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Abstract

Phase turbulence is suppressed by applying common noise additively

to the Kuramoto-Sivashinsky type equation, and the noise-induced phase

synchronization is realized. The noise strength necessary for the suppres-

sion of phase turbulence is evaluated theoretically.

PACS: 05.45.+b, 05.40.+j, 02.50-r

Recently, various noise effects to nonlinear systems have been studied. The
response of a bistable system or an excitable system to a periodic force is en-
hanced by the noise effect. The stochastic resonance improves signal detection
by the superposed noise [1, 2, 3]. Noise-enhanced entrainment among cou-
pled oscillators is found experimentally in Belousov-Zhabotinsky reactions [4].
Frequency locking of noise-sustained oscillations is found in coupled excitable
systems [5, 6]. A small amount of noise may change a chaotic trajectory into a
rather regular trajectory, and it is called noise-induced order [7]. Common noise
may induce complete synchronization for uncoupled chaotic oscillators [8, 9]. It
is called noise-induced synchronization. In this paper, we apply common noise
for a modified equation of the Kuramoto-Sivashinsky equation. Without the
common noise, the model equation exhibits phase turbulence. Noise-induced
synchronization occurs and a spatially uniform state is observed owing to the
common noise.

The model equation is written as

φt = ω − r sinφ− µφxx − φxxxx + φ2x + ξ(t), (1)

where φ(x, t) is a phase variable, ω > r is assumed, and ξ(t) represents spatially
uniform Gaussian white noise satisfying

〈ξ(t)ξ(t′)〉 = 2Dδ(t− t′).
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The model equation is equal to the original Kuramoto-Sivashinsky equation,
when r = D = 0. The Kuramoto-Sivashinsky equation exhibits phase turbu-
lence for µ > 0, owing to the long-wavelength instability of the uniform state.
For nonzero r, the phase motion of each oscillator is not uniform. This type
of phase oscillator model has been used to study cooperative phenomema in
coupled limit cycle oscillators [5, 10, 11]. Equation (1) represents a model of
spatially coupled phase oscillators. Without the noise term, the spatially uni-
form rotation is unstable and a phase turbulence is observed similarly to the
original Kuramoto-Sivashinsky equation.

0

0.05

0.1

0.15

0.2

0.25

0.3

0

-0.08

-0.07

-0.06

-0.05

0 0.5 1 1.5 2 2.5

D

<-rcos�Ó >0

�Î/2  �Î 3�Î/2 2�Î
�Ó0

P(�Ó )0 (a) (b)s

Figure 1: (a) Stationary probability distribution Ps(φ0) for the Fokker-Planck
equation at ω = 0.8, r = 0.5 and D = 0.7. (b) Average value of −r cosφ0 as a
function of D. Below the dashed line 〈−r cosφ0〉 = −0.0625, the uniform state
is stable for ω = 0.8, r = 0.5 and µ = 0.5.

Firstly, we study the stability of the spatially uniform state under the com-
mon noise. The spatially uniform state φ(x, t) = φ0(t) satisfies the Langevin
equation

dφ0/dt = ω − r sinφ0 + ξ(t). (2)

The corresponding Fokker-Planck equation is

∂P

∂t
= − ∂

∂φ0
{(ω − r sinφ0)P} +D

∂2P

∂φ20
. (3)

For D = 0, the stationary probability distribution is

Ps(φ0) ∝
1

ω − r sinφ0
. (4)

For nonzero D, the stationary probability distribution is expressed as [11, 12]

Ps(φ0) = exp{(ωφ0−r+r cosφ0)/D}Ps(0)
{

1 +
(e−2πω/D − 1)

∫ φ0

0 e(−ωψ−r cosψ)/Ddψ
∫ 2π

0
e(−ωψ−r cosψ)/Ddψ

}

,

(5)
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Figure 2: Snapshot profiles φ(x, t) for Eq. (1) at ω = 0.8, r = 0.5 and D = 0
(a), 0.2 (b), 0.7 (c) and 2.5 (d).

where Ps(0) is determined from the normalization condition
∫ 2π

0
Ps(φ0)dφ0 = 1.

This stationary probabiliy distribution approaches a uniform distribution Ps =
1/2π for D → ∞. The stationary distribution for ω = 0.8, r = 0.5 and D = 0.7
is displayed in Fig. 1(a). The peak of the probability distribution is located at
φ ∼ π/4 < π/2.

