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The shell-to-shell energy transfer rates for magnetohydrodynami (MHD) turbulene are om-

puted analytially, whih shows loal energy transfer rates from veloity to veloity, veloity to

magneti, magneti to veloity, and magneti to magneti �elds for nonhelial MHD in the inertial

range. It is also found that for kineti-energy dominated MHD �uid, there is a preferential shell-to-

shell energy transfer from kineti to magneti energy; the transfer is reversed for magneti-energy

dominated MHD �uid. This property is the reason for the asymptoti value of Alfvén ratio to be

lose to 0.5. The analytial results are in lose agreement with reent numerial results. When mag-

neti and kineti heliities are turned on, the helial ontributions are opposite to the orresponding

nonhelial ontributions. The helial energy transfers have signi�ant nonloal omponents.

PACS numbers: 47.65.+a, 52.30.Cv, 52.35.Ra

I. INTRODUCTION

Turbulent �uid and plasma �ows exhibit omplex behaviour. One suh phenomena is the energy transfers among

various sales. For �uid turbulene the energy transfer issues have been investigated in great details. However,

detailed analysis of these proesses is laking in magnetohydrodynami (MHD) turbulene. Detailed understanding

of energy transfer is useful for understanding various physial proess, for example, dynamo mehanism to generate

magneti �eld in astrophysial objets. These results are also useful in modelling MHD �ows and in simulations. For

example, we need to model baksatter and forward energy transfer for large-eddy simulations. In the present paper

we investigate the above issues analytially.

Kolmogorov's �uid turbulene phenomenology for inompressible turbulene is based on loal energy transfer be-

tween wavenumber shells. There are several quantitative theories in �uid turbulene about the amount of energy

transfer between neighbouring wavenumber shells. For examples, Kraihnan [1℄ showed that 35% of the energy �ux

omes from wavenumber triads where the smallest wave-number is greater than one-half of the middle wavenumber.

This phenomenology has been veri�ed using numerial and analytial methods [2, 3, 4, 5℄. Debliquy et al. [6℄ reently

studied the issues of energy transfers in deaying magnetohydrodynami (MHD) turbulene using diret numerial

simulation (DNS). Alexakis et al. [7℄ and Mininni et al. [8℄ performed the similar alulations for fored MHD tur-

bulene for both helial and nonhelial �ows. They found that typially, the shell-to-shell energy transfer is loal. In

the present paper we ompute the above quantities analytially, and ompare them with the numerial results.

The interations in MHD are through (u(k),u(p),u(k − p)) and (b(k),u(p),b(k − p)) triads, where (u,b) are

the veloity and magneti �elds respetively, and k, p, and k− p are the wavenumbers of the triad. Kraihnan [1℄

gave a general formalism to ompute the magnitudes of triad interations using transfer funtion S(k|p, q) [9℄. In this

paper we will ompute the shell-to-shell energy transfer using a modi�ed method alled mode-to-mode energy transfer

rate S(k|p|q), whih represents the energy transfer mode from p to mode k, with mode q ating as a mediator. The

new formalism is neessary for omputing the shell-to-shell energy transfer beause the earlier formalism su�ers from

ambiguity arising due to the third leg of the interation (see [10, 11℄). The alulation is done using perturbative

�eld-theory up to �rst-order in perturbation. We take Kolmogorov's spetrum for the energy spetrum as disussed

in urrent numerial and analytial papers [12, 13, 14, 15, 16, 17℄. Note that the �eld-theoreti alulations has a lot

of similarity with Eddy-damped quasi-normal Markovian (EDQNM) approximation.

MHD turbulene involves interations among veloity and magneti modes, hene energy transfer takes plae

between veloity to veloity, magneti to magneti, veloity to magneti, and magneti to veloity modes. Debliquy

et al. [6℄ omputed the shell-to-shell energy transfers in deaying MHD turbulene using simulation data on 5123.
In their alulation ross heliity, magneti heliity, and kineti heliity are negligible. They also took the mean

magneti �eld to zero. Debliquy et al. found forward and loal energy transfer from veloity to veloity, and magneti

to magneti �elds. Regarding the veloity-to-magneti energy transfer, for the Alfvén ratio greater than approximately

0.4, the energy transfer is from kineti to magneti; the transfer diretion is reversed for Alfvén ratio less than 0.4.

