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Stability of vortex solitons in a photorefractive optical lattice
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Stability of off-site vortex solitons in a photorefractive optical lattice is analyzed. It is shown that
such solitons are linearly unstable in both the high and low intensity limits. In the high-intensity
limit, the vortex looks like a familiar ring vortex, and it suffers oscillatory instabilities. In the low-
intensity limit, the vortex suffers both oscillatory and Vakhitov-Kolokolov instabilities. However,
in the moderate-intensity regime, the vortex becomes stable if the lattice intensity or the applied
voltage is above a certain threshold value. Stability regions of vortices are also determined at typical
experimental parameters. OCIS codes: 190.0190, 190.5330.

Vortex solitons are ubiquitous in many branches of
physics such as optics [1] and Bose-Einstein condensa-
tion [2]. In a homogeneous medium, bright vortex rings
are unstable [3], and only dark vortex solitons are pos-
sible with defocusing nonlinearity [1,4]. However, in the
presence of a periodic optical lattice, stable lattice vor-
tices become possible due to the guiding properties of the
lattice. Indeed, recent theoretical work [5,6] has shown
that in an optical lattice with Kerr nonlinearity, both
on-site vortices (vortices whose singularity is located on
a lattice site) [5] and off-site vortices (vortices whose sin-
gularity is located between sites) [6] are stable within
certain ranges of parameters. These theoretical stud-
ies are quickly followed by experiments in photorefrac-
tive crystals, where vortex lattice solitons were observed
very recently [7,8]. For a review of other nonlinear local-
ized states in one- and two-dimensional periodic optical
waveguides, see [9,10].
Stability of vortex lattice solitons in photorefractive

crystals is clearly an important issue. This question was
considered in [8], where the evolution of a particular on-
site lattice vortex under random-noise perturbations was
simulated. It was found that the on-site vortex was sta-
ble to very long distances. However, we know that lattice
vortices in photorefractive crystals can not be all stable.
For instance, when the peak intensity (or power) of the
vortex is high, the lattice is effectively weak, thus the lat-
tice vortex would become the familiar ring vortex, which
is known to be unstable [see Fig. 1(b) below] [3]. The
natural questions to ask then are: what lattice vortices
are stable? If lattice vortices are unstable, what are the
sources of their instability? So far, these questions have
not been addressed comprehensively for either of the on-
site and off-site lattice vortices.
In this paper, we study the off-site vortex solitons in

a photorefractive optical lattice. Off-site lattice vortices
are more closely packed — the diagonal distance between
their four main lobes is

√
2 times shorter than that of on-

site vortices. Thus their dynamics is stronger and more
interesting. We show that these vortices are not only
unstable in the high-intensity limit, but also in the low-
intensity limit. However, they do become stable in the
moderate-intensity regime if the lattice intensity or the
applied voltage reaches over a certain threshold. We also

determine the stability regions of vortices for a wide range
of experimental parameters, and show that the stability
region expands when the applied voltage increases.
The mathematical model for light propagation in a

photorefractive crystal has been known for some time
[11]. Here we make the usual paraxial assumption, and
the assumption that the photorefractive screening non-
linearity acts isotropically along the two transverse direc-
tions, both of which are justified in many experiments.
If the probe beam is extra-ordinarily polarized, while the
lattice is ordinarily polarized, then the probe beam does
not affect the linear lattice. In this case, the governing
equation for the probe beam is [11]

iUz +
1

2k1
(Uxx + Uyy)−

1

2
k0n

3

er33EscU = 0, (1)

where U is the slowly-varying amplitude of the probe
beam, z is the distance along the direction of the crys-
tal, (x, y) are distances along the transverse directions,
k0 = 2π

λ0

is the wavenumber of the laser in the vacuum
(λ0 is the wavelength), ne is the refractive index along
the extraordinary axis, k1 = k0ne, r33 is the electro-
optic coefficient for the extraordinary polarization, Esc

is the space-charge field, Esc = E0/[1 + Il(x, y) + |U |2],
E0 is the applied DC field, and Il is the field intensity
of the optical lattice. Here the intensities of the probe
beam and the lattice have been normalized with respect
to the dark irradiance of the crystal Id. Material damp-
ing of the probe beam is very weak in typical experi-
ments since the crystals are fairly short (up to 2 cm).
Hence it is neglected in Eq. (1). If the lattice is peri-
odic along the x and y directions (rectangular lattice),
then Il(x, y) = I0 sin

