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Abstract

By means of the variational approximation (VA), a system of ordinary differential
equations (ODEs) is derived to describe the propagation of antisymmetric solitons in
a multi-channel (WDM) optical fiber link subject to strong dispersion management.
Results are reported for a prototypical model including two channels. Using the
VA technique, conditions for stable propagation of the antisymmetric dispersion-
managed (ASDM) solitons in one channel are found, and complete and incomplete
collisions between the solitons belonging to the different channels are investigated.
In particular, it is shown that formation of a bound inter-channel state of two
ASDM solitons is possible under certain conditions (but may be easily avoided).
The VA predictions for the single- and two-channel systems are compared with
direct simulations of the underlying partial differential equations. In most cases,
the agreement is very good, but in some cases (very closely spaced channels) the
collision may destroy the ASDM solitons. The timing-jitter suppression factor (JSF)
for the ASDM soliton in one channel, and the crosstalk timing jitter induced by
collision between the solitons belonging to the different channels are also estimated
analytically. In particular, the JSF for the ASDM soliton may be much larger than
for its fundamental-soliton counterpart in the same system.
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1 Introduction

The potential offered by the use of the dispersion management (DM), i.e., periodic
compensation of the group-velocity dispersion in a long fiber-optic telecommuni-
cation link, for the improvement of data transmission by soliton streams, is well
known [1]. The work in this direction, especially aimed at the application of DM to
multi-channel systems based on the wavelength-division-multiplexing (WDM) tech-
nique, continues, see, e.g., a recent experimental report [2]. The interest to the
topic has been recently bolstered by the development of the concept of the dif-
ferential phase-shift keying (instead of the traditional on-off code), which helps to
resolve some problems [3], and by the launch (in Australia) of the first commercial
DM-soliton-based commercial fiber-optic telecommunications link.

Basic properties of the fundamental solitons in DM systems have been studied in
detail by means of various analytical and numerical methods (some references are in
given in more particular contexts below). It is known that, alongside the fundamen-
tal solitons which have a symmetric profile in the temporal domain, antisymmetric

solitons are also possible in the DM fiber-optic links [4] [in contrast to the uniform
nonlinear optical fibers, described by the nonlinear Schrödinger (NLS) equation, that
does not give rise to antisymmetric solutions]. In the general case, the asymmetric
DM (ASDM) solitons may be unstable against parity-breaking (symmetric) pertur-
bations, but, nevertheless, in many respects they behave as fairly robust pulses,
that is why they are of interest to applications [5]. Besides that, they are interest-
ing dynamical objects in their own right – in particular, because they are related
to the so-called “twisted localized modes” (TLM; alias “dark-in-bright solitons”) in
Bose-Einstein condensates (BECs) loaded in a periodic potential ( optical lattice)
[6], and recently found odd solitons in BECs subjected to the Feshbach-resonance
management (time-periodic change of the sign of the nonlinearity constant, under
the action of external ac magnetic field) [7]. Those solitons, in turn, were found
following the pattern of earlier found TLMs in the discrete NLS equation [8]. It
is relevant to mention that the TLM pulses in Bose-Einstein condensates are com-
pletely stable objects, including full stability against parity-violating perturbations
[6].

The study of the ASDM solitons in single- and two-channel systems is the subject
of this work. First, we aim to develop the variational approximation (VA) for
the antisymmetric solitons in the single-channel DM model, in order to predict
conditions for stable transmission of these solitons in the long DM fiber link. Then,
we extend the VA for the case of interactions (collision) between the ASDM solitons
in the two-channel system. These analytical results are presented in Section 2, and
in Section 3 they are verified versus direct numerical simulations. We infer that,
in most cases, the VA predictions are quite accurate, except for a case of two very
close channels, when collision may completely destroy the solitons. In Section 4, we
produce analytical estimates for the intra-channel jitter-suppression factor (JSF),
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and for the crosstalk jitter induced by complete and incomplete collisions between
the ASDM solitons belonging to different channels. A noteworthy result is that, for
the antisymmetric solitons, the JSF may be much larger (by a factor in excess of
10) than for their fundamental counterparts. The paper is concluded by Section 5.

