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Effects of forcing in three dimensional turbulent flows

Luca Biferale1,4, Alessandra S. Lanotte2,4, and Federico Toschi3,4
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We present the results of a numerical investigation of three-dimensional homogeneous and isotropic
turbulence, stirred by a random forcing with a power law spectrum, Ef (k) ∼ k3−y . Numerical
simulations are performed at different resolutions up to 5123. We show that at varying the spectrum
slope y, small-scale turbulent fluctuations change from a forcing independent to a forcing dominated

statistics. We argue that the critical value separating the two behaviours, in three dimensions, is
yc = 4. When the statistics is forcing dominated, for y < yc, we find dimensional scaling, i.e.
intermittency is vanishingly small. On the other hand, for y > yc, we find the same anomalous
scaling measured in flows forced only at large scales. We connect these results with the issue of
universality in turbulent flows.

The effects of both external forcing mechanisms and
boundary conditions on small-scale turbulent fluctua-
tions have been the subject of many theoretical, numer-
ical and experimental studies [1, 2]. The 1941 theory
of Kolmogorov [1] is based on the assumption of local

isotropy and homogeneity, that is any turbulent flow, in-
dependently on the injection mechanism, recovers uni-
versal statistical properties, for scales small enough (and
far from the boundaries). Indeed, experiments and nu-
merical simulations give strong indications that Eulerian
and Lagrangian isotropic/anisotropic small-scales veloc-
ity statistics are pretty independent of the large-scale

forcing mechanisms [3–7]. Still, we lack a firm under-
standing for these evidences. From the theoretical point
of view, precious hints arise from linear problems, like
passive scalar or passively advected magnetic fields. For
the class of Kraichnan models [8], anomalous scaling has
been shown to be associated to statistically stationary
solutions of the unforced equations for correlation func-
tions [9]. Scaling exponents are consequently universal
with respect of the injection mechanisms. Concerning
non-linear problems, as the Navier-Stokes case, analytical
results have been often pursued by means of the Renor-
malization Group (RG) [10, 11]. In the RG framework,
turbulence is stirred at all scales by a self-similar Gaus-
sian field, with zero mean and white-noise in time. The
two-point correlation function in Fourier space is given
by

〈

fi(k, t)fj(k
′, t′)

〉

∝ (1)

D0k
4−d(k20 + k2)−y/2Pij(k)δ(k + k

′) δ(t− t′).

Here 1/k0 ∼ L is the largest length in the system (in-
frared cut-off), D0 is the forcing intensity, Pij(k) is the
projector assuring incompressibility and d is the spatial
dimension (always assumed to be d = 3 hereafter). The
influence of the stirring mechanism at small scales is gov-
erned by the value of the slope y. We go from a situation
when the forcing has a strong input at all scales, y ∼ 0

originally investigated in [10], to a quasi large-scale forc-
ing when y → ∞. Renormalization Group calculations,
based on a y-expansion, predict a power-law energy spec-
trum E(k) ∼ k1−2y/3, in the domain η ≪ k−1 ≪ L,
where η is the viscous scale of the system, and for y ≪ 1.
Notice that the Kolmogorov value, E(k) ∼ k−5/3, de-
scribing experimental turbulent flows stirred by a large-
scale forcing, is obtained for y = 4, i.e. quite far from
the perturbative region where the RG calculations are un-
der control. The Kolmogorov spectrum can be obtained,
however, by means of a simple dimensional analysis, still
within the same framework [12]. Extension of the RG
formalism to finite y values, up to y = 4, have been
attempted with different kind of approximation [13, 14]
altough in a range where convergence of the RG expan-
sion is not granted anymore [15]. As for the numerical
simulations, in [16] the problem has been investigated for
various y values, and it has been shown that, for y = 4,
results are in good agreement with the picture of large-
scale forced turbulence, while for y < 4 the situation be-
comes less clear. However, the low numerical resolution
used in [16] makes these results far from being conclusive.