2 (πx/D) sin2 (πy/D) , where I0 is
its peak intensity, and D is its spacing.
Eq. (1) can be non-dimensionalized. If we measure the

transverse directions (x, y) in units of D/π, the z direc-
tion in units of 2k1D

2/π2, and the applied voltage E0 in
units of π2/(k2

0
n4

eD
2r33), then Eq. (1) becomes

iUz + Uxx + Uyy −
E0

1 + I0 sin
2 x sin2 y + |U |2

U = 0. (2)

Consistent with the experiments [10], we choose physical
parameters as D = 20µm, λ0 = 0.5µm, ne = 2.3, r33 =

1
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280pm/V. Thus, in this paper, one x or y unit corre-
sponds to 6.4µm, one z unit corresponds to 2.3 mm, and
one E0 unit corresponds to 20 V/mm in physical units.
Lattice vortices of Eq. (2) are sought of in the form

U = u(x, y)e−µz, where µ is the propagation constant.
We determined these vortices by a Fourier iteration
method [6]. At lattice intensity I0 = Id and applied
voltage E0 = 8, these vortices are shown in Fig. 1. We
see that when the vortex’ peak intensity Ip is high, the
vortex becomes a familiar ring vortex [see Fig. 1(b)] since
the optical lattice is relatively negligible in this case. As
Ip decreases, the vortex develops four major lobes at four
adjacent lattice sites in a square configuration [see Fig.
1(c,e)]. When Ip is low, the vortex spreads over to more
lattice sites and becomes less localized [see Fig. 1(f)].
The phase fields of all these lattice vortices, however, re-
main qualitatively the same as in a regular ring vortex
[see Fig. 1(d)]. Note that the singularities (centers) of
these vortices are not on a lattice site, thus these vortices
are off-site vortices. An interesting fact we found is that,
for given lattice intensity and applied voltage values, lat-
tice vortices with Ip below a certain threshold Ip,c do not
exist. In the present case where I0 = Id and E0 = 8,
this threshold value is Ip,c ≈ 0.28Id. This fact indicates
that, unlike fundamental lattice solitons, lattice vortices
do not bifurcate from infinitesimal Block waves.
We can further determine the power and peak-intensity

diagrams versus the propagation constant µ. Here the
power is defined as P ≡

∫
∞

−∞

∫
∞

−∞
|u|2dxdy. When

I0 = Id and E0 = 8, the results are shown in Fig. 2(a).
We see that the peak-intensity is a monotone-decreasing
function of µ, but the power is monotone-decreasing only
when the peak intensity is above 0.34Id. Below this in-
tensity value, the power starts to increase with µ. This
behavior qualitatively holds also for other I0 and E0 val-
ues, and it is similar to that in the Kerr medium [6].
Now we address the critical question of linear stabil-

ity of these vortices in a photorefractive lattice. High-
intensity lattice vortices clearly should be linearly un-
stable because they approach the regular ring vortex
[see Fig. 1(b)] [3]. The instability is oscillatory (i.e.,
the unstable eigenvalues are complex). At low inten-
sities, dP/dµ > 0, hence the lattice vortices are ex-
pected to be linearly unstable as well according to the
Vakhitov-Kolokolov (VK) criterion [12]. The VK insta-
bility is purely exponential (i.e., the unstable eigenvalues
are purely real). How about the stability behaviors of
vortices at moderate peak intensities? To answer this
question, we have simulated the linearized equation of
(2) around lattice vortices u(x, y)e−µz for very long dis-
tances, and obtained the unstable eigenvalues σ of small
disturbances (the real part of σ is the growth rate). The
results for I0 = Id and E0 = 8 are shown in Fig. 2(b).
We find that lattice vortices are linearly unstable when
Ip > 2.1Id and Ip < 0.70Id, consistent with our expecta-
tions. In addition, the instability for Ip > 2.1Id is oscilla-

tory [Im(σ) 6= 0], and the VK instability for Ip < 0.34Id
is purely exponential [Im(σ) = 0], as we would expect.
However, Fig. 2(b) reveals another oscillatory instabil-
ity for 0.34Id < Ip < 0.70Id, which was not anticipated.
This additional oscillatory instability has been seen in
the Kerr medium before [6].
A more important result revealed by Fig. 2(b) is that

