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Abstract

The geometric approach to mechanics based on the Jacobi metric al-
lows to easily construct natural mechanical systems which are integrable
(actually separable) at a fixed value of the energy. The aim of the present
paper is to investigate the dynamics of a simple prototype system outside
the zero-energy hypersurface. We find that the general situation is that in
which integrability is not preserved at arbitrary values of the energy. The
structure of the Hamiltonian in the separating coordinates at zero energy
allows a perturbation treatment of this system at energies slightly different
from zero, by which we obtain an analytical proof of non-integrability.
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1 Introduction

The property of a Hamiltonian system to be integrable may happen to be sat-
isfied only at a fixed value of the energy. In this case we can speak of weak
integrability and refer to the phase-space functions which are conserved only in
correspondence of those given energy values as weak invariants. From this point
of view, standard integrability, with invariants which are conserved functions at
arbitrary energies, can be referred to as strong integrability.

Weak invariants, also called configurational invariants, have been discussed
by Hall (1983) and by Sarlet, Leach and Cantrijn (1985). Hietarinta (1987), in
his account of the direct methods for the search of the second invariant, also
provides a review of all the known 2-dimensional systems admitting one or more
configurational invariants. In the present paper we use the approach of Rosquist
and Pucacco (1995), where quadratic invariants at arbitrary and fixed energy for
2-dimensional systems were treated in a unified way. As shown in that paper,
the integrability condition for quadratic invariants, corresponding to second-
rank Killing tensors of the conformal Riemannian geometry with Jacobi metric,
involves an arbitrary analytic function S(z). For invariants at arbitrary energy,
the function S(z) is a second degree polynomial with real second derivative and
the integrability condition then reduces to the classical Darboux’s condition
for quadratic invariants at arbitrary energy (Darboux, 1901; Whittaker, 1937).
The possibility of searching for linear and quadratic invariants at fixed energy
was also addressed and some examples of systems admitting a second quadratic
invariant at zero energy were provided.

Generalizing the approach, Karlovini and Rosquist (2000) have discussed the
existence of invariants cubic in the momenta at both fixed and arbitrary energy.
Besides giving a list of all known systems admitting a cubic strong invariant,
they find a superintegrable system admitting a cubic configurational invariant
related to an energy dependent linear invariant. In Karlovini, Pucacco, Rosquist
and Samuelson (2002) we discuss the case of quartic invariants associated with
the existence of fourth-rank Killing tensors. The results obtained in this geo-
metric framework are in agreement with the direct method when the class of
potentials examined is the same, as can be seen comparing the cases listed in
the above papers with those appearing in Nakagawa and Yoshida (2001).

The set of weakly integrable systems is very large but, on the other hand,
they are probably of limited usefulness in physical applications. One may won-
der however if the knowledge of a weak invariant can provide information about
the global dynamical behaviour of the system. One possibility is to investi-
gate the existence of integrable systems with a higher-order strong invariant
related to the weak one (e.g. linear in the momenta, as in one example given
in Karlovini and Rosquist, 2000). The aim of the present paper is instead
to explore the phase-space structure of the system at energies different from
that assuring weak integrability in the general situation in which the system is
non-integrable. In one class of systems, we show how the property of weak inte-
grability leads to a better understanding of the dynamics of generic systems. In
particular, the setting in which the geometric approach casts the problem allows
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to apply powerful tools of analytical mechanics to prove the non-integrability of
the dynamical system.

The plan of the paper is as follows: in section 2 we recall conditions for
weak and strong integrability of a two-dimensional natural Hamiltonian system
limiting the application to the existence of a second invariant quadratic in the
momenta; in section 3 we present a class of weakly integrable systems which have
a quasi-regular behavior at near-zero energy and for which we give a Poincaré
type argument of non integrability out of the zero energy surface; section 4
contains the conclusions.

2 Integrability at fixed energy

The technique devised and applied in Rosquist and Pucacco (1995, RP here and
in the following), allows to find the conditions such that a 2-dimensional natural
Hamiltonian system admits a second invariant quadratic in the momenta. In
this section we briefly recall these results that are at the basis of the applications
of the following sections.

2.1 Weak quadratic invariants

We are interested in the classical 2-dimensional systems with Hamiltonian func-
tion

H = 1
2 (p

2
x + p2y) + V (x, y). (1)

Since the Hamiltonian is time-independent, energy is conserved and motion
takes place on the hypersurface

H(px, py, x, y) = E. (2)

The approach of RP amounts to find a conformal transformation to new coor-
dinates X,Y defined by

z = F (w), z = x+ iy, w = X + iY, (3)

generated by an arbitrary analytic function S(z) via the relation

F ′(w(z)) =
√

S(z). (4)

The transformation (3) naturally induces a canonical point transformation that
gives the new Hamiltonian

HS =
1
2 (p

2
X + p2Y )

|S(X,Y )| + V (X,Y ) . (5)

where it appears the conformal factor

|S(X,Y )| =
√

S(w)S̄(w̄) = F ′(w)F̄ ′(w̄). (6)
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One can then show that, if the function

G = E − V, (7)

the so-called “Jacobi” potential, can be expressed, in the new coordinates X,Y ,
in the form

G(X,Y ) =
A(X ;E) +B(Y ;E)

|S(X,Y )| , (8)

whereA and B are arbitrary functions of their arguments, the quadratic function

I0(pX , pY , X, Y ) = 1
2 (p

2
X − p2Y )−A(X) +B(Y ), (9)

commutes with the Hamiltonian (5) on the surface

H(px, py, x, y) = 0. (10)

We therefore speak of a weak invariant of the standard Hamiltonian system, in
contraposition with the usual notion of strong invariant by which we mean a
phase-space function which is conserved at arbitrary values of the energy.