Dar et al. [10℄, Alexakis et al. [7℄ and Mininni et al. [8℄ have done the similar analysis for 2D and 3D fored MHD

turbulene, with foring at small wavenumber of veloity. They �nd loal energy transfer for veloity to veloity

�elds, and magneti to magneti �elds in the inertial range. However, the small-wavenumber veloity shells provide

energy to the small-wavenumber magneti shells, as well as to the inertial range magneti shells. We will show in this
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paper that our theoretial results on inertial range energy transfers are in general agreement with the above numerial

results.

Pouquet et al. [18℄ were the �rst to investigate whether interations in MHD turbulene are loal or not. Their

analysis is based on eddy-damped quasi-normal Markovian (EDQNM) alulation. They laimed that nonloal inter-

ations exist in MHD due to the mean magneti �eld (Alfvén e�et) and heliity. Aording to Pouquet et al., the

loal interations ause the energy asade, but the nonloal ones lead to an equipartition of kineti and magneti

energy. In the present paper we will also show that heliity indues nonloal energy transfers.

A detailed piture of energy transfers is very useful for understanding turbulene and its modelling. In this paper

we will show how we an use our theoretial results to argue why the asymptoti state of MHD turbulene is lose

to 0.5. The detailed shell-to-shell energy transfer also provide us important ideas for large-eddy simulations (see

Debliquy et al. [6℄ for onnetion with large-eddy simulations) and EDQNM alulation, whih assumes loal energy

transfers among wavenumber shells.

It is well known that ompressible turbulene involves energy transfers from pressure �utuations to the veloity and

magneti �eld [19, 20, 21, 22, 23℄. The theoretial, numerial, and observational studies show that the energy spetrum

deviates from Kolmogorov's spetrum. For example, Burgers equation, whih represents fully ompressible �uid, has

energy spetrum proportional to k−2
. The theory of ompressible turbulene is not yet developed as muh as that for

inompressible turbulene. Due to the unertainty of energy spetrum and other properties in the inertial range, in

this paper we have on�ned ourselves to the study of shell-to-shell energy transfer for inompressible turbulene only.

The outline of the paper is as follows: In Se. 2 we ompute the shell-to-shell energy transfer rates for nonhelial

and helial MHD. In Se. 3 we use our results to show why the asymptoti state of MHD turbulene has Alfvén ratio

lose to 0.5. The last setion, Se. 4, ontains onlusions.

II. CALCULATION OF THE SHELL-TO-SHELL ENERGY TRANSFERS

In MHD turbulene, veloity (u) and magneti �elds b interat with eah other and among itself to produe omplex

energy transfers. The energy exhange an take plae between a u Fourier mode to u Fourier mode, between a b

Fourier mode to b Fourier mode, or between a u Fourier mode to b Fourier mode. These transfers are studied using

Kraihnan's formula S(k|p,q) [9℄ or mode-to-mode energy transfer rate S(k|p,q). In this paper we use the mode-to-

mode energy transfer rates (SYX(k′|p|q)) that represents the energy transfer rates from mode p of �eld X to mode k

of �eld Y , with mode q ating as a mediator [10, 11℄. Note that k′+p+q = 0. This formalism is used for omputing

the shell-to-shell energy transfer beause the earlier formalism su�ers from ambiguity arising due to the third leg of

the interation (see [10, 11℄). The mode-to-mode energy transfer rates in MHD turbulene are given by

Suu(k′|p|q) = −ℑ ([k′ · u(q)] [u(k′) · u(p)]) ,

Sbb(k′|p|q) = −ℑ ([k′ · u(q)] [b(k′) · b(p)]) ,

Sub(k′|p|q) = ℑ ([k′ · b(q)] [u(k′) · b(p)]) ,

Sbu(k′|p|q) = ℑ ([k′ · b(q)] [b(k′) · u(p)]) ,

where the above four formulas denote the energy transfers from u(p) to u(k), from b(p) to b(k), from b(p) to u(k),
and from u(p) to b(k) respetively. For the derivation the reader is referred to the original papers [10, 11℄.