The linearized equation of the Fourier amplitude φk with wave number k
around the uniform state for Eq. (1) satisfies an equation

dφk/dt = (−r cosφ0(t) + µk2 − k4)φk, (6)

where φk = 1/
√
L
∫ L

0 φ(x)e−ikxdx, and φ0(t) obeys Eq. (2). The long-time
average of −r cosφ0(t) + µk2 − k4 determines the stability for the perturbation
with wave number k. For D = 0, the average value of cosφ0 is zero, since the
distribution (4) is symmetric around φ = π/2. For D → ∞, the average value
of cosφ0(t) is also zero, since the distribution is uniform. For general parameter
values of D, the average value of −r cosφ0(t) is negative, since the probability
distribution has a peak below π/2 as shown in Fig. 1(a), and cosφ0 is positive
for 0 < φ0 < π/2. We have calculated the average value of −r cosφ0(t) using the
stationary distribution (5) for various D’s for ω = 0.8 and r = 0.5, and plotted
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Figure 3: Average of Fourier amplitude Pw(k) = 〈|φk|〉 at ω = 0.8, r = 0.5 and
D = 0 (a), 0.2 (b), 0.7 (c) and 2.5 (d).

the results in Fig. 1(b). The curve of 〈−r cosφ0〉 has a characteristic form of the
resonant one, although it is not easily expected from the distribution (5). The
average value of −r cosφ0 approaches 0 for D → 0 and D → ∞ and it takes a
minimum value -0.08 at D ∼ 0.7. The average value of −r cosφ0(t) + µk2 − k4

takes a maximum −r〈cosφ0〉 + µ2/4 at k =
√

µ/2, when k is changed. The
uniform state is linearly stable if −r〈cosφ0〉 + µ2/4 < 0. At ω = 0.8, r = 0.5
and D = 0.7, the uniform state is stable if µ is smaller than 0.4. For µ = 0.5,
µk2− k4 takes a maximum value 0.0625 at k = 0.5, therefore, the uniform state
is stable for 0.3 < D < 1.58. It implies that the common noise of intemediate
strength can suppress long-wavelength fluctuations and stabilize the uniform
state. Common noise of intermediate strength is most effective for the noise-
induced synchronization, which is analogous to the stochastic resonance.

We have performed numerical simulation to see the noise-induced synchro-
nization for the modified Kuramoto-Sivashinsky equation. We have used the
finite difference method with time step 0.0001 and space step 160/512 for a
numerical simulation, and the periodic boundary conditions with system size
160 is used. The parameter values are ω = 0.8, r = 0.5 and µ = 0.5. The noise
intensity D was changed as a control parameter. Figure 2 displays snapshot
profiles of φ(x) at D = 0, 0.2, 0.7 and 2.5. At D = 0, the spatio-temporal chaos
is observed. At D = 0.7, the spatially uniform state appears. It corresponds
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Figure 4: (a) Intermittent time sequence of a Fourier amplitude |φk(t)| with
wavenumebr k = 0.471 for ω = 0.8, r = 0.5 and D = 0.2. (b) Histograms of
the probability distributions of |φk| with wavenumber k = 0.471. The straight
line denotes a power law with exponent -0.74. (c) Intermittent time sequence
of a Fourier amplitude |φk(t)| with wavenumebr k = 0.942. (d) Histograms of
the probability distributions of |φk| with wavenumber k = 0.942. The straight
line denotes a power law with exponent -0.93.

to the noise-induced synchronization. At D = 0.2 and D = 2.5, the spatial
profile is not uniform, but fairly regular. The wavelength of the most dominant
Fourier mode is 160/12, and the corresponding wavenumber is 0.471, which is
close to

√

µ/2 = 0.5. The amplitude of spatial fluctuations changes intermit-
tently in time. The intermittent time sequence of the Fourier amplitude |φk(t)|
with k = 0.471 for D = 0.2 is shown in Fig. 4(a). The amplitudes of the spatial
fluctuations seem to differ very much for D = 0.2 and 2.5 in Figs. 2(b) and (d),
but it is a problem of timing to take snapshots. The average amplitudes of the
spatial fluctuations do not differ so much for the two parameter values of D, as
shown in Figs. 3(b) and (d).