The origin of the phenomenon of weak integrability in the present context
is due to the geometrization of the dynamics via the Jacobi-Maupertuis varia-
tional principle. For a detailed account of the Jacobi geometrization we refer
to standard textbooks (Abraham and Marsden, 1978; Arnold, 1978; Lanczos,
1986) and to RP where, in particular, the link is deepened between quadratic
invariants and second-rank Killing tensors which is at the basis of this approach.
Here we briefly recall that to the Jacobi potential (7) pertains a family of confor-
mal Riemannian metrics parametrized by the value of the energy. Each energy
specifies a geodesic flow on a Riemannian manifold, whose projections coincide
with the orbits of the system defined by the standard Hamiltonian up to a time
reparametrization. The solution of the Killing tensor equations provides an
invariant along the given flow at a given value of the energy parameter (in par-
ticular at zero energy). It is only the additional requirement that the solution
of Killing equations be independent of the energy that leads to integrability at
arbitrary energy and poses a further constraint on the generating function S(z).
If this condition is satisfied, the function (9) commutes with the Hamiltonian (5)
on the surface (2), ∀E. One can clearly also extend the investigation of higher
rank Killing tensors or more general functional forms of the second invariant
and to the corresponding analysis of the conditions for strong integrability.

2.2 Strong quadratic invariants

In RP it has been shown that, to get quadratic invariants at arbitrary energy,
the function S(z) must satisfy the condition

Im{S′′(z)} = 0, (11)

that is it must be a second degree polynomial with real second derivative. Actu-
ally, we can show that condition (11) not only implies strong integrability, but
also assures the separation of variables. We have in fact the following
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Theorem 1: Given the conformal transformation

dz = F ′(w) dw =
√

S(z(w))dw, (12)

condition necessary and sufficient to have

|S(X,Y )| = AS(X) +BS(Y ), (13)

where AS and BS are real analytic functions of a single variable, is that (11) is
true.

Proof: Let us prove that (13) implies (11). Functional form (13) is equivalent
to say that the function |S| must satisfy the differential equation

|S|,XY = 0. (14)

But

|S|,XY = i
[

|S|,ww − |S̄|,w̄w̄

]

= i
[
√
S
(
√
S(

√

SS̄),z
)

,z
−
√

S̄
(

√

S̄(
√

SS̄),z̄
)

,z̄

]

(15)

= i|S|
(

S,zz − S̄,z̄z̄

)

= −2|S| Im{S′′}. (16)

Since |S| is a non-null positive function everywhere, the implication is evident.
On the contrary, (11) is equal to

S = az2 + βz + γ, (17)

with a real and β, γ complex. This implies (13) as can be verified by performing
the coordinate transformation (3), with

w = F−1(z) =

∫

dz
√

az2 + βz + γ
, (18)

where (17) has been used in defining the generating function via (4). Q.E.D.

In RP, Sect. 4, the explicit forms of functions AS and BS are given. They can
be of the four possible types corresponding to separability in Cartesian, polar,
parabolic and elliptic coordinates. In this way, if we write the two arbitrary
functions appearing in (8) as

A(X ;E) = EAS(X)− f(X), (19)

B(Y ;E) = EBS(Y )− g(Y ), (20)

the “true” potential takes the form

V (X,Y ) =
f(X) + g(Y )

|S(X,Y )| , (21)

and the Hamilton-Jacobi equation for Hamilton’s characteristic function, W(X,Y ),
associated to Hamiltonian (5), takes on the explicitly separated form

1
2

[

(W,X)2 + (W,Y )
2
]

+ f(X) + g(Y )− E
[

AS(X) +BS(Y )
]

= 0, (22)

and therefore strongly integrable two-dimensional systems with quadratic sec-
ond invariants can be exhaustively classified.
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2.3 Regularization

Before starting the analysis of weakly integrable system, it is useful to recall
the fact that the conformal transformation leads, in a natural way, to a time
reparametrization of the dynamics which can be usefully exploited in the appli-
cations. This reparametrization has been used since a long time in the frame-
work of the “regularization” of singular differential equations, especially in the
applications in celestial mechanics (see, e.g. Levi-Cı̀vita, 1956; Sundman, 1912).
We can therefore speak of a generalized regularization approach and the null
Hamiltonian introduced below can be called on the same footing the regularized
Hamiltonian.

Let us suppose that we have chosen a function S(z) which generates the con-
formal transformation which gives a system admitting a weak second invariant
(9). If we denote by H0 the function

1
2 (p

2
X + p2Y ) + f(X) + g(Y ), (23)

which can be interpreted as the numerator appearing in the Hamiltonian (5)
once the expression (21) is taken into account, the Poisson brackets of a generic
phase-space function J with HS can be written as

{J,HS} =
1

|S| {J,H0} −
H0

|S|2 {J, |S|} =
{J,H0} − E{J, |S|}

|S| . (24)

On the other hand, let us introduce the null Hamiltonian

HN = (HS − E)|S| = H0 − E|S|. (25)

The Poisson bracket of a function with HN is given by

{J,HN} = {J,H0} − E{J, |S|}. (26)

Eqs.(24) and (26) are therefore equivalent with respect to conservation of J .
The conceptual difference relates to the fact that, whereas vanishing of eq.(26)
expresses the possible conservation of J in the dynamics provided by HN at zero
“energy” (i.e. HN = 0), the vanishing of eq.(24) expresses the conservation of
J in the dynamics provided by HS at arbitrary energy. Note that the physical
energy E enters into HN as an arbitrary parameter.