Using the above formulas we ompute the shell-to-shell energy transfer in MHD turbulene by summing up the

energy transfer among the Fourier modes. The energy transfer rates from m-th shell of �eld X (u or b) to n-th shell

of �eld Y (u or b) is

T YX
nm =

∑

k′∈n

∑

p∈m

〈

SYX(k′|p|q)
〉

.

The p-sum is overm-th shell, and the k′
-sum is over n-th shell [9, 11℄. Sine SYX(k′|p|q) is a �utuating quantity, we

perform ensemble average to ompute the average shell-to-shell energy transfer. We ompute the ensemble average of

S using a standard �eld-theoreti tehnique, a tehnique similar to EDQNM alulation [24, 25, 26℄. The alulation

is quite standard, and it an found in MComb [26℄ or Verma [11℄.

The funtion

〈

SYX(k′|p|q)
〉

depends on kineti energy (Eu(k)), magneti energy (Eb(k)), ross heliity (Hc(k)),
magneti heliity (HM (k)), kineti heliity (HK(k)), and mean magneti �eld. The total ross heliity, magneti

heliity, and kineti heliity are de�ned as u ·b/2, a · b/2, and u ·ω/2 respetively, where a and ω are vetor potential

and vortiity respetively. The spetrum of these quantities are de�ned appropriately (refer to Verma [11℄ for details).

For simpli�ation we ompute S for zero ross heliity and zero magneti �eld, and in the inertial range using

Kolmogorov's energy spetrum. To study the e�ets of kineti and magneti heliities, we have split S into helial and
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nonhelial omponents. The simpli�ed expression (given below) is a funtion of Alfvén ratio (rA = Eb(k)/Eu(k)),
normalized magneti heliity (rM = kHM (k)/Eb(k)), and normalized kineti heliity (rK = HK(k)/(kEu(k))). Please
note that we are working in three dimensions.

After lengthy algebra we obtain

〈

SXY (v, w)
〉

Π
=

[

(Ku)3/2(2π)2

k6

]

[

FXY
nonhelical(v, w) + FXY

helical(v, w)
]

. (1)

where Ku
is Kolmogorov's onstant for MHD turbulene, and some of the FYX

nonhelical and FYX
helical are

F bb
nonhelical =

1
rA

t4(v, w)(vw)
−11/3 + 1

rA
t8(v, w)w

−11/3 + 1
r2
A

t10(v, w)v
−11/3)

η∗
(

1 + v2/3
)

+ ν∗w2/3
, (2)

Fub
nonhelical = −

1
r2
A

t2(v, w)(vw)
−11/3 + 1

rA
t7(v, w)w

−11/3 + 1
rA

t11(v, w)v
−11/3)

η∗
(

v2/3 + w2/3
)

+ ν∗
, (3)

F bu
nonhelical = −

1
rA

t3(v, w)(vw)
−11/3 + 1

r2
A

t6(v, w)w
−11/3 + 1

rA
t12(v, w)v

−11/3)

η∗
(

1 + w2/3
)

+ ν∗v2/3
, (4)

F bb
helical =

rMrK
rA

t′4(v, w)(vw)
−11/3 + rMrK

rA
t′8(v, w)w

−11/3 + rMrM
r2
A

t′10(v, w)v
−11/3

η∗
(

1 + v2/3
)

+ ν∗w2/3
. (5)

Hereν∗and η∗ are renormalized visosity and resistivity parameters. In this paper, we onsider (a) nonhelial MHD

(rM = rK = 0 and di�erent rAs), and (b) helial MHD (rA = 1, rK = 0.1, rM = −0.1). For nonhelial MHD with

rA = 0.5, 1, 2, the onstants (Ku, ν∗, η∗) taken are (0.55, 2.1, 0.5), (0.75, 1.0, 0.69), (1.0, 0.64, 0.77) respetively (see

Verma [16, 27℄ for the proedure to ompute these onstants). For helial MHD, our hoie of rK = 0.1 (small

positive) and rM = −0.1 (small negative) is one of the typial values taken in numerial simulations, or observed in

astrophysial situations; for this ase, the onstants Ku = 0.78, ν∗ = 1.0, η∗ = 0.69 have been taken from Verma [28℄.