Beside the issue connected to the RG approach, there
exists a whole set of interesting questions concerning tur-
bulent flows with a power-law forcing. To which ex-
tent small-scale fluctuations are sensitive to the injection
mechanism? Does it exist a critical value yc separating
different regimes? Can we observe anomalous scaling in
the forcing dominated case y ∼ 0? Let us suppose, for
example, that it exists a finite yc, beyond which small-
scale statistics is forcing independent: this would rule
out any attempt to control intermittency analytically, by
means of a perturbative approach which starts from forc-
ing dominated turbulent solutions at y ≪ yc.

Hints on the problem can also come from the study
of the one-dimensional Burgers equation in presence of a
power law forcing. In [17], a numerical study was pre-
sented showing that there is a critical value of the forcing
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slope, such that the velocity field passes from the usual
bifractal statistics (observed in large-scale forced Burgers
flows), to a statistics influenced from the forcing. Surpris-
ingly, also in the forcing dominated regime, a non-trivial
(multifractal?) scaling was observed in [17]. A rigorous
understanding of the mechanism leading to this result is,
however, still missing: we will come back to this point
later on, after having presented our results.
In the sequel, we address the problem of the small-scale

statistical properties of three dimensional turbulent flows
at varying the parameter y. We will show that at cross-
ing yc = 4 there exist two regimes for the velocity field
statistics with well defined and different scaling proper-
ties.
We solved the Navier-Stokes equations with a second-

order hyperviscous dissipative term ∝ ν∆2. Temporal
integration has been carried over for about 20÷30 large-
eddy turnover times. We performed variuos experiments,
at resolutions 1283, 2563 and 5123, corresponding to a
maximum Taylor’s Reynolds number equal to Reλ = 220
for the 5123 run. As for the stirring force, we specialized
in the two following cases, one for each regime: the first
with y = 3.5 < yc, the second with y = 6 > yc. We also
show some results obtained with an analityical large-scale
forcing, i.e. the equivalent of y → ∞. The range of the
forcing, in Fourier space, extends down to the maximum
resolved wavenumber. As we are always confined in a
finite box, we neglect here possible subtle behaviours due
to infrared divergences in the injection mechanism.
We start considering what happens to the sys-

tem when the slope of the forcing is changed.
It is instructive to consider the equation for
the energy flux through the wavenumber k :
Π(k) ≡ −πk2

∫

ℑ[〈 (k · v̂(q))(v̂(k) · v̂(p)) 〉 +
〈 (k · v̂(p))(v̂(k) · v̂(q)) 〉]dpdq, where the three wavevec-
tors satisfy k + p + q = 0, and the symbol ℑ stands for
the imaginary part. Such equation is equivalent to the
Kármán-Howarth equation in physical space; it states
that in a stationary, isotropic and homogeneous flow,
the contribution to the energy flux Π(k) due to the
non-linear terms balances the total energy input from
the injection mechanism (see [1, 18]):

Π(k) ∼

∫

k0<|k|<k

ℜ(〈f(k)v(−k)〉)dk, (2)

where k0 ∼ 1/L, the symbol ℜ stands for the real part
and where we have neglected dissipative effects. For the
special class of forcings (1), the rhs of (2) can be fur-
ther simplified to: Π(k) ∼

∫

k0<|k|<k

〈

|f (k)|2
〉

dk. From

(1) the forcing spectrum is Ef (k) =
〈

|f(k, t)|2
〉

∼ k3−y.
It follows that for y ≥ 4, the energy flux is constant
in Fourier space for kL ≫ 1 (up to logarithmic cor-
rections for y = 4). In other words, the energy in-
jection is dominated by the small wave-number region
in the integral (2). In this case we expect to be very

close to the typical experimental situation of turbulence
with a large-scale, analytical forcing: energy is trans-
ferred down-scale via an intermittent cascade. Coher-
ently, the third order longitudinal structure function,