With the null Hamiltonian, it is automatically introduced a new (regulariz-
ing) time variable η by means of

dη =
dt

|S| . (27)

Just as the Poisson brackets (24) express the total derivative with respect to
the standard time

dJ

dt
= {J,HS}, (28)
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the Poisson brackets (26) express the total derivative with respect to the regu-
larizing time

dJ

dη
= {J,HN }. (29)

Correspondingly, the “regularized” equations of motion are

dX

dη
= {X,HN }, dpX

dη
= {pX ,HN }, (30)

dY

dη
= {Y,HN }, dpY

dη
= {pY ,HN }. (31)

It is worthwhile to remark that HS gives the same dynamics as the original
physical Hamiltonian H. Only different coordinates are used as a result of a
canonical point transformation. The time reparametrization implies the relation
between Poisson brackets associated with the original physical Hamiltonian and
the null regularized one. Considering the phase-space function of the regularized
system as J(pX , pY , X, Y ;E) and the corresponding phase-space function of the
original system, say I(px, py, x, y), obtained via the recipe

{pX , pY , X, Y } → {px, py, x, y}, E → H(px, py, x, y),

the total time-derivative along the flow of these two functions are related by

dJ

dη
= |S|dI

dt
.

The conformal factor is never vanishing and therefore we extend considerations
above on conserved quantities to functions in the original coordinate frame.

It should also be recalled that the combination of the conformal transfor-
mation (3) with the introduction of the new time variable by means of (27) can
also be seen as a canonical transformation on the extended phase space where
H and t are new canonical coordinates (Tsiganov, 2000).

2.4 Dynamics at zero energy

The dynamics provided by the null or regularized Hamiltonian (25) is particu-
larly simple in the separable case: the two motions in the separating coordinates
X and Y decouple and the general motion is given by a superposition with in-
dependent arbitrary initial conditions. Clearly, the same happens in the even
simpler case of a system constructed as above choosing an arbitrary conformal
transformation and selecting only motions at zero energy.

In the η time, the equations of motion (30) given by Hamiltonian (23) are
simply

d2X

dη2
= −f ′(X), (32)

d2Y

dη2
= −g′(Y ). (33)

7



The two “energy” equations

1
2p

2
X + f(X) = h1, (34)

1
2p

2
Y + g(Y ) = h2, (35)

with
h1 + h2 = 0, (36)

delimit the regions admitted to the motion by means of the inequalities

f(X) ≤ h1, (37)

g(Y ) ≤ h2. (38)

From the theory of conformal transformations (see, e.g., Markushevitch, 1983),
the “isothermal” net of resulting coordinates is orthogonal (except in the finite
number of isolated singularities where F ′ = 0). Since in the general case, the
frequencies of the two motions in (30) are incommensurable, the regions ad-
mitted by the motion, with coordinates satisfying inequalities (37), are densely
filled by the representative point. This happens both in the presence of rota-
tions and librations with the two possibilities determined by the explicit form
of the potential functions A and B and by initial conditions. This picture is
the same even if we describe the dynamics with the original Hamiltonian HS .
What changes is only the speed of the representative point along the trajectory.

Due to the almost trivial nature of the dynamics, we would like to know if
we can exploit this simplicity to gain information about the much more complex
situation of arbitrary energy. In the hypothesis of integrability at zero energy, at
energies different from zero there are two possibilities: either the integrability
of the system is preserved or it is broken. In the first case, a second strong
invariant exists but there is no general procedure to find it. Isolated systems
with second invariants which are polynomial in the momenta can be identified
with the techniques described in the papers cited in the Introduction. However,
the general case we expect is that in which integrability breaks down. This is
the subject of the rest of the paper, where we address the following question:
can we use the setting developed so far to investigate and possibly predict the
non-integrability of a given system?

Before closing this section, we would however mention the fact that, due to
the possibility of quite involved conformal transformations, a motion that looks
trivial in the separating variables, may become complicated with many peculiar
features when displayed in the physical coordinates of the original problem.
Therefore, even the case with integrability limited to the hypersurface of zero
energy can have direct practical applications.

3 Systems of the class S(z) = iz
2

We start now the analysis of 2-dimensional systems generated via general confor-
mal transformations that do not stay in the restricted class specified by Theorem
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1. These systems are therefore integrable (actually separable) on the zero-energy
surface. We have selected a set of systems for which the question posed in the
previous section can be given a meaningful answer, with the criteria of the
simplest non-trivial situations.

We consider the function
S(z) = iz2. (39)

This is the simplest polynomial which does not satisfy the constraint (11) and
therefore gives a potential which is not automatically integrable at arbitrary
energy.

