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Energy funneling in a bent chain of Morse oscillators with long–range coupling
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A bent chain of coupled Morse oscillators with long–range dispersive interaction is considered.
Moving localized excitations may be trapped in the bending region. Thus chain geometry acts like
an impurity. An energy funneling effect is observed in the case of random initial conditions.
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1. INTRODUCTION

Nonlinear excitations (solitons, discrete breathers, in-
trinsic localized modes, etc.) have been drawing increas-
ing attention over recent years and are widely believed
to be responsible for several effects in molecular chains,
such as charge and thermal conductivity, energy transfer
and localization, etc. (see reviews in [1, 2, 3, 4, 5, 6] e.g.).

Initially, the geometrical features of the polymers and
biopolymers were essentially neglected and energy trans-
fer and localization was mostly attributed to inhomo-
geneities and impurities [7, 8, 9, 10, 11, 12] or nonlin-
ear excitations [8, 13, 14, 15, 16, 17]. Also, discreteness
plays an important role for the localization of these exci-
tations. The inhomogeneities have been modelled by dif-
ferent masses at various chain sites [7, 10, 12], by changes
in the coupling between molecular sites [7, 8] or by dif-
ferent on–site potentials [11] as well as conformational
defects [17]. In general, impurities have been shown to
act as filters governing the progression of incoming exci-
tations. Thus both reflection, trapping and transmission
of incident moving discrete breathers through the impu-
rity region can occur [7, 8, 10, 11, 12, 17]. Similar effects
have been observed through collisions between moving
discrete breathers, thus [8, 14, 16] showed how station-
ary large amplitude discrete breathers, on the average,
absorb energy from colliding breathers of smaller ampli-
tude. Thus the large amplitude breather may play a role
similar to that of an impurity [12].

Recently, both long–range dipole–dipole interaction
[18, 19], helicity [20, 21] and curvature [22, 23, 24] have
been included in the nonlinear transport theory, as well

∗Electronic address: pvl@imm.dtu.dk

as combinations of these effects [25, 26, 27, 28, 29]. It has
been shown that chain geometry induces effects similar
to those of impurities [22, 23, 24, 25].

Special attention has been paid to models of biologi-
cal macromolecules, such as proteins [1, 3, 13] and DNA
[1, 9, 10, 11, 13, 15, 30]. These are obvious choices for
more complex geometric models, as their structure is cru-
cial for their functionality [31, 32]. A widely used model
was presented by Peyrard and Bishop [33] in the con-
text of statistical mechanics. In biological environments,
thermal fluctuations are always present and have been
considered in [9, 30, 34, 35, 36], e.g. In these refs. it was
shown that solitons or discrete breathers can be gener-
ated from initial random thermal fluctuations.

The aim of the present work is to study the interplay
between chain geometry and long–range interaction in
an augmented Peyrard–Bishop model. We show how a
new mechanism for energy accumulation in the system
— funneling — may be provided by the geometry of the
chain. We consider a simple approximative description
of the long–range intersite coupling by modelling it as a
dipole–dipole–like interaction. Using an attractive long–
range interaction, we study the effect of the geometry of
the bent chain on the dynamics. The particular shape
of the bend turns out to make no qualitative difference
in terms of trapping and funneling. We therefore choose
a simple wedge–shaped geometry. As initial conditions
we use discrete breathers as well as randomly distributed
fluctuations [9, 14].

In Sec. 2 we introduce the model, which includes
the long–range interactions and the chain geometry. In
Sec. 3, we investigate breather dynamics in the system
and in Sec. 5 random initial conditions are considered.
Sec. 6 summarizes our results and contains a discussion.

http://arxiv.org/abs/nlin/0310023v1
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2. THE MODEL

We consider a one dimensional lattice of Morse oscil-
lators with the Hamiltonian density

Hn =
1

2
u̇2
n +

C

2
(un − un−1)

2

+ [exp(−un)− 1]
2
−

1

2

∑

m

′

Jnmunum, (1)

where prime indicates m 6= n in the summation. The

Hamiltonian for the system becomes H =
∑n=N

n=−N Hn,
where the total number of sites is NT = 2N + 1. In
Eq. (1) the first term is the kinetic energy at the n’th site.
Then follows a harmonic potential interaction between
neighboring sites, C being the dispersion parameter. An
on–site Morse potential (shown in Fig. 1) describes the
atomic interaction. Finally, there is a summation of long-
range interactions in which the coefficients are given by

Jnm =
J0

|rn − rm|
3
, (2)

where J0 is a strength parameter, and rn denotes the po-
sition of the n’th site. In our model the distance between
neighboring sites, |rn+1 − rn|, is constant and normal-
ized to unity.
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FIG. 1: The Morse potential, V (un) = [exp(−un)− 1]2.