The wavenumbers shells are binned logarithmially with the n-th shell being (k0s
n−1, k0s

n). Note that the parameter

s is similar to the sale-disparity parameter of Zhou [3℄. We nondimensionalize the equations using the transformation

[25℄

k =
a

u
; p =

a

u
v; q =

a

u
w, (6)

where a = k0s
n−1

. The resulting equation is

T YX
nm

Π
= K3/2

u

1

2

∫ 1

s−1

du

u

∫ usm−n+1

usm−n

dv

∫ 1+v

|1−v|

dw (vw)
[

FYX
nonhelical(v, w) + FY X

helical(v, w)
]

, (7)

whih is independent of a in the inertial range. The independene of a implies self-similarity in the inertial range.

From Eq. (7) we an draw the following inferenes:

1. The shell-to-shell energy transfer rate is a funtion of n−m, that is, Φnm = Φ(n−i)(m−i). Hene, the turbulent

energy transfer rates in the inertial range are all self-similar. Note that this property holds only in the inertial

range.

2. T ub
nm/Π = −T bu

mn/Π, or b-to-u energy transfer rates from shell m to shell n is equal and opposite to the u-tob
energy transfer rates from shell n to shell m. Hene T bu

nm/Π an be obtained from T ub
mn/Π by inversion at the

origin.

3. The MHD energy �uxes are related to the shell-to-shell energy transfers by the relationship

ΠX<
Y > =

∞
∑

n=m+1

(n−m)T YX
nm .

4. Net energy gained by a u-shell from u-to-u transfer is zero beause of self similarity. However, a u-shell an gain

or lose a net energy due to imbalane between u-to-b and b-to-u energy transfers. By de�nition, we an show

that net energy gained by an inertial u-shell is
∑

n

(

T ub
nm − T bu

nm

)

+ T ub
nn. (8)
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Similarly, net energy gained by a b-shell from b-to-b transfer is zero. However, net energy gained by an inertial

b-shell due to u-to-b and b-to-u transfers is

∑

n

(

T bu
nm − T ub

nm

)

+ T bu
nn. (9)

Now we ompute the integrals of Eq. (7); we denote the nonhelial and helial parts by

(

T YX
nm

)

nonhelical
and

(

T YX
nm

)

helical
respetively. Their properties are desribed below.

1. Nonhelial shell-to-shell energy transfer

We ompute the nonhelial shell-to-shell energy transfer using FYX
nonhelical. We have hosen s = 21/32. This study

has been done for various values of Alfvén ratios. Fig. 1 ontains plots of

(

T YX
nm /Π

)

nonhelical
vs. n − m for four

typial values of rA = 0.5, 1, 5, 100. The numbers on the plots represent energy transfer rates from shell m to shells

m+1,m+2, ...in the right, and to shellsm−1,m−2, ... in the left. For rA = 0.5, the maxima of b-to-u energy transfers

(

T ub
nm

)

nonhelical
/Π and

(

T bu
nm

)

nonhelical
/Π ours at m = n, and its values are approximately ±0.1 respetively. The

orresponding values for rA = 5 are approximately ∓0.053. By observing the plots we �nd the following interesting

patterns:

1. The u-to-u energy transfer rate from shell m to shell n (T uu
nm)nonhelical /Π is positive for n > m, and negative for

n < m. Hene, a u-shell gains energy from smaller wavenumber u-shells, and loses energy to higher wavenumber

u-shells, implying that the energy asade is forward. Also, the absolute maximum ours for n = m± 1, hene
the energy transfer is loal. For kineti energy dominated regime, s = 21/2 yields T uu

nm/Π ≈ 35%, similar to

Kraihnan's Test Mean Field model (TFM) preditions [1℄.