S(3)(r) ≡
〈

[(v(x+ r)− v(x)) · r̂]
3
〉

, follows a linear be-

haviour in r as predicted by the 4/5 law [1]. For y < 4,
the energy flux no longer saturates to a constant value
as a function of k . The integral in (2) now becomes ul-
traviolet dominated. The direct input of energy from
the forcing mechanism affects inertial range statistics in
a self-similar way, down to the smallest scales where dis-
sipative terms start to be important. In this situation,
we get for the energy flux Π(k) ∼ k4−y, with a con-
stant prefactor which depends on the ultraviolet cut-off.
The corresponding scaling behaviour for the third order
structure function is now given by S(3)(r) ∼ ry−3.
What about higher order statistics? One is tempted

to guess that for y ≥ 4 the fluctuations induced by the
injection mechanism are always sub-leading, anomalous
scaling being the result of the cascade mechanism driven
by the non-linear terms of the equations of motion. If
so, for y > 4 we should fall in the same class of “univer-
sality” of turbulence generated with large-scale forcing,
i.e. small-scale velocity fluctuations should be universal.
Therefore, as far as y > 4, longitudinal structure func-
tions should scale as:

Sn(r) ≡ 〈[(v(x+ r) − v(x)) · r̂]
n
〉 ∼ rζ

(n)
∞ . (3)

In (3), we have denoted with ζn∞ the scaling exponents
measured with a smooth large-scale forcing.
On the other hand, for y < 4, energy is directly in-

jected in the inertial range. Here, a dimensional matching
with the forcing gives a scaling behaviour which is always
leading with respect to what predicted in the y > 4 range
(3). We expect now that anomalous scaling disappears,
everything being dominated by the Gaussian energy in-
put at all scales. By the simple dimensional argument
connecting the scaling of structure functions to that of
the external forcing, for the range y < 4 we have:

S(n)(r) ∼ rζ
(n)
y with ζ(n)y =

n

3
(y − 3). (4)

In Fig. 1 we show the sixth order structure function,
S(6)(r) for the two cases y = 3.5 and y = 6, compensated
with the dimensional prediction given by the matching
with the forcing (4). As it is clear, only for y = 3.5 the
statistics follows the forcing injection obtaining a nice
compensation. On the other hand, for y = 6 the statistics
is much closer to what usually measured with an analyt-
ical large-scale forcing. This is quantitatively confirmed
by the inset picture, where we plot the logarithmic deriva-
tives of S(6)(r) vs. S(3)(r), for the two cases y = 3.5 and
y = 6, together with the results of the simulation with a
large-scale, analytical forcing corresponding to y → ∞.
Here the local slopes for y = 6 and y → ∞ fluctuate
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FIG. 1: Log-log plot of the compensated sixth-order structure
function S(6)(r)/rα. The two top curves are for y = 3.5 at
the two resolutions 2563 and 5123: they are compensated
with the dimensional scaling 4, i.e. with an exponent α =

ζ
(6)
y=3.5 = 0.5. The bottom curve refers to the case y = 6,

at the resolutions 2563, and is also compensated with the

exponent for the scaling (4), α = ζ
(6)
y=6 = 6. Clearly the

matching with the dimensional exponent is not the correct
one in the case y = 6. Inset: local slopes of the ESS curve
for S(6)(r) vs. S(3)(r) at varying r. The top curve refers to
the case y = 3.5, and the two bottom curves refer to the cases
y = 6 and y → ∞. The dimensional scaling would correspond
to the value 2.

around the same value, compatible with those reported
in literature [2, 4], while the local slope for y = 3.5 is
different and tends to the expected dimensional value.
Values of all scaling exponents obtained in the simula-
tions are summarized in Table I. Let us notice that the
measured exponents for the y = 3.5 case are very close
to the non-intermittent, dimensional prediction. Only for
high order moments (i.e. n = 6) there is a small deviation
from the expected value ζ(6)/ζ(3) = 2.

To quantify the level of intermittency at changing
the scale, we also plot the Probability Density Function
(PDF) of velocity increments at different scales, normal-
ized to have unit variance. Figure 2 shows the PDFs, in
the case y = 6, for three different separations r1 = 34η
and r2 = 74η in the inertial range, and r3 = 114η in the

n 1 2 4 5 6

yd 0.333 0.666 1.33 1.66 2.00

y = 3.5 0.34(1) 0.67(1) 1.31(2) 1.62(2) 1.93(3)

y = 6 0.36(1) 0.69(1) 1.28(2) 1.53(3) 1.75(4)

y → ∞ 0.36(1) 0.69(1) 1.27(2) 1.52(3) 1.75(4)

TABLE I: Scaling exponents in ESS, of the curves S(n)(r) vs.

