
ar
X

iv
:n

lin
/0

30
90

35
v3

  [
nl

in
.A

O
]  

5 
N

ov
 2

00
3

Binding Social and Cultural Networks: A Model

Camille Roth∗, Paul Bourgine∗

30th October 2018

Abstract

Until now, most studies carried onto social or semantic
networks have considered each of these networks indepen-
dently. Our goal here is to bring a formal frame for study-
ing both networks empirically as well as to point out styl-
ized facts that would explain their reciprocal influence and
the emergence of clusters of agents, which may also be re-
garded as“cultural cliques” . We show how to apply the
Galois lattice theory to the modeling of thecoevolutionof
social and conceptual networks, and the characterization of
cultural communities. Basing our approach on Barabasi-
Albert’s models, we however extend the usual preferential
attachment probability in order to take into account the re-
ciprocal influence of both networks, therefore introducing
the notion of dual distance. In addition to providing a theo-
retic frame we draw here a program of empirical tests which
should give root to a more analytical model and the conse-
quent simulation and validation. In a broader view, adopt-
ing and actually implementing the paradigm of cultural epi-
demiology, once we have understood network formation and
evolution, we could therefore proceed further with the study
of knowledge diffusion and explain how the social network
structure affects concept propagation and in return how con-
cept propagation affects the social network.

Introduction

Many studies have been carried on real networks, con-
sidering them as complex systems and trying to ex-
plain their formation and dynamics [1, 12]. Whereas
the models proposed have initiated efficient propos-
als for explaining the general properties of these net-
works (mostly about node degrees and in particular the
broadly sharedscale-freeproperty [3, 19]), yet they of-
ten lack robust explanations for “advanced” topologi-
cal features such as clustering [13] – a feature espe-
cially observed in social networks which denotes the
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propensity of two agents to be connected together if
they have common acquaintances [20]. Until recently
though, no attempt had been made to treat differently
social networks in respect of other real networks.

A recent study by Newman & Park [14] however
points out social networks singularities regarding the
correlations in degrees of adjacent vertices as well as
the clustering structure. Trying to model the way be-
liefs propagate among social networks of agents (in our
case, a community of scientists), that is, explain how
the social network structure affects concept propaga-
tion and in return how concept propagation affects the
social network, we will consider here another approach
stemming from a social psychology argument: attrac-
tion for same-profile people (“homophily”) is indeed
key in the formation of social acquaintances [11].

Apart from properties relative to the social network
such as node degrees, we can assume that the domi-
nant criterion for choosing a scientific partner mostly
depends on the cultural similarity of two agents. An
economic model of knowledge creation developed in
[6] already tries to take into consideration agents pro-
file (elements of a vector space) in order to explain the
structure of the economic network – agents match two
by two to produce new knowledge according to their
profile.

We introduce here a network dual to the social net-
work, the network of cultural representations, denoted
as concepts. Our goal is to bring a formal frame
for studying both networks empirically as well as to
point out stylized facts that would explain their recip-
rocal influence and the emergence of clusters of agents,
which may also be regarded as“cultural cliques” . In a
broader view, adopting and actually implementing the
paradigm of cultural epidemiology [7, 18], we could
therefore proceed further with the study of knowledge
diffusion.
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1 Networks

We present hereafter the networks we work with – so-
cial and conceptual – as well as the links within and
between them.

1.1 Social network

Definition 1. The social networkS is represented by
the network of coauthorship, where nodes are authors
and links are collaborations.

ThusS = (S, λS), whereS denotes the set of au-
thors andλS denotes the set of undirected links. As
time evolves, new articles are published, new nodes are
possibly added toS and new links are created between
each pair of co-authors. We actually consider the tem-
poral series of networksS(t) with t ∈ N (articles are
published with a date, thus an integer), for we want to
observe the dynamics of the network. Yet we will usu-
ally omit the reference tot becauseS always depends
implicitly on time.