2. The b-to-b energy transfer rate T bb
nm/Π is positive for n > m, and negative for n < m, and maximum for

n = m± 1. Hene magneti to magneti energy transfer is forward and loal. This result is onsistent with the

forward magneti-to-magneti asade (Πb<
b> > 0) [11, 27℄.

3. For rA > 1 (kineti energy dominated), kineti to magneti energy transfer rate

(

T bu
nm

)

nonhelical
/Π is positive

most of the shells. For n−m < −30 or so, the value is small and negative. These transfers have been illustrated

in Fig. 3(a). Using Eq. (9) we �nd that eah u-shell loses a net kineti energy to b-shells, hene the turbulene
is not steady. This phenomena is seen for all rA > 1, and it ould be one of the proesses responsible for dynamo

ation. For s = 21/4,
(

T bu
nn

)

nonhelical
/Π ≈ 1.4, and the

(

T bu
nm

)

nonhelical
/Π is positive for n ≥ m− 1 and negative

otherwise.

4. For rA = 0.5 (magnetially dominated), magneti to kineti energy transfer rate

(

T ub
nm

)

nonhelical
/Π is positive

for most of the shells (see Fig. 1). For n−m < −30 or so, the value is small and negative. In addition, using

Eq. (8) we �nd that eah b-shell loses a net magneti energy to u-shells, hene the turbulene annot be steady.
This phenomena is seen for all rA < 1. For s = 21/4,

(

T ub
nm

)

nonhelical
/Π is positive for n ≥ m− 1 and negative

otherwise.

5. The observations of (3) and (4) indiate that kineti to magneti or the reverse energy transfer rate almost

vanishes near rA = 1. We believe that the evolution of MHD turbulene toward rA ≈ 1 in both deaying and

steady-state is due to the above reasons. For rA 6= 1, MHD turbulene is not steady. This result is similar to

Pouquet et al.'s predition of equipartition of kineti and magneti energy using EDQNM alulation [18℄. An

analogous result was disovered by Stribling and Matthaeus [29℄ in the ontext of the Absolute Equilibrium

Ensemble (AEE) theory.

The steady-state value of rA in numerial simulations (e.g. Debliquy et al. [6℄, Dar et al. [10℄, Alexakis et al.

[7℄, Mininni et al. [8℄, and Haugen et al. [30℄) and solar wind (e.g., Matthaeus and Goldstein [31℄) is around

0.5-0.6. The di�erene is probably beause the realisti �ows have more interations than those disussed above,

e.g., nonloal oupling with foring wavenumbers, oherent dissipative strutures [32℄ et.

6. When rA is not lose to 1 (rA ≤ 0.5 or rA > 5), u-to-b shell-to-shell transfer involves many neighbouring shells

(see Fig. 1). This observation implies that u−b energy transfer is somewhat nonloal as predited by Pouquet

et al. [18℄.

7. We ompute energy �uxes using T YX
nm , and �nd them to be the same as that omputed by Verma [11, 27℄. Hene

both the results, �ux and shell-to-shell energy transfer rates, are onsistent with eah other.
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Debliquy et al. [6℄ performed a deaying MHD turbulene simulations and omputed the shell-to-shell energy transfer

rates. The kineti and magneti heliity was approximately zero. Debliquy et al.'s results show that the shell-to-shell

energy transfers are forward and loal. They also �nd that in the magnetially dominated MHD, the energy transfer

from the same shell is from magneti �eld to veloity �eld. Sine the numerial simulations start with rA = 1, the
energy transfer rates for kineti-energy dominated regime is not known numerially. Our theoretial results are in

general agreement with the numerial results of Debliquy et al. As an example, the numerial values of shell-to-shell

energy transfer rates shown in Fig. 9 of Debliquy et al. [6℄ (rA ≈ 0.4) is similar to our theoretial results shown in

Fig. 1. A major di�erene between theoretial and numerial values are for T ub/Π where theoretial value for n = m
is larger than its numerial ounterpart.

