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Detecting local synchronization in coupled chaotic systems
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We introduce a technique to detect and quantify local functional dependencies between coupled
chaotic systems. The method estimates the fraction of locally syncronized configurations, in a pair of
signals with an arbitrary state of global syncronization. Application to a pair of interacting Rössler
oscillators shows that our method is capable to quantify the number of dynamical configurations
where a local prediction task is possible, also in absence of global synchronization features.

PACS: 05.45.Tp,05.45.Xt,05.45.-a,05.45.Ac

In the past years much attention has been devoted to
characterize coupled chaotic systems exhibiting synchro-
nization regimes [1]. In this framework, different synchro-
nization features have been studied, such as, e.g., identi-
cal and generalized synchronization [2, 3], phase synchro-
nization [4], lag and intermittent lag synchronization [5].
Furthermore, synchronization effects have been explored
in natural phenomena [6], and controlled laboratory ex-
periments [7].
In this context, various attempts to provide unifying

definitions for encompassing the different synchroniza-
tion phenomena have been pursuited [8]. Recently, a for-
mal approach to the problem has been put forward [9], in
which the unifying property of synchronization is estab-
lished in the emergence of local functional dependencies
between neighborhoods of particular phase space config-
urations in the projected spaces of the two coupled sub-
systems. The approach assumes a system Z ∈ R

m1+m2

divisible into two coupled subsystems, X ∈ R
m1 and Y

∈ R
m2 . In this framework, synchronization is equivalent

to predictability of one subsystem’s values from another,
i.e. that an event ỹ in Y always occurs when a partic-
ular event x̃ in X occurs. However, when searching for
evidence of synchronization in data, one seldom has data
that fall right on a given x̃ or on a given ỹ. Rather,
the closer x(t) is to x̃ the closer y(t) is to ỹ. The latter
statement is captured rigorously by a local continuous
function; namely, the trajectories of x(t) close to x̃ are
mapped near to ỹ by a local function that is continuous
at the point (x̃, ỹ), and that, near (x̃, ỹ) describes well the
predictability of subsystem Y dynamics from subsystem
X dynamics. Ref. [9] gives a general, formal mathe-
matical ground to the above statements, and establishes
the sufficient conditions for a system to display global
synchronization features, i.e. to admit local functional
dependencies regardless on the particular choice of the
(x̃, ỹ) phase space configuration.
For a generic pair of coupled chaotic systems, however,

it is to be expected that synchronization occurs only at
some locations (if any) of the phase space, and not glob-
ally. In this case, a continuous functional dependence of
y(t) on x(t) will exist only locally around a set of syn-
chronization points {x̃s, ỹs}.
Implementation of a search for local functional depen-

dencies requires two separate steps: a preliminary one in

which the two interacting subsystems X and Y are prop-
erly identified within the original dynamical systems Z,
and their dimensionalities measured, and a second one
in which the local synchronization points (x̃, ỹ) are de-
tected. The first problem was solved recently in Ref. [10]
by means of a modification of the false nearest neigh-
bors algorithm [11], allowing for a separate measurement
of the dimensionalities of weakly coupled systems in the
case of emergent synchronization motions.
In this paper, we will address the second step of the

search by introducing the synchronization points percent-
age (SPP) indicator, and show how one can gather infor-
mation on local synchronization properties emerging in
coupled chaotic systems.
We start by assuming to have N data points in Z ∈

R
m1+m2 . By means of a proper subspace reconstruction

[10], we end up with N data points in X ∈ R
m1 and

N corresponding images in Y ∈ R
m2 . We then pick a

specific point x̃ ∈ X and consider its image ỹ ∈ Y.
The first task consists in identifying proper domains

and co-domains for a statistical analysis of the existence
of functional dependency. For this purpose, we choose a
pair of positive real numbers (εk, δ) (the index k being an
integer), and consider the volume Uεk ⊂ X (Vδ ⊂Y) con-
taining all points whose m1-distance (m2-distance) from
x̃ (ỹ) is smaller than εk (δ). Furthermore, we look at all
points in X falling within Uεk , and verify the imaging
condition, that is we ask ourselves whether or not all im-
ages of the points in Uεk fall within Vδ. If the answer is
no, we choose εk+1 < εk, and repeat the above procedure.
If for all k the imaging condition is not satisfied, the task
ends with the conclusion that no local functional depen-
dency exists in the vicinity of the chosen configuration
(x̃, ỹ). If, instead, for a given k̃ the imaging condition is
verified, the task ends with the identification of a valid
pair (εk̃, δ), over which one has to test for the existence
of a continuous functional relationship.
Fig.1 helps in understanding the schematic represen-