2 The analytical approach

2.1 The models

We take the propagation equation for the DM transmission line in the following
standard normalized form (see, e.g., Refs. [9, 10]):

2iuz +D(z)uττ + ǫ(D0uττ + 2|u|2u) = 0, (1)

where u(z, τ) is the envelope of the electromagnetic field, z and τ are the propagation
distance along the fiber and the retarded time, respectively, and D(z) is the local
dispersion coefficient, which is a periodic function with a period Lmap ≡ L1 + L2:

D(z) =

{

D1 , 0 < mod(z, Lmap) < L1 ,
D2 , L1 < mod(z, Lmap) < L1 + L2 .

(2)

The map (2) is subject to the dispersion-compensation condition, D1L1+D2L2 = 0,
and its parameters may be rescaled to satisfy the following normalizations [11],

L1 + L2 = 1, |D1|L1 = |D2|L2 = 1. (3)

The small parameter ǫ in Eq. (1) is the ratio of the local dispersion length
to the nonlinear length, which measures the weakness of the nonlinearity. The
coefficient D0 is the path-average dispersion (PAD); its positive, zero, or negative
values correspond, respectively, to the anomalous, zero and the normal average
dispersion, respectively. The form of Eq. (1) implies that the nonlinearity and PAD
are weak factors at the same order of smallness.

A two-channel system for the fields u(z, τ) and v(z, τ) propagating in the same
core obeys coupled nonlinear Schrödinger equations,

2i (uz + cuτ ) +D(z)uττ + ǫ
[

Duuττ + 2
(

|u|2 + 2 |v|2
)

u
]

= 0, (4)

2i (vz − cvτ ) +D(z)vττ + ǫ
[

Dvvττ + 2
(

|v|2 + 2 |u|2
)

v
]

= 0, (5)

where 2c is the inverse group velocity difference between the channels, D(z) is the
same periodic map as in Eq. (2), while the two PAD coefficients Du,v may be
different. Nonlinear terms in Eqs. (1) and (2) represent the self-phase modulation
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(SPM) and cross-phase modulation (XPM), which are induced by the Kerr effect
[12]. Equations (4), (5) conserve two channel energies,

Eu ≡
√

2/π
∫ +∞

−∞

|u|2dτ, Ev ≡
√

2/π
∫ +∞

−∞

|v|2dτ (6)

(the factor
√

2/π was added to the definitions for convenience, see below), as well
the Hamiltonian and field momentum.

It is straightforward to establish relations between the normalized variables and
parameters used in the above equations, and their physical counterparts. In particu-
lar, if z = 1 and τ = 1 correspond to the typical values, 50 km and 10 ps, respectively,
which frequently play the role of the length ant time units in fiber-optic telecommu-
nications, then D = 1 corresponds to the actual value of the dispersion coefficient
2 ps2/km (in uniform links, this value is typical for dispersion-shifted fibers), and
c = 1 corresponds to 0.2 ps/km. With the above-mentioned value of the dispersion
coefficient, 2 ps2/km, the inverse-group-velocity difference of 0.2 ps/km between the
channels implies the wavelength separation ∆λ ≈ 0.15 nm between them, which
corresponds to the case of dense WDM.

The single-channel model (1) was used for the derivation of conditions for stable
transmission of fundamental DM solitons [11, 13], and for the study of higher-order
DM pulses based on the Hermite-Gaussian functions [14]. The two-channel model
(4), (5) was used to investigate inter-channel collisions between fundamental pulses
[15]. Under certain conditions, the two-channel model can also predict formation
of bound states between two fundamental solitons belonging to different channels,
which was investigated in Ref. [16].