Debliquy et al. [6℄ found that T bu
hanges sign near rA ≈ 0.5. In our theoretial alulation, the hange of sign

takes plae around rA ≈ 1. These �ndings are very enouraging, and they yield explanation why the asymptoti state

of Alfvén ratio is lose to 0.5. The di�erene between theory and numerial simulations may be due to the neglet

of large-sale non-Kolmogorov-like behaviour in theory, or due to the fat that Debliquy et al.'s results are based on

deaying simulations, while the theoretial results assume steady-state. These issues need to be addressed.

Alexakis et al. [7℄ and Mininni et al. [8℄ omputed shell-to-shell energy transfers in fored MHD. In the inertial

range, the energy transfers are essentially loal. However, the foring veloity-shell (at large length-sale) provides

energy to the large-sale magneti �eld. The foring veloity-shells also provide energy to the inertial range shells

by nonloal hannel. Similar piture was observed by Dar et al. [10℄ in fored 2D MHD turbulene. Our theoretial

results are onsistent with the Alexakis et al.'s results in the inertial range. Unfortunately, the present theoretial

alulation annot predit the oupling with the foring shell.

After the above disussion on nonhelial MHD, we move to helial MHD.

2. Helial Contributions

Now we present omputation of

(

T YX
nm

)

helical
/Π, shell-to-shell energy transfer rates for helial MHD (HM 6= 0, HK 6=

0) [28℄. To simplify the equation, we onsider only nonAlfvéni �utuations (σc = 0). We have hosen rA = 1, rK =
0.1, rM = −0.1. These values are one of the typial parameter values hosen in numerial simulations. We take

s = 21/4 to get a inreased value for

(

T YX
nm

)

helical
/Π. For the above hoie of parameters, Kolmogorov's onstant

Ku = 0.78 [28℄. In Fig. 2 we have plotted

(

T YX
nm

)

helical
/Π vs n−m. Our results on helial shell-to-shell transfers are

given below:

1. Comparison of Fig. 2 with Fig. 1 (rA = 1) shows that helial energy transfers are order-of-magnitude lower

than the nonhelial ones for the parameters hosen here (rA = 1, rK = 0.1, rM = −0.1). For maximal heliity,

the helial and nonhelial values beome omparable.

2. All the helial ontributions are negative for n > m, and positive for n < m. Hene, helial transfers are from

larger wavenumbers to smaller wavenumbers. This is onsistent with the inverse asade of energy due to helial

ontributions, as disussed by Pouquet et al. [18, 28℄.

3. We �nd that the helial shell-to-shell energy transfer rate

(

T ub
nm

)

helical
and

(

T bb
nm

)

helical
is signi�antly positive

for −50 < n−m ≤ 0. This signals a nonloal b-to-b and u-to-b inverse energy transfers. Hene, heliity indues

nonloal energy transfer between b-to-b and u-to-b wavenumber shells. This is in agreement with Pouquet et

al.'s result [18℄ that �residual heliity� indues growth of large-sale magneti �eld by nonloal interations.

The theoretial �ndings listed above are onsistent with Pouquet's results based on EDQNM approximation [18℄ and

�ux alulations of Brandenburg et al. [33℄. Alexakis et al. [7℄ and Mininni et al. [8℄ have omputed shell-to-shell

energy transfer in helial MHD turbulene; the heliity does hange the energy transfer rates, however, in the absene

of numerial value of normalized kineti and magneti heliity (rK , rM ), we are not able to ompare our results with

their numerial values.

In the next setion we use our theoretial results and Debliquy et al.'s [6℄ numerial results to argue why the

asymptoti state of MHD �ows have rA ≈ 0.4− 0.6.

III. CONNECTION WITH MHD ASYMPTOTIC STATE (rA ≈ 0.4− 0.6)

The solar wind observations and numerial simulations show that the asymptoti state in the MHD �ows have

rA ≈ 0.4− 0.6. We �nd in our theoretial analysis that for rA > 1, there is a preferential transfer of kineti energy to

magneti energy; in fat, a u-shell loses a net amount of kineti energy to b-shell. For rA < 1, the pattern of u-to-b
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energy transfer is reversed, and there is a a net transfer of energy from magneti to kineti. This preferential energy

transfer is minimum for rA ≈ 1. Our theoretial alulation however is based on an assumption of Kolmogorov's

spetrum for the energy, whih is not valid for the smaller wavenumber modes. Here we use Debliquy et al.'s [6℄

deaying simulations results for obtaining further insights into the large-sale energy transfers.