S(3)(r), extracted from the following numerical simulations:
y = 3.5, at resolution 2563 and 5123; y = 6, at resolution
2563; y → ∞, at resolution 5123. The first raw describes the
dimensional values: ζ(n)/ζ(3) = n/3
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FIG. 2: PDF’s of the velocity increments, for y = 6.0, for
three separations r1 = 34η and r2 = 74η in the inertial range,
and r3 = 114η in the energy containing range.

energy containing range. The three curves have larger
tails than a Gaussian distribution and have an intermit-
tent behaviour, i.e. they cannot be superposed. In Fig. 3
we show the PDFs, for the case y = 3.5, at the same
separations (r1, r2, r3). Now, the three curves are almost
indistinguishable, and show a very good rescaling, a sig-
nature of the absence of intermittent effects. Only for
negative increments, a very tiny discrepancy is measured.
It is hard to say whether this is a robust effect or a spu-
rious Reynolds dependent phenomenon. We will come
back to this issue later in the conclusions. A dramatic
difference at crossing the y = yc value is also observed in
the energy dissipation statistics. For both cases y = 3.5
and y = 6, we measured the PDF’s of the coarse-grained
energy dissipation εr(x) = V −1

r

∫

Vr(x)
ε(x+r)dr, where ε

is the rate of dissipation for unit volume, and the volume
Vr(x) is centered at x and has characteristic length scale
r ≪ L. In Fig. 4 we compare the PDF’s P(εr) at the
scale r = 8η. Here the results are even more impressive
as the shape change is particularly strong.
In this letter, we have presented clear evidences
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FIG. 3: PDF’s of the velocity increments, for y = 3.5. Scales
are the same of the previous picture: r1 = 34η, r2 = 74η, and
r3 = 114η.
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FIG. 4: PDF’s of the coarse-grained energy dissipation P(εr),
for both y = 3.5 and y = 6.0, at the scale r = 8η.

that turbulent small-scale fluctuations, in presence of a
direct injection of energy at all scales, undergo a sharp
transition for yc = 4. The first regime, for y > yc, is
mainly forcing independent: small-scale fluctuations
develop anomalous scaling in agreement with what
observed in experiments and/or numerics obtained
with a large-scale forcing. This is a stringent test of
turbulence universality: even if directly affected by
the injection of energy, small-scale fluctuations show
a robust behaviour. Things change abruptly at the
critical value of yc, where the direct injection of energy
becomes the dominant effect in the inertial range. In
this second regime, corresponding to y < yc, small-scale
fluctuations get closer and closer to a Gaussian statistics
and intermittency disappear [19]. Before concluding, we
discuss two possible mechanisms which could partially
disprove the last statement. First, even when y < yc,
we may imagine that the intermittent energy cascade
dominating the statistics for y > yc might show up.
For example, we may have that for high order moments
the forcing dominated solutions become subleading with
respect to those associated to the cascading mechanism.
In such case, the loss of rescaling in the PDF’s tail
of Fig. 2, may be due to the survival of these rare
anomalous fluctuations. Second, even more complex is
the scenario proposed in [17], where the possibility to
have a forcing dependent multiscaling statistics, when
y < yc, is conceived. This is not the case for the linear
Kraichnan models [9], where forcing dependent solutions
are always dimensionally scaling. The main difference
is that, in the Navier-Stokes problem, the hierarchy
of equations for correlation function is unclosed: one
cannot solve it for a single order independently of
all the others. In NS, being the low order moments

always forcing dominated for y < yc, one may observe
some forcing dependency also on high order fluctu-
ations, via their coupling with low order correlation
functions. This may be a possible explanation of the
multifractal behaviour observed in Burgers equation [17].
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