From the Hamiltonian we get the equations of motion

ün + C (2un − un−1 − un+1)

−2e−un [e−un − 1]−
∑

m

′

Jnmum = 0 . (3)

At the ends of the molecule we use the free boundary
conditions

u−N−1 = u−N , (4)

uN+1 = uN . (5)

The wedge-shaped chain is given by

rn = (xn, yn) = (n sin
θ

2
, |n| cos

θ

2
),

where θ denotes the fixed wedge angle (see Fig. 2). We
note that the geometry of the chain only comes into play
through the long–range interactions. In fact, earlier stud-
ies of the long–range effect in curved molecular chains
show that the exact form of the additional dispersion is
not crucial as long as it decreases rapidly with distance
[15, 28].
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FIG. 2: Wedge chain with opening angle, θ.

Throughout the paper we use C = 0.075 (a typical
value for DNA [19, 29, 34]) and J0 = 0.5 (based on esti-
mates of the dipole moment [19]).
Fig. 3 gives a detailed picture of the long–range inter-

action by plotting the interaction coefficient Jnm versus
n, for fixed (a) m = −3 and (b) m = −2. We see that
the closer m gets to the bend at n = 0, the higher the
shoulder in the Jnm–profile becomes. This feature sug-
gests an analogy in which the bend acts as an impurity.
Away from the bend this effect rapidly drops off.
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FIG. 3: Long–range interaction coefficients Jnm for fixed (a)
m = −3, (b) m = −2. θ = 35◦.

The long–range interaction in curved chains may be
represented as follows:

−
∑

n

∑

m

′

Jnmunum =
1

2

∑

n

∑

m

′

Jnm (un − um)2

+
∑

n

V Eff
n u2

n,
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where the first summations on the right hand side corre-
spond to the inhomogeneous dispersion (seen in Fig 3),
while the second summation, in which V Eff

n ≡ −
∑

′

m Jnm
is introduced, corresponds to an effective on–site poten-

tial [28]. The potential V Eff
n has the double–well profile,

shown in Fig. 4.PSfrag replacements
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FIG. 4: Effective potential, V Eff
n ≡ −
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m
Jnm, versus site

number, n.

In the following we shall see how the impurity, or effec-
tive on–site potential, introduced by the bend can reflect,
trap or transmit incoming excitations.

3. ENERGY TRAPPING

In this Section we consider the interaction between the
bend and the incoming localized excitations.
A 4th order Runge–Kutta solver is used to simulate

Eq. (1) on a chain with NT = 301 sites. A stepsize in
time of 0.005 ensures conservation of the Hamiltonian
to a relative accuracy of 10−10 throughout. We use a
Gaussian initial condition

un(t) = A exp
[

−k
(

(n− ν)− vt
)2
]

, (6)

where site ν denotes the initial position of the center of
mass.
In the following we use the velocity v = 0.2, the width

k = 0.2 and the amplitude A = 0.5, because they turn
out to provide the right balance between nonlinearity and
dispersion to allow the initial condition to evolve rapidly
into a discrete moving breather. Insertion of Eq. (6)
with these parameter values into the total Hamiltonian
gives H = 0.13. After some initial radiation, the moving
breather turns out to possess the energy, Hs ≈ 0.08.
In the following sections we present the numerical sim-

ulations of the chain dynamics.

3.1. Breather dynamics

In Fig. 5 we show contour plots for the evolution of
the Hamiltonian density. A weak bend with θ = 140◦

has no noticeable effect on the breather (Fig. 5a) and

only a slight decrease of the velocity after passage of the
center region is observed. In contrast for a stronger bend,
θ = 95◦, a considerable part of the excitation is trapped
at the tip of the wedge n = 0.