tation of the procedure. In the following we will denote
with U ⊂ X (V ⊂ Y) the neighborhood Uε

k̃
(Vδ) sur-

rounding x̃ (ỹ), and assume thatm < N points fall within
U . By construction, the number of points falling within
V will be n ≥ m, reflecting the fact that V might host
also images of points not belonging to U .
The probability of a single point falling within V is
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FIG. 1: Schematic representation of the statistical continuity
analysis. Upper part shows the reconstructed trajectories in
the two subspaces X and Y, and the location of the points
x̃ and ỹ. The lower part zooms on the U,V neighborhoods.
For ε = εk+1, V contains all images of the m points in U

(solid circles), plus images of other points (empty squares)
from outside U . For ε = εk, some points in U (empty circles)
have images outside V .

P (V ) ≡ n/N , and the probability that m points fall

within V by pure chance is Pm(V ) = P (V )m =
(

n
N

)m
.

This latter quantity, for reasonable choices of n,m [rea-
sonable pairs (εk̃, δ)], is a very small number. However,
one has to fix a confidence level of comparison, for as-
sessing existence of a local continuous function between
the two neighborhoods. This problem was addressed
in [12], where the continuity statistics method was pro-
posed. This consists in calculating the quantity bP , de-
fined as

bP = max
q=1,...,m

B(q,m;P ), (1)

where B(q,m;P ) is the binomial distribution, giving
the probability that q ≤ m events out of m attempts are
realized for a process of elementary probability P .
As said above, the presence of a single data within V

has probability P (V ). The quantity bP (for P = P (V ))
represents then the maximum over q of the probability
that, given m points, q out of them fall into V . Hence,
a level of confidence for the existence of a continuous
function can be estimated in terms of the ratio

Θ =
Pm(V )

bP
. (2)

If Θ ≈ 1 we have no trustable information about the
existence of such a functional relationship, insofar as the
chance probability of having our m points in V is of the
same order of the maximum probability of having events
in V out of m attempts. On the contrary, if Θ ≪ 1, the
chance probability of having our m points in V is negli-
gible compared to bP . Thus one concludes that the two
sets U and V are the domain and co-domain respectively
of a local continuous function mapping states in X close

to x̃ to states in Y close to ỹ. This answers the practi-
cal question of predicting states in Y with error δ from
measurements of states in X with error εk̃.
We have made use of the original formulation of the

continuity statistics [12], that explicitly considers P =
P (V ) in Eq.(2). More recently, the same Authors of [12]
have proposed an alternative way for measuring the con-
fidence level, by choosing P = 1/2 in the denominator of
Eq. (2), corresponding to an hypothesis of equal proba-
bility for an attempt to fall within or outside the selected
box [13].
Our technique for characterizing synchronization con-

sists then of the three following points: i) check the
imaging of neighborhoods of a given configuration x̃ into
neighborhoods of ỹ; ii) assess the degree of confidence
that such an imaging process comes from the existence
of a local continuous function; iii) repeat points i) and
ii) for all N pairs of configurations (x̃, ỹ) available in the
data set. This procedure allows a classification of the
different dynamical states into locally synchronized and
non synchronized ones. As a result one can introduce the
synchronization points percentage (SPP) indicator, as the
ratio between the total number ñ of locally synchronized
configurations and the total number of available points
N .
The proposed method can be applied to any kind of

multivariate data set, for the detection of hidden local
synchronization properties, that cannot be detected by
global indicators, such as correlation functions, Lyapunov
exponents, Lyapunov functionals, or any other kind of
time (or ensemble) average indicators that unavoidably
result in mixing locally synchronized and unsynchronized
configurations. As a result, the SPP indicator furnishes
relevant information in all those cases in which synchro-
nization states emerge locally in phase space, to detect
predictability properties that are limited to some subset
of the dynamics.
In order to illustrate the robustness of the method,

in the following we will refer to a test case, represented
by a pair of non identical bidirectionally coupled chaotic
Rössler oscillators. Here m1 = m2 = 3, and the sub-
spaces X and Y contain state vectors x≡ (x1, y1, z1) and
y≡ (x2, y2, z2) whose evolution is ruled by