for 0.70Id < Ip < 2.1Id, lattice vortices are linearly sta-
ble. This is an important result. It implies that lattice
vortices with such moderate intensities could be observ-
able in experiments.
When lattice vortices are linearly unstable, what is

the outcome of the instability? To address this ques-
tion, we select the linearly-unstable vortex soliton with
I0 = 1, E0 = 8 and peak intensity Ip = 3Id, and per-
turb it by random noise. The noise has Gaussian in-
tensity distribution in the spectral k-space with FWHM
2 times larger than the soliton FWHM spectrum. The
noise power is 1% of the soliton’s. The simulation result
on the evolution of this vortex under noise perturbations
is shown in Fig. 3. We see that this vortex breaks up into
a fundamental lattice soliton plus some radiation. This
breakup scenario is typical of unstable lattice vortices
under noise perturbations.
When lattice vortices are linearly stable, how do they

evolve nonlinearly? To answer this question, we select
the linearly-stable vortex soliton with I0 = 1, E0 = 8 and
Ip = 1.5Id, and perturb it by the same random noise as
described above. The simulation result on the evolution
of this perturbed vortex is shown in Fig. 4. We see that
this vortex does propagate stably. In addition, its phase
structure is maintained throughout the evolution. Evo-
lution of other linearly-stable lattice vortices under weak
perturbations is similar. This means that linearly-stable
vortex solitons could be observed in experiments, as the
work [7,8] has shown.
Above at specific lattice intensity and applied volt-

age values I0 = Id and E0 = 8, we have revealed the
sources of instability of lattice vortices, and obtained sta-
ble lattice vortices. The next question quickly follows: if
the lattice intensity and voltage values are varied, how
would they affect the stability properties of lattice vor-
tices? This question is important for experiments. To
find the answer to this question, we have systematically
determined the linear stabilities of lattice vortices at var-
ious lattice intensity, applied voltage and vortex peak-
intensity values. The results are summarized in Fig. 5.
Here at two applied voltage values E0 = 8 and 10, the
stability boundaries are presented in the (Ip, I0) plane.
This figure reveals several important facts. First, high-
intensity and low-intensity vortex solitons are always lin-
early unstable, as we have observed in Fig. 2 above.
Second, when the applied-voltage value E0 is fixed, there
is a threshold lattice intensity I0,c, below which all lat-
tice vortices (including moderate-intensity ones) are lin-
early unstable. When E0 = 8, this threshold value is
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I0,c ≈ 0.7Id; while when E0 is increased to 10, I0,c de-
creases to 0.44Id. Similarly, when the lattice intensity I0
is fixed, there is also a threshold applied-voltage value
below which all lattice vortices are linearly unstable.
Thirdly, when the applied voltage increases, the region of
stable lattice vortices expands. In other words, higher-
applied voltage stabilizes lattice vortices. Fig. 5 should
be helpful to experimentalists on their choices of physical
parameters for the observation of lattice vortices.

In summary, we have carried out a stability analysis on
off-site lattice vortices in photorefractive optical lattices.
We showed that high- and low-intensity lattice vortices
suffer oscillatory and VK instabilities, but moderate-
intensity vortices can be stable when the applied voltage
or lattice intensity is above a certain threshold. Higher
applied voltage stabilizes lattice vortices.
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FIG. 1. (a) Intensity field of the optical lattice with
I0 = Id; (b, c, e, f) intensity fields of lattice vortices with
peak intensities 15, 5, 1.5 and 0.3 Id respectively under the
applied voltage E0 = 8; (d) phase structure of these vortices.
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FIG. 2. (a) Power and peak-intensity diagrams of lattice
vortices at I0 = Id and E0 = 8; solid-line portion: stable
vortices; dashed-line portions: unstable vortices; (b) unstable
eigenvalues of these vortices versus their peak intensity.
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FIG. 3. Break-up of a lattice vortex soliton with I0 = Id,
E0 = 8 and Ip = 3Id under random-noise perturbations.
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FIG. 4. Stable propagation of a lattice vortex soliton with
I0 = Id, E0 = 8 and Ip = 1.5Id under random-noise pertur-
bations. Top row: intensity; bottom row: phase.
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FIG. 5. Stability boundaries of lattice vortex solitons in
the (Ip, I0) plane at two applied voltages E0 = 8 and 10.
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