Let us examine the coordinate transformation generated by (39). By virtue
of (4), the corresponding conformal transformation is given by

F (w) = exp{ 1+i√
2
w}. (40)

Using polar coordinates so that z = x+ iy = r exp(iϑ) we get1

X = 1√
2
(ϑ+ ln r), Y = 1√

2
(ϑ− ln r). (41)

The X,Y = constant curves are respectively given by the two families

r1(ϑ) = exp(
√
2X − ϑ), r2(ϑ) = exp(

√
2Y + ϑ). (42)

The range of X,Y is from −∞ to +∞ so that the punctured plane (with the
origin excluded) is covered with a one-to-one correspondence.

3.1 A class of weakly integrable systems with S(z) = iz2

From the treatment of section 2, it follows that the potential given by

V (X,Y ) =
f(X) + g(Y )

r2
, (43)

with the separating coordinates of (41), is integrable at zero energy for arbitrary
functions f and g. The factor r−2 comes from eq.(6) that, from the choice of
eq.(39), gives

|S(X,Y )| = e
√
2(X−Y ) = r2. (44)

Due to the presence of the polar angle as explicit argument in combination with
the logarithm of the radial coordinate, one must be careful in the selection of
the arbitrary functions to avoid unphysical multivaluedness in the resulting po-
tential function. A simple choice giving a smooth glueing of the sheets, resulting
in a continuous and single-valued potential, is the following

f(X) = 1
2 (C − sin

√
2X), (45)

g(Y ) = 1
2 (C − sin

√
2Y ), (46)

1Note that in RP, in equations (102–104), there is a misprint and the coordinate r must
be substituted with its natural logarithm.
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where C is a real constant. Using (41), the explicit form of the potential in
polar coordinates is

V (r, ϑ) =
C − sinϑ cos(ln r)

r2
. (47)

When the parameter C lies in the interval

0 < C ≤ 1, (48)

the motion in the potential (47) is bound for every value of the energy below a
positive threshold, since the equipotentials are closed regular curves around the
unique absolute minimum of the function V (r, ϑ),

Emin = min{V (r, ϑ)} < 0. (49)

At the threshold energy, ET > 0, the equipotential is asymptotically open and
the motion is of parabolic type. We are interested in the bound motion, so that
we study the energy range

Emin < E < ET . (50)

At zero energy we can readily verify that the system is indeed integrable. Using
momenta expressed in polar coordinates according to

rpr = xpx + ypy, (51)

pϑ = xpy − ypx, (52)

the second invariant has the form

I0(pr, pϑ, r, ϑ) = rprpϑ − cosϑ sin(ln r). (53)

It is straightforward to check that this function commutes with Hamiltonian

H = 1
2

(

p2r +
p2

ϑ

r2

)

+
C − sinϑ cos(ln r)

r2
(54)

on the surface (10).
Moreover, a direct inspection allows to find the main periodic orbits. We

have the marginally stable orbit

r ≡ 1 (55)

and the two stable periodic orbits given by

ϑ = ± ln r. (56)
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3.2 Dynamics outside the zero energy shell

The interesting question is now: what is the nature of the motion when the
energy is different from zero? Since the system has been constructed as the
simplest generalization of separable systems, it could be still integrable possi-
bly with a more complicated second invariant. A systematic investigation of
polynomial invariants of higher degree has been unsuccessful. This is clearly
not enough to state non-integrability of system (54). However, we can take the
other way and try to see if we can devise a test of non-integrability. Actually,
it would be highly desirable to have an analytic test of non–integrability, since
it can escape a numerical approach, such as the computation of the Poincaré
surface, if stochastic zones are exceedingly small to be detected.

An analytic proof can be obtained by applying the Poincaré theorem (Poincaré,
1892; Whittaker, 1937) on non-existence of additional invariants in non-degenerate
systems. To this end we follow a perturbative approach in which the value of the
energy plays the role of the perturbation parameter, with zero energy defining
the unperturbed system. We remark that this procedure can be applied to the
regularized system whereas it seems very difficult to attempt it in the original
variables.

In the present instance, the null Hamiltonian (25) in the separating variables
is

HN = 1
2 (p

2
X + p2Y )− 1

2

(

sin
√
2X + sin

√
2Y

)

+ C − E e
√
2(X−Y ). (57)

With the further change of variable

α(X) =
√
2X − π

2
= ϑ+ ln r − π

2
, (58)

β(Y ) =
√
2Y − π

2
= ϑ− ln r − π

2
, (59)

we obtain the Hamiltonian

HP = 1
2 (p

2
α + p2β)− cosα− cosβ − 2Eeα−β = −2C. (60)

We can now express the system in the standard form HP = H0 + ǫH1, where
an integrable “zero” order Hamiltonian is perturbed by a non-integrable first
order term. In our case we have

H0 = 1
2 (p

2
α + p2β)− cosα− cosβ, (61)

H1 = eα−β , (62)

ǫ = −2E. (63)

It is then necessary to express this Hamiltonian as a function of the action-angle
variables of the unperturbed system:

HP = H0(J1, J2) + ǫH1(J1, J2, θ1, θ2). (64)
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The canonical variables satisfy the equations of motion

J ′
k = −∂HP

∂θk
, θ′k =

∂HP

∂Jk
, (k = 1, 2) , (65)

where the prime denotes differentiation with respect to η, the new time intro-
duced in (27). For E = 0 (ǫ = 0), the unperturbed motion is given by:

J ′
k = 0 → Jk = const, (66)

θ′k =
∂H0

∂Jk
= ωk = const → θk = ωkη + const. (67)