Debliquy et al.'s [6℄ showed that the energy �ux from small-wavenumber u−sphere to small wavenumber b-sphere
is positive for rA > 0.63, and beomes negative for lower rA. The global (inlusive of all shells) u-to-b energy transfer

hanges sign at r = 0.4. Hene, the smaller wavenumbers shells also play an important role in energy transfers.

As a result, the asymptoti state of MHD turbulene has Alfvén ration lose to 0.5. Thus our detailed analysis of

shell-to-shell energy transfer, and Debliquy et al.'s global and �ux analysis is able to explain qualitatively why MHD

turbulene evolves to asymptoti state with Alfvén ratio rA ≈ 0.4 − 0.6. Our theoretial preditions are onsistent

with the numerial results of Dar et al. [10℄ whose asymptoti Alfvén ratio rA is approximately 0.5. Alexakis et al.

[7℄ and Mininni et al. [8℄ also �nd their asymptoti Alfvén ratio rA to be less than 1.

IV. CONCLUSIONS

In this paper we have omputed the shell-to-shell energy transfers in MHD turbulene analytially. Our results

provide theoretial explanation for the reently omputed shell-to-shell energy transfers using diret numerial simu-

lations. The ontributions of nonhelial and helial terms have been alulated separately. We �nd that the nonhelial

u-to-u and b-to-b shell-to-shell energy transfers are loal as in �uid turbulene, i. e., most of energy from a wavenum-

ber shell is transferred to the neighbouring shells. Comparatively, helial u-to-b and b-to-u energy transfers involves

distant shells (nonloal).

We �nd that the helial shell-to-shell energy transfer is bakward, that is from larger wavenumbers to smaller

wavenumbers. For rK = 0.1, rM = −0.1, one of the typial values observed in numerial simulations, the helial shell-

to-shell energy transfer is order-of-magnitude smaller than the nonhelial ones. However, for maximal heliity, the

helial shell-to-shell energy transfer is omparable to the nonhelial ones. In the present alulation, the parameters

rK and rM have been hosen to be onstants. This is a gross assumption onsidering that magneti heliity and

kineti heliity have di�erent signs at di�erent sales. Even then we obtain results whih are onsistent with reent

numerial results and earlier theories (Frish et al. [34℄). Hene, the present alulation appears to apture some of

the essential features of helial MHD turbulene.

Our results show that the inertial-range shell-to-shell for rA > 1, there is a preferential transfer of kineti energy

to magneti energy; the diretion of energy transfer swithes for rA < 1. Debliquy et al.'s [6℄ numerial simulations

provide us important lues for the energy transfers at smaller wavenumbers. Using these results we an argue why

the asymptoti state of MHD turbulene evolves to Alfvén ratio of 0.5.

Our theoretial results are in general agreement with the numerial results of Debliquy et al. [6℄, Dar et al. [10℄,

Alexakis et al. [7℄ and Mininni et al. [8℄, who observe loal energy transfer in the inertial range. In fored MHD

turbulene with large-sale veloity foring, a signi�ant energy transfer to large-sale magneti �eld and nonloal

energy transfer to inertial-range magneti �eld were found. Sine the nonlinear energy transfers involves only the

veloity and magneti �eld variables, we expet that the features of energy exhange in the inertial range should

remain approximately the same in deaying and fored MHD. However, the foring at large-sale veloity shell would

a�et the large-sale magneti �eld, and ould also indue nonloal interations. A theoretial model with foring will

be useful to understand fored MHD turbulene.

Detailed pitures of energy transfer studied here is useful for understanding various physial proess, for example,

dynamo mehanism to generate magneti �eld in astrophysial objets. These results are also useful in modelling

MHD �ows and in simulations. For example, we need to model baksatter and forward energy transfer for large-eddy

simulations. Refer to Debliquy et al. [6℄ for disussion on baksatter and forward energy transfer in Fourier as well

as real spae.