2.2 The variational approximation for antisymmetric soli-

tons

The Hermite-Gaussian set of functions can be used to describe the propagation of
pulses of a general shape in the strong-DM regime, the fundamental soliton of the
Gaussian form being the first term in the set [14]. The antisymmetric DM (ASDM)
soliton corresponds to the second function belonging to the set, so that it can be
approximated by the following variational ansatz:

u(z, τ) = Aτ exp

(

− τ 2

W 2
+ ibτ 2 + iφ

)

. (7)

Here, A, W , b and φ represent the amplitude, width, chirp and phase of the pulse,
respectively, and they are allowed to be functions of z. The pulse is called the
antisymmetric soliton because |u(z, τ)| is an odd function of τ . The energy of the
pulse (7), calculated according to the definition (6), is E = A2W 3/4.
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The antisymmetric soliton may also be represented in an alternative form,

u(z, τ) = Aτ exp

(

− τ 2

τ 02 + 2i∆
+ iφ

)

, (8)

where ∆(z) ≡ ∫ z
0 D (z′) dz′+∆0 is the accumulated dispersion, and τ0 is the minimum

width of the pulse over the DM period. They are related to the parameters of W
and b from the ansatz (7),

W =

√
τ 04 + 4∆2

τ0
, b =

2∆

τ 04 + 4∆2
. (9)

Following the commonly adopted definition [9], below we will be using, instead of
τ0, the so-called DM strength,

S ≡ 1.443/τ 20 .

The Lagrangian of the system (4), (5) is L =
∫+∞

−∞
Ldt, with the Lagrangian

density

L =
i

2
[(uzu

∗ − uu∗z + vzv
∗ − vv∗z) + c (uτu

∗ − uu∗τ − vτv
∗ + vv∗τ )]

−1

2
D(z)

(

|uτ |2 + |vτ |2
)

− ǫ

2

(

Du|uτ |2 +Dv|vτ |2
)

+
ǫ

2

(

|u|4 + |v|4 + 4|u|2|v|2
)

. (10)

Applying the known technique of the VA for pulses of the Gaussian type [10], and
skipping routine technical details, we obtain the following system of ordinary differ-
ential equations (ODEs) which govern the evolution of parameters of the ansatz (7)
in the single-channel system (with c = 0):

dE

d z
= 0 , (11)

dW

d z
= 2 [D(z) + ǫD0] bW , (12)

d b

d z
= 2 [D(z) + ǫD0]

(

1

W 4
− b2

)

−
√
2

8W 3
ǫE. (13)

where Eq. (11) simply means that the energy is conserved. From Eqs. (9), the
evolution ODEs for ∆0 and τ0 can also be derived:

d τ0
d z

=

√
2

16

ǫEτ0∆

W 3
, (14)

d∆0

d z
= ǫD0 +

√
2

16

ǫE(4∆2 − τ 40 )

W 3
. (15)
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Conditions for stationary propagation of the ASDM soliton can be obtained in
the same way as it was done for the fundamental DM soliton in Ref. [11]. To this
end, one should demand that the pulse’s amplitude and width return to the original
values after passing one DM period, i.e., τ0(z) = τ0(z+1) and ∆0(z) = ∆0(z+1). In
the first-order approximation (which implies that the parameters τ0 and ∆0 suffer a
small variation within one period), these conditions amount to

∫ 1

0

d τ0
dz

d z =
∫ 1

0

d∆0

dz
d z = 0. (16)

Substituting Eqs. (14), (15) into Eqs. (16), and evaluating some integrals explicitly,
we obtain

∆0 = −1/2, (17)

D0 = −
√
2

16
Eτ0

3
[

ln
(

√

1 + τ0−4 + τ0
−2
)

− 2
(

τ0
4 + 1

)

−1/2
]

. (18)

Note that the simple result (17) is exactly the same as for the fundamental soli-
tons [11], which implies that the pulse has zero chirp at the midpoint of each fiber
segment. Condition (18) is also similar to the corresponding condition for the fun-
damental solitons, as derived in Ref. [11], only differing by a factor of 1/4.

Straightforward extension of the VA-based analysis performed in Ref. [11] for
the fundamental DM solitons, we arrive at the following conclusions for their anti-
symmetric counterparts:

1. stable ASDM solitons exist at zero PAD if S ≈ 4.79.