An important question of design here is the nature
of links. Depending on the model goals and preci-
sion, we may want to take into account the fact that
two nodes have co-authored more than one paper (thus
introducinglink strength), or that their collaborations
are more or less recent (thus introducinglink age). In-
deed, an empirical study of paper citation distribution
[16] shows that the probability of citation decreases in
respect of time, since papers are gradually forgotten
or obsolete; while another model examining the world
wide web network [10] notices that the link distribu-
tion must depend on the time that has elapsed since a
web site was created.

Weighted networks Relationships should conse-
quently be different according to whether agents have
collaborated only once and a long time ago, or they
have recently co-authored many articles. An easy and
practical way for dealing with these notions is to use a
weighted network:

• in anon-weighted network, we say that two nodes
are linked as soon as there exists one coauthored
article. Links can only be activeor inactive.

• in a weighted network, links are provided with a
weightw ∈ R

+, possibly evolving in time. We
can therefore easily represent multiple collabora-
tions by increasing the weight of a link, or render
the age of a relationship by decreasing this weight
(for instance by applying an aging function).

This method enables us to model a non-weighted
network by assigning weights of1 or 0 respec-
tively to active or inactive links. This method also
leaves room for creatingex posta non-weighted
network from a weighted network by setting a
threshold, such that a link is active when its
weight exceeds the threshold, otherwise inactive.

1.2 Conceptual network

The conceptual network is very similar to the social
network - and as we will see, dual:

Definition 2. The conceptual networkC is the network
of joint appearances of concepts within articles, where
nodes are concepts and links are co-occurrences.

Identically toS, we haveC = (C, λC). When a
new article appears, new concepts are possibly added
to the network, and new links are added between co-
appearing concepts. Here again, as in the case of the
social network, one may use a weighted network to
render the frequency or the age of co-occurrences.

However, the whole point is now to define precisely
what aconceptis. Is it a paradigm like“universal
gravitation”, a scientific field like“molecular biol-
ogy”, or a simple word like“interferon” ? In partic-
ular, what is a concept such that we can observe its
appearance in an article?

This notion needs be not too precise nor too wide.
For instance, authors provide their articles with key-
words: apparently, considering these keywords as con-
cepts seems to constitute a relevant level of categoriza-
tion while being a convenient idea. However, such key-
words have not proven to be very reliable indicators
of the issues articles are dealing with, for authors of-
ten omit important keywords or specify poorly relevant
ones.

Words as concepts The idea would be to create new
keywords from the words appearing in articles, and at
first we will say thateach word is a concept. This
definition does not prevent us from observing higher-
level concepts such as scientific fields or paradigms,
since we can easily refer to these conceptsa posteriori
by considering sets of strongly connected words. For
example, we could interpret the set of frequently co-
occuring words{“cell”, “cancer”, “DNA”, “gene”,
“genetic”, “genetics”, “molecular” } asmolecular bi-
ology. This understanding refers to the notion ofmeme
introduced by Dawkins [7].
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Moreover, we proceed only with words present in
what we consider to be the most relevant article data:
the title and the abstract. We prefer to set aside arti-
cle content, since first and above all it is rarely avail-
able; second, it could make appear too many very pre-
cise though unrelevant words. Therefore, we assume
that all important concepts an article tackles and bears
on are explicitly used in its title or its abstract. Of
course, we also need define a list of words to be ig-
nored, or“stop words”, including grammatical and un-
significant words (“is”, “with”, “study”, etc.) as well
as non-discriminating words (e.g.,“biology” within a
community of biologists) for which a robust criterion
will be proposed in§2.3.

1.3 Binding the two networks

As the social network is the network of joint appear-
ances of authors, so is the conceptual network with
concepts, establishing an obvious duality between the
two networks. This duality is key if we want to bind
them and explain their reciprocal influence.

In the same way we did with the previous networks,
we link scientists to the words they use, i.e. we add a
link whenever an author and a word co-appear within
an article.