ẋ1,2 = −ω1,2y1,2 − z1,2 + ǫ(x2,1 − x1,2),

ẏ1,2 = ω1,2x1,2 + 0.165z1,2, (3)

ż1,2 = 0.2 + z1,2(x1,2 − 10).

In Eqs.(3), ω1,2 = ω0±∆ represent the natural frequen-
cies of the two chaotic oscillators, ω0 = 0.97, ∆ = 0.02
is the frequency mismatch and ǫ > 0 rules the cou-
pling strength. As ǫ increases, the emergence of different
synchronization features in Eqs.(3) has been described
and characterized in the literature [4, 5]. Precisely, for
ǫ < 0.036 no global synchronization (NS) is established,
in terms of the global indicators proposed up to now.
For 0.036 ≤ ǫ � 0.11 a phase synchronized (PS) regime
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emerges characterized by the boundedness in time of the

phase difference ∆φ ≡| φ1 − φ2 | [φ1,2 ≡ arctan
(

y1,2

x1,2

)

being the phases of the two oscillators], whereas the two
chaotic amplitudes remain almost uncorrelated [4]. At
larger coupling strengths (ǫ ≥ 0.145), lag synchronization
(LS) is established, corresponding to a collective motion
wherein | x(t)− y(t− τ) | is bounded over the whole dy-
namical evolution (τ > 0 represents here a lag time) [5].
In this regime, increasing ǫ results in gradually decreas-
ing τ , eventually ending with a regime indistinguishable
from complete synchronization (CS).
Most of the transition points between these regimes

were also identified in Ref. [5], by inspection of the Lya-
punov spectrum of Eqs.(3) as a function of the coupling
strength. Precisely, the NS to PS (PS to LS) transition
occurs for that value of ǫ for which a previously zero
(positive) Lyapunov exponent becomes negative. On the
other hand, the LS to CS transition is a smooth transition
that can be tracked by use of the time averaged similar-
ity function [5]. In the following we apply our method
with a threshold value of Θ = 0.1 for the discrimina-
tion of whether or not the coupled systems display local
functional relationships.
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FIG. 2: SPP indicator (see text for definition) vs. coupling
strength ǫ. The vertical dashed lines indicate the transition
points between the different synchronization regimes. The
inset shows a zoom limited to the range 0.05 < ǫ < 0.15,
where the PS to ILS transition point is located at ǫc ≃ 0.10.
Notice the two different slopes in the linear growth of SPP
for ǫ < ǫc and ǫ > ǫc.

An intermediate synchronization regime between PS
and LS exists in the range 0.11 � ǫ < 0.145, called in-
termittent lag synchronization (ILS), where the system
(3) displays long epochs of LS evolution, interrupted by
persistent bursts of desynchronized motion. This has
been observed numerically, and put in relation with the
system’s trajectory passing through configurations where
one globally negative Lyapunov exponent has a local pos-
itive value. Since ILS is an intimately local phenomenon,
its transition point has not been captured by those tech-

niques that measure time or ensemble averaged quanti-
ties. As a result, up to now, studies on ILS have been
limited to numerical investigations [5], or based upon the
role in the synchronization process played by the differ-
ent unstable periodic orbits visited by the dynamics [14].
We will show that our SPP indicator is able to discrimi-
nate between ILS and PS regimes, as well as to directly
identify the PS to ILS transition point.