2. stable ASDM solitons exist at anomalous PAD if S < 4.79.

3. stable ASDM solitons exist at normal PAD if 4.79 < S < 9.75 and |D|/E ≤
0.0032.

Before proceeding further, we make several remarks. First, the stable antisym-
metric soliton is possible at both the anomalous PAD and normal PAD, as well as
when the PAD is zero. Second, the detailed VA analysis shows that the energy of
the stable antisymmetric soliton is four times as large as that for the fundamental
DM soliton with the same width; as is well known, the “heavier” soliton provides for
better suppression of the timing jitter, so the antisymmetric one has advantage, in
this respect for applications to fiber-optic telecommunications (see further details in
section 4). Third, the VA predictions are completely verified by direct simulations,
see below.
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2.3 Interactions between antisymmetric solitons

To describe the interaction between pulses belonging to different channels, we start
with a more general expression for the pulse, which is obtained from the one-channel
solution by the Galilean boost,

u(z, τ) = u0 (z, τ − Tu(z)) exp (−iωu(τ − Tu) + iψu(z)) ,

v(z, τ) = v0 (z, τ − Tv(z)) exp (−iωv(τ − Tv) + iψv(z)) . (19)

Here Tu,v, ψu,v and ωu,v are, respectively, the position, phase, and frequency shifts.
In terms of the Galilean boost, the latter are constant, while the position shifts
evolve in z according to the equations

d Tu,v
d z

= ±c−
(

D(z) + ǫDu,v

)

ωu,v, (20)

which also include a contribution from the group-velocity difference between the
channels.

The application of the VA technique to the two pulses defined as in Eq. (7)
leads to the following results: the two energies Eu,v ≡ (1/4)A2

u,vW
3
u,v are conserved

separately in the channels, and the other variational parameters evolve according to
the following ODEs

dWu,v

d z
= 2

[

D(z) + ǫDu,v

]

Wu,vbu,v; (21)

d ωu,v

d z
=

±32ǫEv,u(Tu − Tv)

(W 2
u +W 2

v )
5/2

exp

[

−2(Tu − Tv)
2

W 2
u +W 2

v

]

B, (22)

here we define

B =
2 (W 2

u −W 2
v )

2 − 7W 2
uW

2
v

4 (W 2
u +W 2

v )
− (W 2

u −W 2
v )

2 − 6W 2
uW

2
v

(W 2
u +W 2

v )
2 (Tu − Tv)

2

− 4W 2
uW

2
v

(W 2
u +W 2

v )
3 (Tu − Tv)

4.

Note that, as it follows from Eq. (22),

d

d z
[Euωu + Evωv] = 0, (23)

which implies the conservation of the net momentum, P ≡ Euωu + Evωv.
Now, we focus on the most interesting case when the pulse in each channel is a

stable antisymmetric soliton of the same width, i.e., in the absence of the interaction
between them, their parameters are selected according to Eqs. (17) and (18). Then
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the interaction between the two antisymmetric solitons is described by a system
including a difference of two equations Eq. (20),

d

dz
(Tu − Tv) = 2c−D(z) (ωu − ωv) − ǫ

(

Duωu −Dvωv

)

. (24)

and Eqs. (22) that can be now cast in the form

dωu,v

dz
=

±4
√
2ǫEv,uτ

3
0 (Tu − Tv)

[τ 40 + 4∆2(z)]
3/2

exp

(

−(Tu − Tv)
2 τ 20

τ 40 + 4∆2(z)

)

C , (25)

C ≡ −7

8
+

3τ 20 (Tu − Tv)
2

2 [τ 40 + 4∆2(z)]
− τ 40 (Tu − Tv)

4

2 [τ 40 + 4∆2(z)]
2

Equations (25) and (24) constitute a dynamical system describing the interaction
between the antisymmetric solitons and formation of possible bound states between
them, similar to how it was investigated for fundamental DM solitons in Ref. [16].
Note that the energies Eu,v do not appear in these equations as arbitrary parameters;
instead, they must be expressed in terms of τ0 and Du,v by means of Eqs. (17) and
(18) . Arbitrary parameters are τ0, or the DM strength S, the inverse-group-velocity-
difference c, and the PADs Du,v.