PSfrag replacements

800

600

400

200

0
−100 0 100

T
im

e,
t

Site, n

(a)

(b)

PSfrag replacements

800

600

400

200

0
−100 0 100

T
im

e,
t

Site, n

(a)

(b)

FIG. 5: Contour plots for the evolution of the Hamiltonian
density, Hn, for NT = 301, J0 = 0.5, v = 0.2, k = 0.2,
A = 0.5 and ν = −100, yielding H = 0.13. 5 equidistant
contours H = 0.005 . . . 0.05. (a) θ = 140◦ (transmission), (b)
θ = 95◦ (trapping).

Very strong bends (smaller wedge angles) turn out to
result in reflection of the incident breathers. Such scat-
tering properties and their dependence on the strength of
the bend–induced impurity, are similar to those of a lin-
ear impurity [37] and those of large amplitude breathers
acting as an effective impurity [14]. We stress that the
specific shape of the bend does not affect the scatter-
ing properties of the bent chain. Thus similar properties
were observed in a parabolic chain [38].
To analyze the processes in detail, we calculate the

central energy, Hc, in 21 sites around n = 0 (21 being
a typical span of the denaturation bubble of the DNA
molecule [21, 34])

Hc =

10
∑

n=−10

Hn, (7)

where Hn is given by Eq. (1). The results are shown
in Fig. 6. In the transmission case with a small bend,
Fig. 6(a), nearly all the energy leaves the region. In
the trapping case with a stronger bend, Fig. 6(b), the
trapped energy is stabilized at about Hc/Hs ≈ 64%.
Thus only part of the energy is trapped.
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FIG. 6: Relative central energy, Hc/Hs, versus time for the
simulations in Fig. 5. (a) θ = 140◦, (b) θ = 95◦.

The trapped energy portion,Hc/Hs, calculated at time
= 800 is shown in Fig. 7 as a function of the wedge an-
gle, θ. For smaller and larger θ–values, the energy is lost
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through reflection and transmission, respectively. Effe-
cient trapping is found for intermediate wedge angles,
90◦ < θ < 107◦. The optimal wedge angle for trapping
is seen to be around θ = 95◦.
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FIG. 7: Relative central energy, Hc/Hs, at t = 800 versus
wedge angle, θ. System parameters as in Fig. 5.

4. MULTIPLE BREATHER DYNAMICS

In Fig. 8 we show the trapping of multiple breathers.
A first Gaussian pulse (I) is launched at site ν = −100
at t = 0. At t = 800 both the displacements and the
velocities are set to zero, un(800) = 0 and u̇n(800) = 0,
outside the bent region, |n| > 15, to remove radiation.
This “cleaned” chain is now used as an initial condition
for a new simulation, in which we add a second identi-
cal Gaussian pulse (II) launched at site ν = −87. Like
in other systems the interaction between two breathers,
or a breather and an impurity, depends strongly on the
relative phase. We choose ν = −87 for the launching of
this second pulse to obtain maximal trapping. Using the
same procedure, a third identical Gaussian pulse (III)
is launched at t = 1600, now at ν = −89. As seen in
Fig. 8 we essentially succeed in trapping 3 breathers at
the tip of the wedge chain. Some energy transmission
is observed when breathers I and II are trapped, while
reflection occurs at the trapping of breather III. By
successively handling the initial conditions as described
above, we avoid radiation which, when reflected at the
boundaries, distorts the numerical simulations.

The corresponding energy evolution for the central
sites is shown in Fig. 9. The ability of the system to trap
energy at the bending region is evident, even though more
radiation is observed as the number of trapped breathers
increases. As noted also in connection with Fig. 6(b),
the first incident breather, I, loses about 36% of the to-
tal energy before trapping. For the following breathers,
II and III, both of the corresponding losses amount to
50%. Thus the possibility for trapping more energy at the
chain bend by additional incoming breathers may seem
exhausted due to an effective saturation.
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FIG. 8: Trapping of breathers I , II and III at n = 0.
Contour plot for the evolution of the Hamiltonian density,
Hn, with 5 equidistant lines H = 0.005 . . . 0.05. NT = 301,
J0 = 0.5, v = 0.2, k = 0.2, A = 0.5. I : ν = −100 at t = 0,
II : ν = −87 at t = 800, III : ν = −89 t = 1600.
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5. FUNNELING

The trapping of breathers observed in the previous Sec-
tion suggests that the bend may funnel energy from the
surrounding region. In order to study this in detail, we
now explore the dynamics of the chain in the case of
random initial conditions. 500 different realizations with
zero displacement, un = 0, and velocities normally dis-
tributed with zero mean, <u̇n>= 0 and standard devia-
tion σu̇n

= 0.17 are used, corresponding to a Hamiltonian
H ≈ 1.41.