Hence considering the two networksS andC, we
deal with three kinds of quite similar links: (i) be-
tween pairs of scientists, (ii) between pairs of concepts,
and (iii) between concepts and scientists; thus setting
up three kinds of binary relations:

(i) a set of symmetrical relationsRS
α ⊂ S×S from

the social network to the social network, and such
that givenα ∈ R and two scientistss ands′, we
have s RS

α s′ iff the link betweens ands′ has a
weightw strictly greater than the thresholdα.

(ii) a set of symmetrical relationsRC
α ⊂ C × C

from the conceptual network to the conceptual
network, and such that givenα ∈ R and two con-
ceptsc andc′, c RC

α c′ iff the link betweenc and
c′ has a weightw > α.

(iii) a binary relationRα ⊂ S × C from the social
network to the conceptual network, and such that
givenα ∈ R, an authors and conceptc, s Rα c

iff the link betweens andc has a weightw > α.

Let us examine the special caseα = 0. Noti-
cing that α < α′ ⇒ R

(.)
α′ ⊂ R

(.)
α , thus giving

∀α > 0,R
(.)
α ⊂ R

(.)
0 , we infer that the relationsR(.)

0

are maximal, i.e. two nodes are related whenever there

s

s’

s"

c’

c

c"
S

C

Figure 1: Sample network withS = {s, s′, s′′}, C =
{c, c′, c′′}, and relationsRS, RC (solid lines) andR
(dashed lines).

exists a link binding them, whatever its weight. To ease
the notation, we will identifyRS

0 to RS, RC
0 to RC,

andR0 toR.

2 Lattices and epistemic closure

The basic ingredients being defined, we need yet an-
other formal tool to formulate stylized facts about
knowledge and people conveying it. Galois lattices
appear to be a suitable frame to describe these facts
as they offer a powerful structure for concept catego-
rization. They are also being therefore widely used in
conceptual knowledge systems [22] and formal con-
cept classification [9]. In the field of social networks,
White & Freeman have already explored an applica-
tion of this theory to social networks [8], though his
model deals with agents and social events they attend.
The goal of this section is to present the Galois lattice
theory and show how we can use it here to describe
efficiently the relationships betweenS andC.

2.1 Sets and relations

Let us first consider two finite setsA andB between
which we have a binary relationR ⊆ A×B. We in-
troduce the operation “∧” such that for any element
x ∈ A, x∧ is the set ofB elementsR-related tox. Ex-
tending this definition to subsetsX ⊆ A, we denote by
X∧ the set ofB elementsR-related to every element
of X , namely:

x∧ = { y ∈ B | xRy } (1a)

X∧ = { y ∈ B | ∀x ∈ X, xRy } (1b)

Similarly, “⋆” is the dual operation so that∀y ∈ B,
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∀Y ⊆ B,

y⋆ = { x ∈ A | xRy } (2a)

Y ⋆ = { x ∈ A | ∀y ∈ Y, xRy } (2b)

By definition we set(∅)∧ = B and(∅)⋆ = A.
These operations enjoy the following properties:

X ⊆ X ′ ⇒ X ′∧ ⊆ X∧ (3a)

Y ⊆ Y ′ ⇒ Y ′⋆ ⊆ Y ⋆ (3b)

and

X ⊆ X∧⋆ (4a)

Y ⊆ Y ⋆∧ (4b)

Also, we have1:

(X ∪X ′)∧ = X∧ ∩X ′∧ (5a)

(Y ∪ Y ′)⋆ = Y ⋆ ∩ Y ′⋆ (5b)

Closure operation More important, the following
property holds true,2

((X∧)⋆)∧ = X∧ and ((Y ⋆)∧)⋆ = Y ⋆ (6)

and therefore we are enabled to define the operation
“∧⋆” as aclosure operation[5], in that it is:

extensive, X ⊆ X∧⋆ (7a)

idempotent (X∧⋆)∧⋆ = X∧⋆ (7b)

and increasing. X ⊆ X ′ ⇒ X∧⋆ ⊆ X ′∧⋆ (7c)

We say thatX is aclosedsubset ifX∧⋆ = X .