The third-order system of Eqs. (25) and (24) can be further reduced to a second-
order one in the symmetric case, with Du = Dv [hence also Eu = Ev, see Eqs.
(17),(18 )]. Then, defining T ≡ Tu − Tv, ω ≡ ωu − ωv, and Eu = Ev ≡ E, Du =
Dv ≡ D, the reduced system is

dω

dz
=

8
√
2ǫEτ 30T

[τ 40 + 4∆2(z)]
3/2

exp

(

− τ 20T
2

τ 40 + 4∆2(z)

)

C , (26)

dT

dz
= 2c−

[

D(z) + ǫD
]

ω. (27)

It should be pointed out here that, if PAD is zero, it may be necessary to add
the third-order dispersion (TOD) to the DM model, in the case when the solitons
are taken very narrow (in the temporal domain), to provide for a very high bit rate
per channel. Effects of TOD on fundamental DM solitons have been systematically
studied in [17]. It was shown in that the TOD gives rise to an asymmetry of the
DM-soliton’s profile and generation of radiation. We anticipate that the effects of
TOD on antisymmetric solitons will be similar. However, detailed investigation on
this issue is definitely beyond the scope of the present paper, being a subject for a
separate work.
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3 Comparison with the results of direct simula-

tions

It is necessary to check the VA equations derived in previous section against direct
simulations. To this end, we solved the underlying equations (1) and (4), (5) by
a symmetrized split-step Fourier method, in which the linear part is computed ex-
actly via the fast Fourier transformation (FFT), and the nonlinear part is evaluated
implicitly via an iteration procedure at the midpoint of the stepsize (see, e.g., Ref.
[16]).

3.1 Single ASDM soliton

First of all, the validity of Eqs. (17) and (18), which predict equilibrium values
of the parameters for the ASDM soliton, Eq. (1) was solved numerically with the
parameters of the initial antisymmetric pulse taken as predicted by these expressions.
We fixed L1 = L2 = 0.5, and D1 = 2.0, D2 = −2.0, unless specified otherwise.

In the zero-PAD case, direct simulations show that the width parameter of the
pulse is always kept close to τ 20 = 0.301 regardless of the value of energy E. An
example is shown in Fig. 1 for E = 1.0 and E = 2.0. It can be seen that the ASDM
soliton remains stable, keeping the same width as the initial pulse at the end of each
dispersion segment.

In the anomalous-PAD case, results of direct simulation agree with the VA pre-
dictions as well. Figure 2 shows the evolution of the antisymmetric solitons for
D = 0.05, and E = 2.0, 4.0. The corresponding widths are τ 20 = 0.6993 and 0.5256,
respectively.

In the normal-PAD case, the VA predicts that the antisymmetric DM soliton is
stable only when |D|/E ≤ 0.0032. To test this, we took, for instance, D = −0.01
and E = 2.0, 4.0. The soliton is anticipated to be unstable for E = 2.0, since
|D|/E = 0.005 in this case, and stable for E = 4.0, as then |D|/E = 0.0025. These
predictions are confirmed by direct simulations, whose results are shown in Fig. 3
(solid and dashed curves showing, respectively, the wave profile at z = 800 and
the initial one). It is seen that, for E = 2.0, the two parts of the soliton separate
from each other as z increase, but for E = 4.0 the amplitudes of the two peaks and
the difference between them keep almost the same values as they had in the initial
pulse, even as z takes attains the large value of 800, which is only violated by some
radiation loss.