We have performed long time simulations of Eqs.(3)
at several coupling strength values, and collected data
points from the two scalar outputs x1 and x2. For each
ǫ, data points are collected over a time corresponding
to 1.7 · 105 Rössler cycles, with a sampling frequency
of 10 points per cycle. Simulations were performed
with a standard fourth order Runge-Kutta method, and
with random initial conditions. Furthermore, the stan-
dard embedding technique [15] was used to reconstruct
the three dimensional vector states x and y from time-
delayed coordinates of the scalar variables x1 and x2,
and calculation of the SPP indicator was performed on
the reconstructed spaces.
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FIG. 3: a) SPP indicator vs. number n of points falling within
V for ǫ = 0.01 (triangles, NS), ǫ = 0.08 (squares,PS) and
ǫ = 0.155 (circles, LS). b) SPP vs. n within the LS regime
for ǫ = 0.155 (dotted line); ǫ = 0.17 (dashed line) and ǫ =
0.19 (continuous line). For all cases, before saturation (n ≤

50), SPP depends on n with a scaling law SPP ∼ nβ with
β ∼ 0.85. For n > 50 the three curves saturate to 100 % of
synchronization points.

Fig.2 reports the behavior of the SPP indicator vs. the
coupling strength ǫ, calculated by fixing δ so as n = 150
points are falling within V . Fixing n results in general in
an error δ that is not constant over the attractor. On the
other side, if the measure is strongly non homogeneous,
fixing δ could generate situations in which n is so small
that the statistics becomes meaningless. These concerns
do not apply however in the case of the Rössler system
for the parameters used in Eqs. (3), since the density
of points is roughly homogeneous over the attractor and
both choices lead to equivalent results. As one expects,
SPP increases monotonically as the coupling strength in-
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creases, saturating to 1 when approaching the CS regime.
Interesting novel information can be extracted by in-

spection of SPP within those synchronization regimes,
such as PS and ILS that do not correspond to global
synchronization features. In particular, it is found that
SPP is linearly increasing with ǫ in both regimes, but
with two different slopes (see the inset of Fig.2). The
linear increase of the indicator already within PS is a rel-
evant result. Indeed, if and to which extent PS implies
weak correlations in the chaotic amplitudes was yet un-
known, and constituted an issue generating controversy.
The present result shows that PS does imply an increas-
ing percentage of local functional relationship, thus quan-
tifying directly the degree of amplitude synchronization
within such a regime. Furthermore, the crossover point
between the slopes of the two linear growths allows one to
identify the PS to ILS transition point at ǫ ≃ 0.10, that
none of the various indicators used in previous works was
capable to reveal.
Finally, other novel information can be extracted from

the scaling behavior of SPP with n, that is with enlarging
the radius δ of the image box in the Y subspace. Fig.3a)
shows SPP vs. n for the NS, PS and LS regimes. In
all cases, the SPP indicator increases monotonically. For
LS (circles) it fastly saturates to 1 (the same value as
CS). This is reflecting the fact that LS differs from CS
only due to the presence of a lag time τ . Enlarging too
much the neighborhood size results in V to fully overlap
with all images of points in U shifted by a phase factor
ωτ , where ω is the mean frequency of the oscillator, thus
making indistinguishable LS from CS.
More insights on this property can be extracted from

Fig.3b), where SPP is reported vs. n within the LS

regime for different values of ǫ, corresponding to different
values of the lag time τ . Here one sees that, before satu-
ration, SPP depends on n with a scaling law SPP ∼ nβ

with a unique exponent β ∼ 0.85 for the three ǫ values.
However, the three curves saturate to 1 at three different
values of n, reflecting the behavior of τ within LS, that
monotonically decreases as ǫ increases.
Coming again to Fig.3a), one realizes that for both

NS (triangles) and PS (squares), the SPP indicator is al-
ways bounded away from 1. This indicates that in these
regimes a global predictability of one subsystem’s states
from measurement in the other subspace is never possible
for any choice of resolution. However, given a resolution
δ in the image subspace (a maximum error allowed in
the prediction), our indicator quantifies the number of
states that can be locally predicted at that resolution,
thus revealing that local hidden synchronization features
can be extracted for prediction purposes, also in those
cases in which global dependencies are not established.
This feature might be relevant for detecting configura-
tions where a local prediction can be assessed, in many
situations where a global prediction procedure fails.
In real data, the effect of noise is to reduce the reso-

lution in the phase space, so that the statistics relative
to boxes containing a small number of points is not reli-
able anymore. A threshold in n should therefore be in-
troduced, typically corresponding to δ’s larger than the
noise-induced uncertainty.
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