2.2 Galois lattices

We need now consider the set of couples of subsets of
A andB and build a new structure onto it.

Complete couples Given two subsetsX ⊆ A and
Y ⊆ B, a couple(X,Y ) is said to becomplete iff
Y = X∧ andX = Y ⋆.

Yet such a couple is actually a(X,X∧) where
X∧⋆ = X . Therefore, complete couples correspond
obviously to couples of subsets ofA andB closed un-
der ∧⋆. This will allow us to define a new kind of
lattice fromA, B andR. We first recall the definition
of a lattice:

1And accordingly,X∧ = (
⋃

x∈X{x})∧ =
⋂

x∈X x∧.
2Indeed, (3a) applied to (4a) leads to(X∧⋆)∧ ⊆ X∧, while

(4b) applied toX∧ gives(X∧) ⊆ (X∧)⋆∧.

Definition 3. A set(L,⊑,⊔,⊓) is a lattice if every fi-
nite subsetH ⊆ L has aleast upper boundin L noted
⊔H and agreatest lower boundin L noted⊓H under
the partial-ordering relation⊑.

In this respect the set of subsets of a setX pro-
vided with the usual inclusion, union and intersection,
(P(X),⊆,∪,∩), is a lattice. Any partially-ordered fi-
nite set is also a lattice, and so is aGalois lattice[4]:

Definition 4. Given a relationR between two finite
setsA andB, the Galois latticeGA,B,R is the set of
everycompletecouple(X,Y ) ⊆ A×B under relation
R. Thus,

GA,B,R = {(X∧⋆, X∧)|X ⊆ A} (8)

IndeedGA,B,R is finite and is provided with the fol-
lowing natural partial order⊑:

(X,X∧) ⊑ (X ′, X ′∧) ⇔ X ⊂ X ′ (9)

Formal concept lattice As Wille points out in [22],
this structure constitutes a solid formalization of the
philosophical apprehension of a concept characterized
by its extension(the physical implementation or the
group of things denoted by the concept) and itsinten-
sion (the properties or the internal content of the con-
cept).

In a pairg = (X,X∧) considered as a formal con-
cept,X may be seen as the extension ofg while X∧

is its intension. For a givenX ⊆ A, X∧ will repre-
sent the set of properties shared by all objects ofX ,
whereas for a given set of propertiesY ⊆ B, Y ⋆ will
be the set of objects ofA actually fulfilling them.

Also, using the strict partial order⊏, we can talk of
formal subconceptby sayingg is a subconcept ofg′

iff g ⊏ g′. Henceg can be seen as a specification of
g′, since the number of its properties increases (X∧ ⊃
X ′∧, thus definingg more precisely) while less objects
belongs to its extension (X ⊂ X ′). Conversely,g′

is a “superconcept”or a generalization ofg; we have
so a tool of generalization and specification of formal
concepts [21].3

2.3 Applying lattices toS and C

It is possible now to give some semantics to these tools
with respect to our networksS andC. For this purpose,
we will consider the two finite setsS, C, the relation
R andGS,C,R.

3Of course, these notions are dually defined, i.e. it is possible to
considerY as an extension andY ⋆ as an intension.
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First, for an authors ∈ S, s∧ = { c | sRc } rep-
resents the set of the concepts he talked about or the
fields he dealt with. Proceeding identically with a con-
cept c ∈ C, c⋆ = { s | sRc } represents the set
of scientists who used the conceptc in at least one of
their papers.

Then, for a group of authorsS ⊆ S, S∧ represents
the words being used by every authors ∈ S, while for
a set of wordsC ⊆ C, C⋆ is the set of agents using
every conceptc ∈ C. Moreover, we can easily derive
from (5) the words used by a communityS ∪ S′ by
taking the intersectionS∧ ∩ S′∧, or the authors cor-
responding to the merger of any two sets of concepts
C ∪ C′ by takingC⋆ ∩ C′⋆.