The energy equations (34) represent in this case the two uncoupled pendulums
of the unperturbed Hamiltonian. Now we have

h1 + h2 = −2C. (68)

In view of (48), we are considering only libration motions. It follows that the
action variables are (see, e.g., Boccaletti and Pucacco, 1996)

Jk =
8

π

[

E(κ2
k) + (κ2

k − 1)K(κ2
k)
]

, (69)

where
κ2
k = 1

2

(

1 + hk

)

, 0 ≤ κ2
k < 1 (70)

and K(κ2
k) and E(κ2

k) are the complete elliptic integrals of first and second kind.
H0 is implicitly expressed in terms of the actions by means of

H0(J1, J2) = 2
(

κ2
1(J1) + κ2

2(J2)− 1
)

. (71)

Also the main periodic orbits of the unperturbed potential of Hamiltonian
(60) deserve to be mentioned. The two periodic orbits

α = 0, β = 0, (72)

are elliptic stable and coincide with the two periodic orbits in eq.(56). The two
periodic orbits

α− β = 0, (73)

and
α+ β = 0, (74)

are of parabolic type (that is they are marginally stable with characteristic
exponents ±1). In particular (73) coincides with the orbit of eq.(55). These
orbits are “resonant” since their frequencies ω1, ω2 are equal and are members
of a family given by all the possible phase shifts λ with

0 ≤ λ ≤ 2π

ω1
. (75)
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Orbit (73) corresponds to λ = 0, whereas orbit (74) corresponds to λ = π/ω1.
Parabolicity is just related to the existence of resonant tori in the unperturbed
system. A perturbation “breaks” these tori generating isolated stable and un-
stable periodic orbits. In general, in non-degenerate systems we may expect the
existence of a generic resonance that in the following will be taken of the form

ω1 = (p/q)ω2, (76)

with p and q integers such that p ≤ q.

3.3 Poincaré theorem on non-existence of additional in-

variants

Poincaré method to demonstrate non-integrability of a Hamiltonian systems is
based on proving that, under some genericity conditions, no analytic second
invariant exist besides the Hamiltonian itself. We state the theorem as it is
presented in Poincaré (1892) and Whittaker (1937). Then we show (theorem 5
below) that our system (57) comply with the requirements of Poincaré theorem,
proving therefore its non-integrability and, as a consequence, non-integrability
of original system (54). Moreover, by exploiting lemma 4 used in the proof of
theorem 5, we will show in the following section the existence of isolated periodic
orbits and verify that their stable (or unstable) nature varies with respect to E.

We start with a definition. Assume that, for J1 = Ĵ1 and J2 = Ĵ2, frequencies
ω̂1 and ω̂2 are commensurate according to relation (76). J1, J2 satisfying this
condition are said to belong to the Poincaré set. For a two dimensional system,
“Poincaré non-existence theorem” can be stated as follows:

Theorem 2: Let the Hamiltonian

HP = H0(J1, J2) + ǫH1(J1, J2, θ1, θ2) (77)

satisfy the following hypotheses:
1. H0 is non-degenerate, that is:

det

(

∂2H0

∂J2
k

)

6= 0; (78)

2. H1 is generic, that is, defining the Fourier expansion

H1(J1, J2, θ1, θ2) =
+∞
∑

m,n=−∞
hmn(J1, J2)e

i(mθ1+nθ2), (79)

no coefficient hmn(J1, J2) is zero in the Poincaré set;
then, there is no analytic second invariant of the form

I =
∞
∑

s=0

ǫsIs(J1, J2, θ1, θ2), (80)

13



independent of H.

Proof: We refer to Poincaré (1892, sects. 81–83) and Whittaker (1937, sect.
165). For a more recent proof, see Giorgilli (2002, sect.3.1). Q.E.D.

To show the non existence of analytic second invariants of the form (80)
is equivalent to exclude Liouville integrability. However, it must be remarked
that the above result apply in the case of a regular function which is uniformly
continuous in the phase-space variables and in a small range of the perturbation
parameter, but the possibility cannot be excluded that for small fixed values of
ǫ does a non-uniform invariant indeed exist (see, e.g., Kozlov, 1991, sect. 4.1).

We now proceed to verify that Hamiltonian (60) satisfy the conditions re-
quired to apply theorem 2. Let us check the non-degeneracy condition first.

Lemma 3: The Hamiltonian (71) is non-degenerate.

Proof: The frequencies of the unperturbed motion can be calculated as fol-
lows (see, Boccaletti and Pucacco (1996), sect. 1.16):

ωk =
∂H0

∂Jk
=

∂

∂Jk

(

2κ2
k

)

= 4κk

(

∂Jk
∂κk

)−1

=
π

2

1

K(κ2
k)
, (81)

where we have used
∂Jk
∂κk

=
8

π
κkK(κ2

k), (82)

which comes from eq.(69) and standard properties of the elliptic integrals. With
an analogous procedure we can compute the second derivative

∂2H0

∂J2
k

=
∂κk

∂Jk

∂2H0

∂κk∂Jk
= 4

(

∂Jk
∂κk

)−1
∂κk

∂Jk
=

16

π2

1

κ2
kK

2(κ2
k)
. (83)

We recall that K(κ2) is a positive uniformly increasing function in the interval
0 ≤ κ2 < 1, such that

K(0) =
π

2
, K(1) → ∞. (84)

Since
∂2H0

∂J1∂J2
= 0, (85)

we have that

det

(

∂2H0

∂Ĵ2
k

)

=
∂2H0

∂Ĵ2
1

∂2H0

∂Ĵ2
2

6= 0, (86)

so that eq.(78) is satisfied and condition 1. in the statement of Theorem 2 is
verified. Q.E.D.