In EDQNM analysis, the wavenumber shells are logarithmially binned. In the present analysis of MHD turbulene,

and many papers on �uid turbulene show loal energy transfers among wavenumber shells for nonhelial MHD. Hene,

the loal energy transfer assumptions made in EDQNM analysis is valid at least for nonloal MHD [35℄. The energy

transfers are somewhat more omplex for helial MHD.

Pouquet et al. [18℄ performed extensive EDQNM analysis of MHD turbulene and showed that both loal and

nonloal interations exist in MHD turbulene. The loal interations ause the energy asade, while the nonloal

ones ause equipartition of kineti and magneti energies. Pouquet et al. argued for inverse asade of magneti energy

from the ompetition between heliity and Alfvén e�et. Our analyti alulation also predits inverse magneti-energy

asade due to heliity. Our alulation shows that near equipartition of magneti and kineti energy is due to omplex

proess involving inertial-range shell-to-shell interations and small wavenumber shells. This piture is some what

di�erent than that of Pouquet et al.
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To onlude, the shell-to-shell energy transfer rates provide important insights into inertial-range energy exhange

proesses in MHD turbulene.
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Figure Captions

Figure 1: The plots of shell-to-shell energy transfers

(

T YX
nm

)

nonhelical
/Π vs. n − m for zero heliities (σc =

rK = rM = 0) and Alfvén ratios rA = 0.5, 1, 4, 100. Here s = 21/32. The u-to-u, b-to-u, u-to-b, and b-to-b are

represented by dotted, dashed, hained, and solid lines respetively. For rA = 0.5, the maxima of

(

T ub
nm

)

nonhelical
/Π

and

(

T bu
nm

)

nonhelical
/Π are ±0.1 respetively, out of sale of the plot. The orresponding values for rA = 5 are ∓0.053.

Figure 2:Helial ontributions to shell-to-shell energy transfers

(

T YX
nm

)

helical
/Π vs. n − m in helial MHD with

rA = 1, rK = 0.1, rM = −0.1 and σc = 0. Here s = 21/4.

http://arxiv.org/abs/physics/0505183
http://arxiv.org/abs/physics/0505189
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Figure 3: Shemati illustration of nonhelial shell-to-shell energy transfersT YX
nm /Π in the inertial range for (a)

kineti-energy dominated regime, and (b) magneti-energy dominated regime. In (a) the u-to-b energy transfer rate

T bu
nm/Π is positive for n ≥ m−1, and negative otherwise, while in (b) the b-to-u energy transfer rate T ub

nm/Π is positive

for n ≥ m− 1, and negative otherwise. The u-to-u energy transfer rate T uu
nm, and the b-to-b energy transfer rate T bb

nm

are forward and loal.
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Figure 1: The plots of shell-to-shell energy transfers

(

T YX
nm

)

nonhelical
/Π vs. n − m for zero heliities (σc = rK = rM = 0)

and Alfvén ratios rA = 0.5, 1, 4, 100. Here s = 21/32. The u-to-u, b-to-u, u-to-b, and b-to-b are represented by dotted,

dashed, hained, and solid lines respetively. For rA = 0.5, the maxima of

(

T ub
nm

)

nonhelical
/Π and

(

T bu
nm

)

nonhelical
/Π are ±0.1

respetively, out of sale of the plot. The orresponding values for rA = 5 are ∓0.053.

FIGURES
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Figure 2: Helial ontributions to shell-to-shell energy transfers

(

T Y X
nm

)

helical
/Π vs. n −m in helial MHD with rA = 1, rK =

0.1, rM = −0.1 and σc = 0. Here s = 21/4.

Figure 3: Shemati illustration of nonhelial shell-to-shell energy transfersT Y X
nm /Π in the inertial range for (a) kineti-energy

dominated regime, and (b) magneti-energy dominated regime. In (a) the u-to-b energy transfer rate T bu
nm/Π is positive for

most n, while in (b) the b-to-u energy transfer rate T ub
nm/Π is positive for most n. The u-to-u energy transfer rate T uu

nm, and

the b-to-b energy transfer rate T bb
nm are forward and loal.
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