An example is shown on figure 2. For instance,
s4

∧ = {c1, c4, c5} and{c1, c6}⋆ = {s3, s5}. If we
consider the matrixR representing relationR as fol-
lows,

R =













1 1 1 0 1 0 0
1 1 0 0 0 0 0
1 0 0 0 0 1 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1













whereRi,j is non-zero whensi R cj , we can easily
readsi∧ on rows andcj⋆ on columns.

Epistemic closure and epistemic categoriesSeeing
concepts aspropertiesof authors who use them (skills
in scientific fields as cognitive properties) and authors
asextensionsof concepts (implementation of concepts
within authors), one can make a very fertile usage of
the latticeGS,C,R by setting up an epistemic taxon-
omy with the help of formal concepts made of couples
(S,C) with S ⊆ S, C ⊆ C. We may indeed consider
such formal concepts asschools of thoughtconstituted
by the community of agentsS working and writing on
the fieldC, a formal subconcept simply being a trend
inside a school. By community we understand hence-
forth epistemic community, that is to say neither a de-
partment nor a group of research.

In addition, we recall that for such a complete couple
from the Galois lattice,C = S∧, S = C⋆ and finally
S = S∧⋆. What doesS∧⋆ actually represent ? It is
the set of scientists usingat leastthe same words asS.
But “∧⋆” being a closure operation,S∧⋆ closes the set
S by returning all the scientists related to every concept
shared amongS – once and for all from (7b) – which
makes us call it anepistemic closure operation.4

4Note that given S∧ = {c1, ..., cn, c} and S′∧ =
{c1, ..., cn, c′}, we haveS′ 6∈ S∧⋆, S′ not being in the epistemic
closure ofS, which might look quite strange for a human eye who

s4

s1

s2

3s

s5

c5
genome

c4

cDNA

c1

biology

c2
molecular

6c
chemical

c3
operon

7c
history

C

S

Figure 2: S = {s1, s2, s3, s4, s5}, C =
{c1, c2, c3, c4, c5, c6, c7} = {biology, molecular,
operon, cDNA, genome, chemical, history} – solid
lines:RS andRC, dashed lines:R.

Admittedly, for a single scientists, s∧⋆ will certainly
be equal tos, since there are strong chances that∀s′ ∈
S, ∃w ∈ s∧ and 6∈ s′∧. Considering however a subset
S ⊆ S, as its cardinal increases there are more and
more chances that the closure ofS reaches an actual
community of researchers. We conjecture that there
is a relevant level of closure for which a setS∧⋆, and
identicallyC⋆∧, is representative of a field or a trend.
This idea is to be compared to Rosch’s basic-level of
categorization [17].
GS,C,R contains all complete couples: this includes

naturally most singletons(s∧⋆, s∧) as well as(S,S∧),
but also and especially all the intermediary pairs of
closed sets. For this purpose, there must then be a
gap between couples whoseS is of very small size
and those with medium-sizedS, with very few com-
plete couples inbetween; and likewise a gap between

would have said their domains of interest similar.
Another property may help understand better what this closure

actually tallies with: givenS∧ = {c1, ..., cn} and S′∧ =
{c′

1
, ..., c′n} such that∀(i, j) ∈ {1, ..., n}2, ci 6= c′j , we have

(S ∪ S′)∧⋆ = S: the closure of two sets of scientists working
on totally different issues is the whole communityS – “there is no
way to distinguishS andS′ from each other with respect to the rest
of the community”.
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c1; c4c5
s4( )c3c5c1c2s1; )(

s1s2 c2c1;( ) s4 c1; c5s1( )

s2 s4s1 3s s5 c1; )(
Ŝ

=

s53s c1; c6( )

c1; c6
c7s5( )

c6c2c3c4 c7O c1 c5;( )
C*=

Figure 3: Representation of the whole Galois lattice
of our example – the hierarchy is drawn according to
the partial order⊏, i.e. “bottom”⊏“top”. The cul-
tural backgroundS∧ is reduced to “biology”. On the
medium-level, we find formal concepts(s1, s2 ; “biol-
ogy” , “molecular”), (s1, s4 ; “biology” , “genome”),
(s3, s5 ; “biology” , “chemical”).

couples with small- and medium-sizedC sets. This
medium level shall constitute our basic-level of epis-
temic categorization, whereas above it (“superordinate
categories”) the field would be too general, and too
precise under it (“subordinate categories”).