To summarize these results, in Fig. 4 we plot the ratio of the PAD to the pulse
energy, D/E, versus the pulse’s width τ 20 for the cases of the zero, anomalous, and
normal PAD. The solid curves depict the VA predictions, while the circles are data
produced by direct simulations. Good agreement between the VA and numerical
results is obvious.
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3.2 Interactions between antisymmetric solitons and forma-

tion of bound states

Proceeding to interactions between the antisymmetric solitons, we first simulated
head-on complete collisions, in which case the pulses, moving with opposite veloci-
ties, are well separated before and after the collision. Basically, the collision features
the generic property of the soliton collision, that is, the pulses pass through each
other with position shifts. However, because the DM pulses considered here are
not solitons in the strict mathematical sense, each one gets slightly distorted by the
interaction, its humps changing their height. A typical example is displayed in Fig.
5 for Du = Dv = 0.05, 2c = 0.1, and Eu = Ev = 2.0. In the direct simulation, it is
observed that the two pulses repel each other at an early stage of the interaction,
and attract at a late stage. A position shift of δT = 0.625 has resulted from the
complete collision. This result agree with the VA results shown in Fig. 5(c), which
predict the position shift 0.65 and the zero frequency shift for each pulse. The posi-
tion shift, along with a possible frequency shift may be considered as the source of
the timing jitter induced by the collisions, which will be considered in more detail
in the next section.

It is predicted by VA that there is no possibility for the formation of BS’s in
the case of complete collision. As to the case of incomplete collision, similar to
the possibility of formation of bound states (BS’s) of two fundamental DM soliton
belonging to different channels that was found in Ref. [16], BS’s of the ASDM
solitons can be formed too. The difference is that more energy is needed for the
formation of BSs in the latter case. Figure 6 shows an example for Du = Dv =
0.075, 2c = 0.05, Eu = Ev = 3.0, two antisymmetric solitons being initially set
at the same position. Since the formation of BSs is detrimental for the fiber-optic
telecommunication systems, the smaller chance for this effect in the case of the
antisymmetric solitons is an advantage offered by them.

For incomplete collisions in the symmetric situation, with Du = Dv = D, Eu =
Ev = E, and D/E = 0.025, a plot of the minimum energy Emin, necessary for
the formation of the BS, vs. 2c, as predicted by VA is displayed in Fig. 7. The
variational predictions are checked, at several points, against direct simulations, the
corresponding data being marked by rhombuses. As is seen, the agreement between
VA and direct results is good. It is noted that both the VA predictions and direct
simulations yield a critical value of 2cr ≈ 0.2, above which no BSs exist, no matter
how large the energy is. In other words, the formation of a BS is prevented for the
values of IGVD exceeding 2cr.

However, in some cases the ASDM solitons may be completely distorted by the
interaction, see an example in Fig. 8 for Du = Dv = 0, 2c = 0.1, and Eu = Ev = 4.0.
This phenomenon often happens when the energy is large or the group-velocity
difference between the channels is small, which are detrimental features for the
applications.
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We also simulated collisions between fundamental and antisymmetric solitons,
see a typical example in Fig. 9. It is seen that both the fundamental and antisym-
metric solitons do not change their shapes after the collision. A theoretical study
of interactions between the fundamental and antisymmetric DM solitons could be a
natural extension of the present work.

4 Timing jitter of antisymmetric solitons

4.1 Estimate of the timing-jitter suppression in one channel

Based on the variational results for the antisymmetric solitons presented above, we
now aim to estimate the Gordon-Haus timing jitter (generated by optical noise in
the fiber link [12]) for pulses of this type. We will follow the procedure of evaluating
the jitter which was implemented for fundamental DM soliton in Ref. [11]. To
this end, we use a known expression for the jitter-suppression factor (JSF) for the
DM soliton vis-a-vis its NLS counterpart, provided the two have equal energies (see
details in Refs. [11] and [16]):

JSF =

(

∫

∞

−∞
τ 2|u0|2

)

DM
(

∫

∞

−∞
τ 2|u0|2

)

NLS

. (28)

Using the analytical approximation (8) for the antisymmetric soliton, we find

JSF = − 36

π3/2

τ 40 + 1/3 + (∆0 + 1)2

τ06
[

ln
(

√

1 + τ−4
0 + τ−2

0

)

− 2 (τ 40 + 1)
−1/2

] . (29)

For comparison, JSF for the fundamental DM soliton is [11]

JSF = − 3

π3/2

τ0
4 + 1/3 + (∆0 + 1)2

τ06
[

ln
(

√

1 + τ−4
0 + τ−2

0

)

− 2 (τ 40 + 1)
−1/2

] .