We come now to the genericity condition, directly proceeding to perform a
Fourier series expansion of the perturbation appearing in (60):

H1 = eα(η)−β(η) =

+∞
∑

m,n=−∞
hmn(J1, J2)e

i(mθ1+nθ2), (87)
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where we have to use the solution of the unperturbed problem. The motion in
the potential of Hamiltonian (60) with E = 0 is given by

α(η) = 2 arcsin
[

κ1sn(η, κ1)
]

, (88)

β(η) = 2 arcsin
[

κ2sn(η, κ2)
]

, (89)

where sn(u) is the Jacobi sine-amplitude function. In this way, since κ depends
on J , the actions of the unperturbed problem enter in the expansion. On the
same footing, the angles appearing in the Fourier expansion are just the canoni-
cal angle variables of the unperturbed problem, so that the harmonicsmω1, nω2,
with integer m,n, are multiples of the unperturbed frequencies.

We preliminarly assess the structure of the resonating set of frequencies that
determine the Poincaré set. Using expressions (81) for the frequencies, we have
that the resonance condition (76) can be written as

q

K(κ2
1)

− p

K(κ2
2)

= 0, (90)

where, in view of (68) and (70),

κ2
2 = 1− C − κ2

1. (91)

Choosing a value of the parameter C in the interval (48) fixes the corresponding
range of κ2

1 as
0 ≤ κ2

1 ≤ 1− C. (92)

Therefore, we can define a function

R(κ2
1) =

q

p
K(1− C − κ2

1)−K(κ2
1), (93)

which is continuous in the range (92) and, recalling (84), such that

R(0) =
q

p
K(1− C)− π

2
, R(1− C) =

πq

2p
−K(1− C). (94)

Without loss of generality we have assumed p ≤ q. Recalling again (84), we
have that

K(1− C) >
π

2

which implies R(0) > 0. Moreover, if the inequality

q

p
<

2

π
K(1− C) (95)

is satisfied, we see that R(1 − C) < 0. Then we have that the function R(κ2
1)

defined in the interval (92), by continuity, must necessarily vanish at a point of
this interval. Observing that condition (90) can also be written in the form

q
p
K(1− C − κ2

1)−K(κ2
1)

K(1− C − κ2
1)K(κ2

1)
= 0, (96)
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we see that the point where R(κ2
1) vanishes is also the point where the resonance

condition is satisfied.
Actually, it is straightforward to check that inequality (95) is not a limitation

on the set of possible resonances, since dynamics automatically comply with
it. In fact, recalling again (81) and 84), we see that both frequencies of the
unperturbed libration motions must satisfy the constraints

π

2K(1− C)
= ω(1− C) < ω < ω(0) = 1. (97)

Therefore, the ratio of two frequencies is such that

ω2

ω1
<

ω(0)

ω(1− C)
=

2

π
K(1− C), ∀ C ∈ (0, 1]. (98)

As a consequence we see that, for every pair of frequencies such that the reso-
nance condition (76) is verified, inequality (95) is always satisfied. We conclude
that, for every value of the parameter C in the range (48), there is a whole
dense set of resonances in the space of unperturbed frequencies. Each value of
the root of the function R(κ2

1), say κ̂2
1(C, q, p) with the corresponding value of

κ̂2
2 given by (91), determine, via (69), the corresponding values of Ĵ1 and Ĵ2 of

the Poincaré set.
At this point, we have the following:

Lemma 4: The Fourier expansion coefficients of perturbation (87) are non-
vanishing on the resonance manifold specified by relation (76).

Proof: The Fourier coefficients are given by

hmn = AmBn, (99)

where

Am =
1

T1

∫ T1

0

eα(η)e−imω1ηdη, (100)

Bn =
1

T2

∫ T2

0

e−β(η)e−inω2ηdη, (101)

and, in a natural way,

Tk =
2π

ωk

, k = 1, 2.

On the resonance manifold we have

m

n
= − q

p
, (102)

so that the simplest choice we can make is

m = q, n = −p. (103)
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Let us separate real and imaginary parts in the Fourier coefficients of a
generic resonance. The coefficient with m = q is:

Aq =
1

T1

∫ T1

0

eα(η)(cos qω̂1η − i sin qω̂1η)dη = Cq − iSq. (104)

Using the resonance condition

nω̂2 = −pω̂2 = −qω̂1,

the coefficient with n = −p is:

B−p =
q

pT1

∫
p
q
T1

0

e−β(η)(cos qω̂1η + i sin qω̂1η)dη = Cp + iSp. (105)

The Fourier coefficients on the resonance manifold are therefore

hq,−p = (CqCp + SqSp) + i(CqSp − CpSq). (106)

We now proceed to evaluate above integrals, starting with the elimination of all
cases in which some of them identically vanish. First of all, observing solutions
(88–89), we realize that the functions α(η) and β(η) are even over each half os-
cillation period and odd over the corresponding whole period. As a consequence,
the exponentials appearing in the perturbation (87) are both even functions over
the corresponding half period. On the same interval, cos qω̂1η (with q odd) and
sin qω̂1η (with q even) are odd functions. Referring to the integrals in (104), by
parity arguments, we can therefore state that:

Cq = 0 for q odd, (107)

Sq = 0 for q even. (108)

The remaining integrals, namely Sq with q odd and Cq with q even, are surely
non vanishing. For, take for instance Sq when q is odd. We have

T1Sq =

∫ 1

2
T1

0

eα(η) sin qω̂1ηdη +

∫ T1

1

2
T1

eα(η) sin qω̂1ηdη (109)

=

∫ 1

2
T1

0

eα(η) sin qω̂1ηdη −
∫ 1

2
T1

0

e−α(η) sin qω̂1ηdη, (110)

where, in the second step, we performed a translation η → η − T1/2 and used
the fact that

α(η − T1/2) = −α(η) (111)

sin qω̂1(η − T1/2) = − sin qω̂1η. (112)

The statement follows because

eα(η) 6= e−α(η), ∀ η 6= 0.
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The same holds for Cq when q is even.
The integrals appearing in (105) are characterized by the integration interval

which depends on the ratio p/q. However, the function exp(−β), which has
the same parity property of exp(−α), is “sampled” by trigonometric functions
alternatively even and odd on each half interval. Using the same arguments as
above we get

Cp = 0, Sp 6= 0, for p odd, (113)

Sp = 0, Cp 6= 0, for p even. (114)

Summarizing these results and comparing with expression (106), we get fi-
nally that the following coefficients

hq,−p = CqCp for q, p even, (115)

hq,−p = iCqSp for q even and p odd, (116)

hq,−p = −iSqCp for q odd and p even, (117)

hq,−p = SqSp for q, p odd, (118)

are non vanishing. This proves the lemma and shows that condition 2. in the
statement of theorem 2 is indeed satisfied. Q.E.D.

We remark that, according to the analysis already carried out by Poincaré
(1892, sect.83), condition 2. can be somewhat relaxed. In particular, introduc-
ing the concept of “classes” in the resonance manifold, the first combination
with both q and p even can be reduced to one of the others. However, this fact
does not substantially modify the conclusions above.

With this body of results we can now enunciate our non-integrability state-
ment applied to the original class of systems of section 3.1.

Theorem 5: The dynamical system generated by Hamiltonian,

H = 1
2

(

p2r +
p2

ϑ

r2

)

+
C − sinϑ cos(ln r)

r2
= E, (119)

integrable at energy E = 0, does not admit a conserved function

I(pr, pϑ, r, ϑ;C), (120)

defined in the open set −ǫ1 < E < 0 and 0 < E < ǫ2, with small enough ǫ1,2,
for every value of C in the interval (0, 1].

Proof: From the discussion on regularization and dynamics at zero energy
of sects. 2.3 and 2.4, it has been shown that the dynamics generated by Hamil-
tonian (119) is equivalent, a part a time reparametrization, to those generated
by Hamiltonian (60). In particular, this applies to the conservation properties
of phase-space functions: non-existence of a function I(pα, pβ, α, β;E) which is
an invariant, for any E, of Hamiltonian (60), implies non-existence of a function
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I(pr, pϑ, r, ϑ;C) which is an invariant, for any C, of Hamiltonian (119). Hamil-
tonian (60) satisfies the conditions for the applicability of theorem 2. For, by
lemma 3 we have that its unperturbed part is non degenerate and from lemma
4 we have that the perturbing function is generic in the Poincaré set which is
dense for every 0 < C ≤ 1. The statement follows. Q.E.D.

We recall (see sect. 3.1) that Hamiltonian (119) supports bound motion in
the energy range

Emin < E < ET (121)

with Emin < 0 and ET > 0 and is separable at E = 0. Theorem 5 proves
non-integrability of these motions for small (positive or negative) values of the
energy. However, from the remarks above, it is not possible to exclude the
existence of isolated integrable case with non uniform invariants corresponding
to some other fixed values of the energy.

3.4 Existence of isolated periodic orbits

Non-integrability of a perturbed Hamiltonian system manifests itself with the
birth of alternately stable and unstable periodic orbits. Actually, their existence
is an “obstruction” to the integrability and can be used as an argument to prove
non-integrability when the conditions required by theorem 2 do not apply or are
difficult to be checked. In our case, we can exploit the results already obtained
to get informations about the nature of the periodic orbits ensuing from the
perturbation. We follow Arnold, Kozlov and Neishtadt (1988, sect. 6.1) to
show the existence of isolated periodic orbits and to determine their stability
properties. For a recent application of this technique in celestial mechanics we
refer to Diacu and Santoprete (2001).

We state, referring for the proof again to Poincaré (1892), the following

Theorem 6: Suppose that the following conditions are satisfied:

1. H0 is non-degenerate in Ĵk, k = 1, 2, that is:

det

(

∂2H0

∂Ĵ2
k

)

6= 0; (122)

2. for some λ = λ⋆, the average perturbation, defined as

H1(Ĵ1, Ĵ2, λ) =
1

Tη

∫ Tη

0

H1(Ĵ1, Ĵ2, ω̂1η + λ, ω̂2η)dη, (123)

is such that
∂H1

∂λ
= 0,

∂2H1

∂λ2
6= 0; (124)

and the perturbing function

H1 = H1(Ĵ1, Ĵ2, ω̂1η + λ, ω̂2η), (125)
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where λ is the phase shift of the resonating motions, is periodic in η with period
Tη.