Random initial disturbances may create nonlinear
localized excitations, interacting with each other and
with the effective inhomogeneity caused by the bend
[9, 30, 34, 35, 36]. In [9], the number of generated solitons
were found to depend on the temperature of the system,
T , by the power 1/3. Here we find that collision of the
nonlinear excitations may result in exponential growth
of the oscillation amplitude at the collision site. We ob-
serve this phenomenon in Fig. 10 in a bend chain. Here,
a sudden increase of the amplitude of the center site, u0,
occurs after about 130 time units of bounded oscillations.
This unbounded growth of amplitude implies energy lo-
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calization at the center site.
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FIG. 10: Displacement at center site, u0, versus time on bent
chain with NT = 99 and θ = 95◦. Initial displacements:
un = 0 for all n. Random initial velocities generated with
normal distribution: <u̇n>= 0 and σu̇n

= 0.17. H=1.41.

Our results for a straight chain are depicted in Fig. 11
showing a histogram of the occurrences of sites with a
displacement above the threshold value un = 10, cor-
responding to the value for DNA opening used in [39].
The simulations were discontinued when this threshold
value was exceeded. If this event did not occur within
10.000 time units, a “no–occurrence” was registered.
“No–occurrence” happened in 24 out of 500 simulations.
The threshold transgressions is seen to be uniformly dis-
tributed along the chain.
On a wedge chain with bending angle θ = 95◦, identi-

cal initial conditions gives the remarkably different result
shown in Fig. 12. Here, 93 (out of 491) threshold trans-
gressions occurs in the center region −1 ≤ n ≤ 1. Only
9 “no–occurrences” were registered. Thus energy local-
ization, implied by unbounded growth of amplitude, is
observed in the vicinity of the tip of the wedge which
therefore acts as an energy funnel.
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FIG. 11: Straight chain, θ = 180◦, NT = 99. Occurrence
of amplitudes above threshold, un > 10, versus site n, until
max. t = 10.000. Initial displacements: un = 0 for all n. 500
random initial velocities with normal distribution: <u̇n>= 0
and σu̇n

= 0.17, H=1.41.

For lower standard deviations, σu̇n
, correspond-

ing more realistically to physiological temperatures, a
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FIG. 12: Wedge chain, θ = 95◦, NT = 99. Occurrence of
amplitudes above threshold, un > 10, versus site n, until
max. t = 10.000. Initial displacements: un = 0 for all n. 500
random initial velocities with normal distribution: <u̇n>= 0
and σu̇n

= 0.17, H=1.41.

smaller number of simulations produce threshold trans-
gressions, within 10.000 time units. Thus, for σu̇n

=
0.116, H ≈ 0.7, corresponding to the temperature T ≈
37◦C, only about 1% of the 500 simulations led to thresh-
old transgression. The few transgressions that did occur,
were found in the vicinity of the tip of the wedge.

6. CONCLUSION

On a bent chain of Morse oscillators we find that mov-
ing discrete breathers may be trapped at a bending point
in the presence of dipole–dipole–like longe–range interac-
tion. Thus the role of the geometry for the dynamics is
analogous to that of an inhomogeneity. At the bending
point, several incident discrete breathers may be trapped.
However, energy is lost to radiation and a saturation ef-
fect seems to limit the total trapped energy in the vicinity
of a given bending point.
For random initial conditions modelling thermal fluc-

tuations, the tendency to unbounded amplitude growth
in the vicinity of the bending point is substantially am-
plified. Thus energy localization is implied in this region
which therefore acts as an energy funnel.
The use of a nonlinear potential is crucial for obtaining

the energy funnneling effect in our model, since no ampli-
tude growth is observed in a linear approximation. The
plateau of the characteristic Morse potential allows for
the breaking of the hydrogen bonds, e.g., in the molecule
to be modelled. In contrast, a linear approximation with
a parabolic potential produces too powerful an attraction
for this effect to take place and would therefore not be
an adequate description of chemical bonds.
We also note that the attracting nature of the long–

range interaction is crucial for the occurrence of ampli-
tude growth. Ongoing work on this effect uses a more
accurate dipole–dipole interaction term and includes the
effect of the twisting of the dipoles occurring along the
strands of DNA molecules, e.g.
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