Another characteristic of the DM solitons is the stretching factor ( SF), which is
the ratio the maximum and minimum values of its temporal width,

SF ≡
√

τ 40 + (1 + (2∆0 + 1))2/τ 20 . (30)

A certain compromise between the JSF and SF must be reached in designing a
transmission line for DM solitons. In Fig. 10, JSF is plotted versus SF for both the
fundamental (dashed curve) and antisymmetric (solid curve) DM solitons. It can be
seen that much higher (four times) energy is needed to support the same width of the
antisymmetric soliton, in comparison with the fundamental one. As a result, the JSF
for the antisymmetric soliton is 12 times larger than for the fundamental one. This
is a potential advantage for using ASDM solitons in fiber-optic telecommunications.
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4.2 Collision-induced pulse timing jitter

One of the serious problems in the use of multi-channel (WDM) schemes is the
crosstalk timing jitter, induced by collisions of pulses belong to different channels.
Here, we aim to estimate the crosstalk jitter induced by collisions between antisym-
metric DM solitons belonging to two adjacent channels, in the case of both complete
and incomplete collisions.

We will follow the approach to this problem developed for the fundamental DM
pulses in Ref. [15]. Straightforward use of general expressions for the collision-
induced frequency and position shifts, δωu,v and δTu,v produced by the collision,
which were derived in that work, yields the following results for the ASDM solitons.
In the lowest approximation, δωu,v = 0, and

δTu =

√
2πǫ2DuEv

2 c2
(31)

For a typical example corresponding to Fig. 5 (see above), with Du = Dv = 0.05,
2c = 0.1, Eu = Ev = 2.0, Eq. (31) yields δTu = 0.501. This result agrees well with
that produced by numerical integration of the full VA equations (26) and (27), as
well as with direct simulations of the underlying equations (4) and (5), as is seen in
Fig. 5.

For incomplete collisions, in which two pulses are initially overlapped, the general
formulas borrowed from Ref. [15] yield the following result for the largest size of
the frequency shift, corresponding to the worst case, when the solitons begin their
interaction at the point where their centers coincide:

(δω)max
u = −2

√
2ǫEvτ

3
0 c

−1
〈

(

τ 40 + 4∆2
)

−3/2
〉

, (32)

with 〈...〉 standing for the average over the DM period. After evaluating the average
value, we obtain from Eq. (32),

(δω)max
u = −2

√
2ǫEvτ0

−1c−1





∆0 + 1
√

τ04 + 4(∆0 + 1)2
− ∆0
√

τ04 + 4∆0
2



 . (33)

Assuming that parameters for the antisymmetric solitons are selected as for the
stationary pulses in one channel, i.e., ∆0 = −1/2, Eq. (33) is simplified to

(δω)max
u = − 2

√
2ǫEv

cτ0
√
τ0 + 1

. (34)

Then, for a large propagation distance z, the position shift generated by the fre-
quency shift grows as δT (ω)

u = −δωǫDuz.
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5 Conclusion

In this paper, we have studied the propagation and interactions of antisymmetric
solitons in a fiber-optic link subject to strong DM. By means of the variational
approximation (VA), we have obtained analytical expressions for the initial chirp
and width of the antisymmetric pulse at which the pulse should propagate stably.
Interactions between ASDM solitons belonging to two adjacent channels were also
investigated, including the possibility of the formation of bound states between
them. In most cases, the results predicted by the VA compare quite well with direct
simulations for the underlying partial differential equations. However, in some cases
we the collision between the ASDM solitons may destroy them, which is of course
not predicted by the VA.