If we define theepistemic familyof an agent as the
set of (possibly many) complete couple(s) which he is
a member of, and also whoseS set size is above a cer-
tain threshold, it could be very useful to identify the
basic-level epistemic categories to help fit the thresh-
old value.

Cultural background Interestingly,S∧ represents
the concepts the whole community shares – the“back-
ground” – and are obviously too common to be dis-
criminating. This set could actually constitute a very
appropriate companion to the list of stop words we
mentioned in§1.2. On the other hand,C⋆ does not
enjoy in general any such property and is empty; the
contrary would mean that there would be at least one
author having usedeveryword in use among the whole
community, which would be quite dreadful in fact.

3 Applications

This section is devoted to pointing out the joint appli-
cations of the two preceding sections to the observa-
tion, description and eventually model of the dynamics
of our networks.

3.1 Network dynamics

We will first try to account for the network evolution
by extending already existing models to make them in-
clude the improvements offered by the theoretic frame
exposed above. The growing-network model proposed
by Barabasi & Albert [2] will be our basis. It is di-
rected by two key phenomenas: (i) aconstant rate of
growth (the number of nodes at any timet is αt), jus-
tified by the fact that real networks “grow by the con-
tinuous addition of new nodes” [1]; and (ii)a prefer-
ential attachment– external (new nodes join the sys-
tem) as well as internal (links appearing between exist-
ing nodes) – however neglecting aging considerations.
This is borne out by the preference one may for exam-
ple exhibit towards an already well-connected agent,
as being more recognized, famous, reliable or simply
efficient.

If we assume yet that homophily is essential to the
system dynamics, the preferential attachment must be
modified in order to take into account similarity be-
tween agents or between concepts: nodes will indeed
join preferentially more connected but also more sim-
ilar nodes. Thus, the preferential attachment probabil-
ity of a node to another node within the same network,
usually denoted byΠ(k1, k2) wherek1, k2 are the de-
grees of the nodes connecting to each other5, should
not be uniform with respect to the nodes proximity
within their dual network. That is to say for instance
thatΠ should depend for a scientists ∈ S both (i) on
the degree of other scientistss′ ∈ S (usingRS) and
(ii) on the “distance” betweens∧ and s′∧ – or dual
distancebetweens ands′ (usingRC andR).

Dual distance The notion of dual distanced needs
nonetheless be defined more precisely: in order to
measure the similarity or equivalently the difference
between two nodes dual sets we will adopt a formula
inspired from the notion of Hamming distance on sets
of bits.

Definition 5. Given(s, s′) ∈ S
2 and using the sym-

metric difference of two sets we define the dual dis-

5This concerns internal attachment. External attachment is, of
course, undefined as regards the dual distance.
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tanced(s, s′) ∈ [0; 1] such that:6

d(s, s′) =
|(s∧ \ s′∧) ∪ (s′∧ \ s∧)|

|s∧ ∪ s′∧|

We expect to find a different behavior with respect to
this parameterd: indeed if cliques do exist, preferen-
tial attachment should also depend on a parameter pre-
cisely related to the“cliquishness”. Newman in [13]
considers the number of common acquaintances as an
explanatory argument for clique formation. Instead,
we will assume that collaborations do essentially occur
on account of homophily, while this assumption does
not contradict Newman’s argument: two agents are all
the more likely to have the same profile that they share
many acquaintances.7

The probabilityΠ(k1, k2) encloses this information
without enabling us to discriminate the effect of the
dual proximity. We next considerΠ(k1, k2, d) which
takes into account this second variabled. The main
direction to be explored would be to buildΠ(k, d) on
the dual distance defined above. Assuming the inde-
pendence of(k1, k2) andd,

∫ 1

0
Π(k1, k2, δ)ρ(δ)dδ =

Π(k1, k2) holds true, whereρ is the density ofd.8

In any case, a first step will be to determine empir-
ically the shape ofΠ so that we can infer fertile intu-
itions for designing an analytical value forΠ. Also, al-
though not detailed here, the reasoning holds the same
for the preferential attachment inC.

