlapped each other.
Thus, the global diffusion is faster.

It is, then, natural to ask whether transport actually
occurs along resonances with weak coupling and nonlin-
earity in the case that lower-order resonances are not
overlapped as shown in Fig.1. From Fig.3(a), it is not
easy to answer the question. Focusing on local rotation
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FIG. 3: Transition diagram in the frequency space starting
from the start to the goal. Plotted is the diagram for an orbit
that requires shortest steps for the goal over randomly chosen
64 samples. (a) K = 0.9, b = 0.002. 2187 × 103 steps are
required, and most transitions occurs through the overlapped
higher-order resonances. (b) K = 0.5, b = 0.1, 1416 × 103

steps are required. Remarkable transitions occur through the
overlapped resonances across the coupling resonances.

numbers themselves, however, we conclude that trans-
port occurs between the lower-order resonances, through
the overlapped higher-order resonances that exist be-
tween the lower-order resonances. Hence, the main trans-
port is not due to the Arnold diffusion.
So far we have shown that the transport across the

overlapped resonances is faster than that along the res-
onances and existence of hubs accelerates transports.
Then, it is natural to expect that these properties of
transport can influence the macroscopic quantities which
are easily obtained as diffusion coefficients. Diffusion co-
efficients is defined by

D ≡ lim
T→∞

〈

1

2

2
∑

i=1

(pi(T )− pi(0))
2

T

〉

, (4)

where 〈·〉 represents sample average. Dependence of D
on the coupling strength is shown in Fig.4.
Here, if we assume uniform stochasticity with no struc-

tures in the phase space, D = (K2+ b2)/2 is obtained by
the random phase approximation [2]. In general, increase
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FIG. 4: Diffusion coefficients depending on coupling strength
b for K = 0.8. Diffusion coefficients along certain directions
are also computed. They are computed from 160 samples
with T = 108 in eq.(4).

with b2 could be expected by replacing the coupling term
by random process as expected by diffusion. In contrast,
around 0.01 ≤ b ≤ 1, the data in Fig.4 are fitted by the
formD ∼ bβ with β = 2.5, showing a clear deviation from
the above forms. Indeed, the transport across the cou-
pling resonance at hubs as in Fig.3(b) is dominant here.
It is expected that this power law β = 2.5 could reflect
the increase of the fraction of such coupling resonances
forming hubs with the coupling b. The exponent β here
decreases with K. As K is increased from 0.5 to 0.9, β
decreases from 3.5 to 2.2. This dependency suggests that
the increase of hub coupling resonances is more relevant
as the nonlinearity is weaker.
The relevance of diffusion across the coupling reso-

nance is also detected by computing the diffusion parallel
to p2 = p1 (across ω1 + ω2 = 0) and to p2 = −p1 (along
ω1+ω2 = 0), separately [13]. As the former measures the
diffusion transversal to the resonance line ω1 + ω2 = 0,
a main source for the difference between the two diffu-
sion coefficients is the motion crossing the lowest-order
coupling resonance, ω1 + ω2 = 0. As shown, the diffu-
sion coefficient parallel to p2 = p1 is much larger than
the other, and the diffusion is anisotropic in this sense.
The difference is prominent for b > 0.01, where the tran-
sition diagram as in Fig.3(b) is observed, showing the
dominance of the motion across the hub coupling res-
onance. This again demonstrates the relevance of the
motion across the resonance layer.
So far, several estimates of diffusion coefficients have

been proposed beyond the simple random phase approx-
imation, as given by the stochastic pump or three reso-
nance model and their extensions [11, 14]. These, how-
ever, assume only the diffusion along the resonances,
while our results, in contrast, exhibit the importance of
resonance overlap to the global diffusion.
In summary, intermingled structure of Arnold web and

resonance overlaps are visualized by introducing the rep-

resentation in the frequency space. It is shown that the
motion across the resonances is faster than the motion
along the overlapped resonances. By examining the tran-
sition over resonance layers, global diffusion in the phase
space is found to be mainly governed by diffusion across
the overlapped resonances. The global transport in the
phase space is accelerated through overlapped resonances
involving coupling resonances, forming a hub in the tran-
sition diagram. There, the global diffusion in the phase
space is governed mainly by the motion across the reso-
nance layers, rather than the Arnold diffusion along the
layer. Now it is important to estimate the resonance over-
lap in conjunction with the Arnold diffusion, to study
global transport process.

In a system with more degrees of freedom, Arnold webs
may be intermingled, and form a complicated structure,
so to say, “Arnold spaghetti” [15]. In such case, diffusion
across the resonance layers through resonance overlaps
is more dominant, where network of hub transport re-
gions should be unveiled, to understand conditions for
the realization of thermodynamic behavior.
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