We have also estimated the Gordon-Haus timing jitter for the ASDM solitons. A
noteworthy finding is that the jitter-suppression factor for the antisymmetric solitons
may be much larger (by a factor of 12) than its previously known counterpart for
the fundamental solitons in the same DM link. The crosstalk jitter, induced by
inter-channel collisions between the antisymmetric solitons in a WDM system, was
evaluated too. For complete collisions, the frequency shift is negligible, whereas the
position shift is significant. Incomplete collisions are most dangerous, generating a
finite frequency shift, which was estimated.

Results reported in this work suggest further investigation in several directions.
In particular, as it was briefly mentioned above, it would be relevant to study how
higher-order effects, such as the TOD and the intrapulse stimulated Raman scat-
tering, act on the antisymmetric DM solitons. Interactions between fundamental
and antisymmetric DM solitons, as well as a possibility of formation of bound states
between them, may be another issue to be considered in the future. Lastly, for
practical applications to WDM schemes, it would be useful to study multi-channel
systems, rather than only the dual-channel one.
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Figure Captions

Fig. 1. The profiles of the stable ASDM soliton (shown is |u(τ)|), as found from
direct simulations of Eq. (1) in the case of the zero path-average dispersion (D = 0),
for (a) E = 1.0; (b) E = 2.0. Dashed curve: z = 0; solid curve: z = 800.

Fig. 2. The same as in Fig. 1 (except for that the solid curve pertains to
z = 400) in the case of anomalous path-average dispersion, with D0 = 0.05, and (a)
E = 2.0; (b) E = 4.0.

Fig. 3. The same as in Fig. 1 in the case of normal path-average dispersion with
D0 = −0.01, and (a) E = 2.0 and (b) E = 4.0, which correspond to the stable and
unstable antisymmetric solitons, respectively.

Fig. 4. The ratio of the PAD to the pulse’s energy versus its width in the
cases of the zero, anomalous, and normal path-average dispersion. Solid curve: VA
prediction; circles: numerical results.

Fig. 5. A typical example of the complete collision between two ASDM solitons
with Eu = Ev = 2.0, Du = Dv = 0.05, and 2c = 0.1. (a) The shape of |u| at z = 0
(dashed curve) and z = 400 (solid curve); (b) the shape of |v| at z = 0 (dashed
curve) and z = 400 (solid curve); (c) the evolution of ωu − ωv (dashed curve) and
Tu − Tv (solid curve) as predicted by the VA.

Fig. 6. A bound state of ASDM solitons with Du = Dv = 0.075, 2c = 0.1 and
Eu = Ev = 3.0, found from direct simulations of Eqs. (4) and (5). The panels (a)
and (b) show the shapes of the bound solitons at z = 400 (solid curve) and the
initial profile (dashed curve) for |u(τ)| and |v(τ)|, respectively.

Fig. 7. The minimum energy necessary for the formation of a bound state of
two antisymmetric solitons in the two-channel system vs. the inverse-group-velocity
difference 2c in the case of incomplete collisions in a symmetric situation, with
Du = Dv = D, Eu = Ev = E, and D/E = 0.025. The minimum energy predicted
by VA is shown by the solid line. Rhombuses represent data points collected from
direct simulations.

Fig. 8. An example of destruction of the ASDM solitons as a result of the
collision with Du = Dv = 0.0, 2c = 0.1 and Eu = Ev = 4.0, as found from direct
simulations of Eqs. (4) and (5). The panels (a) and (b) show the shapes of |u(τ)|
and |v(t)| at z = 0 and z = 400.

Fig. 9. An example of the collision between fundamental and ASDM solitons
with Eu = Ev = 2.0, Du = Dv = 0.05 and 2c = 0.2. The panels (a) and (b) show
the shapes of |u| and |v| for the fundamental and asymmetric solitons, respectively,
at z = 0 (dashed curve) and z = 200 (solid curve).

Fig. 10. The jitter suppression factor versus the stretching factor for the funda-
mental (dashed) and antisymmetric (solid) DM solitons.
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