3.2 Cliquishness and coalitions

As regards the cliquishness in particular, another point
of interest is to see whether network cliques corre-
spond to closed sets, i.e. whether aS-clique is also a
∧⋆-clique, and whether aC-clique is also a⋆∧-clique.

6Written in a more explicit manner, given two
sets s∧ = {c1, ..., cn, cn+1, ..., cn+p} and s′∧ =

{c1, ..., cn, c′n+1, ..., c
′

n+q}, d(s, s′) =
p+ q

p+ q + n
; n and

p, q representing respectively the number of elementss∧ ands′∧

have in common and have in proper. We also verify that ifn = 0
(disjoint sets),d = 1; if n 6= 0, p = q = 0 (same sets),d = 0; and
if s∧ ⊂ s′∧ (included sets),d = q

q+n
. It is besides easy though

cumbersome to show thatd(., .) is actually a distance.
7However another yet better model would also take into account

this property and would express it through enhancing our definition
of d.

8We could also draw out the distributionΠ(k1, k2, d) depending
on whether agents are member of the same epistemic family (intro-
duced in§2.3) or not. The variabled would thus belong to{0; 1}
and we would actually deal with only two distributions. Thisoption
is less robust than the previous one for it relies on a quite “fuzzy”
parameter (epistemic family membership), whereas it couldoffer a
more schematic and stylized interpretation.

In other words, we want to know whether schools of
thought and scientific fields are also socially and con-
ceptually strongly linked or not. Though we could ex-
pect this to be true in real world networks, it is certainly
not a fortuitous property for it relies on two different
kinds of tools (epistemic closure vs. single network
connectivity). We might also want to adopt here an
extended definition of a clique (as a fully connected
triplet of nodes), and for instance usek-connectivity9

[15] (the smallest number of nodes one needs to with-
draw from a connected (sub)graph to get a discon-
nected one).

3.3 Sensibility to parameterα

At the beginning of our paper (§1.3) we left room for
a parameterα in relationsR(.)

α , which had been until
now implicitly set to0. Its main function is actually to
prevent unsignificant links (too old or too rare) to be
taken into account: indeed, under a certain threshold
of strength or significance, a link would be excluded
fromR

(.)
α .

In the extreme case, forα big enough there is no
connection at all. As for the appearance of a giant
component in random networks [12], there may be a
transition valueαc above which almost no connectiv-
ity exists and under which the network is significantly
connected. This hypothesis ought also to be checked.

Conclusion

Until now, most studies carried onto social networks or
conceptual (semantic) networks have considered each
of these networks independently. We proposed here
a frame for binding them and pointing out their very
duality as well as expressing stylized facts about them.
The Galois lattice theory has proved useful in helping
introduce key notions such as epistemic closure and
basic-level of categorization of a scientific field, and in
general for characterizing scientific communities.

Next we showed how to apply this structure to
the model of thecoevolutionof the social and cul-
tural networks. We have mostly based our approach
on Barabasi-Albert’s models, stressing out constant
growth and preferential attachment. However instead
of considering social and conceptual networks sepa-
rately, we modified the usual preferential attachment
probability in order to take into account the reciprocal

9We acknowledge fruitful remarks from Douglas R. White on
this point.
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influence of both networks. We therefore introduced
the notion of dual distance.

Finally, more than providing a theoretic frame, we
have in fact also drawn a program of empirical tests
which should give root to a more analytical model and
the consequent simulation and validation. This step
constitutes the first milestone of a broader attempt to
implement the paradigm of cultural epidemiology: we
could thus describe and explain propagation of con-
cepts through the social networkas well aspropaga-
tion of scientists through the conceptual network.
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