Then, for small ǫ, the perturbed system has a periodic solution with period
Tη(ǫ) such that Tη(0) = Tη and with characteristic exponents ±α which can be
expressed as power series in the form

α = α1

√
ǫ + α2ǫ+ α3ǫ

√
ǫ + dots, (126)

where the coefficients are given by the relations

ω̂2
1α

2
1 =

∂2H1(λ
⋆)

∂λ2

(

ω̂2
1

∂2H0

∂Ĵ2
1

− 2ω̂1ω̂2
∂2H0

∂Ĵ1∂Ĵ2
+ ω̂2

2

∂2H0

∂Ĵ2
2

)

. (127)

We can actually prove that system (61) meets the requirement of theorem
6. For, condition 1. is a straightforward application of lemma 3 to the Poincaré
set. Condition 2. derives applying the results of lemma 4. Taking into account
the phase shift, the Fourier expansion of the perturbation can now be written
in the form

H1(J1, J2, η, λ) =
∑

m,n

Ãm(λ)Bne
i(mω1+nω2)η, (128)

where

Ãm(λ) =
1

T1
eimω1λ

∫ T1

0

e[α(τ)−imω1τ ]dτ = eimω1λAm (129)

and
τ = η + λ,

In order to verify condition 2. we have to perform the average (123) ofH1. Using
the expansion (128), we realize that the only λ dependent terms surviving the
averaging process, are just those corresponding to resonances of the form (76),
that is

H1(Ĵ1, Ĵ2, η, λ) =
∑

m,n

Ãm(λ)Bne
i(m+n

q
p
)ω̂1η. (130)

Therefore, after averaging, we get terms of the form

H1(Ĵ1, Ĵ2, λ) = 2Re
{

eiqω̂1λAqB−p

}

. (131)

With the same notation used in the proof of lemma 4, first and second derivative
of H1(Ĵ1, Ĵ2, λ) with respect to λ are:

∂H1

∂λ
= 2Re

{

iqω̂1

[

eiqω̂1λ(Cq + iSq)(Cp + iSp)

]}

, (132)

∂2H1

∂λ2
= 2Re

{

−q2ω̂2
1

[

eiqω̂1λ(Cq + iSq)(Cp + iSp)

]}

. (133)

Therefore, condition 2. is satisfied if a λ = λ⋆ exists such that the imaginary
part of the term in the square bracket vanishes with a non vanishing real part.
The imaginary part is

cos qω̂1λ(CqSp + CpSq) + sin qω̂1λ(CqCp − SqSp). (134)
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This expression vanishes if λ takes the value

λ⋆ =
1

qω̂1
arctan

CqSp + CpSq

SqSp − CqCp

. (135)

Correspondingly, we have:

∂2H1

∂λ2

∣

∣

∣

∣

λ=λ⋆

= −2q2ω̂2
1 cos qω̂1λ

⋆[Cq(Cp + Sp) + Sq(Cp − Sp)]. (136)

Using the results summarized in (107) and (113), if n denotes an arbitrary
integer, we get that the critical shifts are either

λ⋆ =
nπ

qω̂1
(137)

in case of an odd-odd or even-even q, p combination, or

λ⋆ =
nπ

2qω̂1
(138)

in case of an even-odd or odd-even q, p combination.
As a simple application, let us take the simplest case, that is

p = q = 1, ω̂1 = ω̂2,

so that the two unperturbed motions are identical but for the phase shift. From
(137) we then have

λ⋆ =
nπ

ω̂1
.

In particular,

λ⋆ = 0 → ∂2H1

∂λ2
= ω̂2

1S
2
q=1 > 0, (139)

so that, for the zero phase shift corresponding to the unperturbed periodic orbit
(73), the leading order term in the expansion (126) of the characteristic exponent
is a real number. This can be seen using eq.(127) with the result (139) above
and with the round bracket that is positive in virtue of (83) and (85). Therefore,
the characteristic exponents are real if E < 0 and pure imaginary if E > 0. The
periodic orbit is then unstable in the former case and stable in the second. This
change in the nature of a periodic orbit on varying the energy is another typical
feature of non–integrable dynamics.

4 Conclusions

The main points which we have focused on in the present paper can be summa-
rized as follows:

— There exist wide classes of natural conservative mechanical systems with
integrable (actually separable) dynamics at energy equal to zero.
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— In the general case, the dynamics of the system is non-integrable at en-
ergies different from zero.

— The technique exploited here to construct these systems, which is based
on a generic conformal transformation, offers the possibility of characterizing
many features of the non-integrable dynamics.

In particular, we have seen how the structure of the transformed Hamiltonian
naturally allows a perturbative approach to investigate the departure from the
integrable regime. Standard tools of analytical mechanics, like the Poincaré
methods, can be applied more easily than in the usual setting, to get analytical
proofs of non-integrability.

A natural continuation of this work is to explore the character of other
systems constructed by means of other conformal transformations or even of
other potentials in the classes introduced above. In particular, we have limited
the analysis to systems admitting bound motion, but in the class of systems
studied above, it is easy to construct potentials allowing the coexistence of
limited and unlimited motions. In such systems, dynamics are characterized by a
transition to chaotic scattering with possible applications in celestial mechanics,
quantum mechanics and general relativity.
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