Figure 3 displays the average of the Fourier amplitude: Pw(k) = 〈|φk|〉 for
the four parameters of the noise intensity. For D = 0, the spectrum has a peak
at k ∼

√

µ/2 and increases near k ∼ 0. This is a characteristic spectrum of
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phase turbulence. For D = 0.7, the uniform state is stable and the spectrum
is almost zero. For D = 0.2 and D = 2.5, the spectrum has strong peaks at
k ∼

√

µ/2 and its higher harmonics, but the long-wavelength fluctuations are
suppressed in contrast to the case of D = 0. The suppression of the long-
wavelength fluctuations makes the spatial profiles of φ(x) regular, as shown in
Fig. 2.

The time evolution is intermittent, and φ(x, t) is close to the uniform state
φ0(t), when the amplitude of spatial fluctuations becomes sufficiently small.
Then, the Fourier amplitudes obey Eqs. (2) and (6) approximately. The variable
φ0(t) is a random varibale, since Eq. (2) is a Langevin equation. Equation (6)
represents a random multiplicative process, since the growth rate −r cosφ0(t)+
µk2 − k4 for the Fourier amplitude with wave number k is randomly fluctuat-
ing. If the average value of the growth rate is positive (negative), the Fourier
amplitude generally tends to grow from zero (decay to zero). Even if the av-
erage value of the growth rate is positive, there are chances that the growth
rate keeps negative in a certain time interval. The Fourier amplitude takes very
small values for the time interval. Inversely, even if the average value of the
growth rate is negative, there are chances that the growth rate keeps positive
in a certain time interval. The Fourier amplitude takes non-small values for
the time interval. This is a mechanism that a random multiplicative process
induces an intermittent time sequence [13, 14, 15]. When the amplitude of spa-
tial fluctuations becomes large, the nonlinear term acts and the growth of the
spatial fluctuations is suppressed. Figures 4(a) and (c) display time sequences
of Fourier amplitudes |φk| with (a) k = 0.471 and (c) k = 0.942 at D = 0.2.
The average growth rate is positive for wave number k = 0.471 and the average
growth rate is negative for wave number k = 0.942. For both wave numbers,
intermittent time sequences appear. Figures 4(b) and (d) display histograms of
the probability distributions P (|φk|) of |φk| for (a) k = 0.471 and (b) k = 0.942.
The probability distributions obey approximately a power law for a rather large
range of k, which is characteristic of multiplicative stochastic processes [14, 15].
The exponent of the power-law distribution is nearly -0.74 for k = 0.471 and
-0.93 for k = 0.942. The exponents change with wave numbers. Similar type
intermittent behaviors are also observed for D = 2.5.

To summarize, we have found noise-induced synchronization for the modified
Kuramoto-Sivashinsky equation. The phase turbulence is suppressed by the
common noise. The mechanism for the noise-induced synchronization is clear in
this model equation. That is, the stationary phase distribution of the uniform
state is deformed by the noise and the uniform state is stabilized against the
long-wavelength fluctuations. For r = 0 as in the original Kuramoto-Sivashinsky
equation, this type of noise-induced synchronization does not occur. The growth
rate of the Fourier amplitude with the long wavenumber is decreased especially
for an intermediate range of the noise sterngth. The average growth rate is
positive for a finite interval of wave numbers, and the spatial profile becomes
rather regular owing to the common noise. The fluctuation of the growth rate
induces an intermittent time sequence and a power-law distribution for the
Fourier amplitude has been observed.
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