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Universal level-spacing distribution in quantum systems
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Classical counterparts of a great variety of
quantum systems, from atomic physics [1, 2,
3] to quantum wells [5] and quantum dots[6],
to optical[4, 7], microwave[8, 9], and acoustic
resonators[10] exhibit partially chaotic dynamics.
Since it is often impossible to measure the tem-
poral dynamics in qunatum systems, the main
and probably the most dramatic manifestation of
classical chaos in their phase space is seen in the
distribution of spacing between the neighboring
energy levels. While the mechanism leading to
the onset of chaotic dynamics is different in every
system, the level spacing distribution obeys the
universal law, changing from Poissonian in the
completely integrable systems to Wigner in com-
pletely chaotic ones (Fig.1). However, despite
the fact that the majority of real-world dynami-
cal systems are partially chaotic, no adequate de-
scription of the level statistics in this case have
been developed so far. Here we solve this long-
standing problem and show that chaos assisted
tunneling strongly affects the resulting distribu-
tion.

In the semiclassical limit the eigenmodes of a quan-
tum system closely resemble the trajectories of its clas-
sical counterpart. In an integrable system the number
of independent time-conserved quantities is equal to the
number of degrees of freedom. Each classical trajectory
in the phase space lies on a surface with the topological
properties of a torus [11]. Each torus corresponds to its
own set of the values of the integrals of motion. Different
modes of an integrable quantum system correspond to
different values of quantum numbers and therefore fol-
low different tori; their energies are not correlated, lead-
ing to the Poisson distribution of the spacing s between
the neighboring energy levels [11] (see Fig.1).

PP (s) = e−s (1)

With the onset of chaos some tori are destroyed, lead-
ing to the formation of the chaotic regions in the phase
space. Classical trajectories in these regions diffuse be-
tween different (now broken) tori. Correspondingly, dif-
ferent chaotic modes may be represented by a mix of
former regular modes, which leads to repulsion between
their energies (similarly to repulsion between energies of
symmetric and anti-symmetric modes in double-well po-
tential [14]). In the limit of a “completely chaotic” sys-
tem all modes of the original integrable system are mixed
with each other [13] so that the repulsion exists between

FIG. 1: Level spacing distribution in integrable system
(green histogram and blue curve) is Poissonian, while it
changes to Wigner when the system becomes completely
chaotic (red, black). We compare the exact analytical formu-
lae [Eqs.(1),(2)] (blue, black) to numerically simulated energy
levels in the optical microcavities (green, red).

any two levels, dramatically changing the distribution
from Poissonian to Wigner [11] (Fig.1).

PW (s) =
π

2
s e−

π

4
s2 (2)

While it is straightforward to account for the mode
mixing and corresponding level repulsion in a completely

chaotic system using Random Matrix Theory [15], this
approach cannot be directly applied to a generic system
with mixed regular-chaotic dynamics. The only existing
“first-principle” approach to this problem neglects the
correlation between the regular and chaotic parts of the
quantum system leading to the celebrated Berry-Robnik
(BR) distribution [16]

PBR(s) ∝ ρ2e−ρserfc
(√

π

2 (1 − ρ)s
)

+
[

π
2 (1− ρ)2s

+2ρ] (1− ρ)e−ρs−π

4
(1−ρ)2s2 (3)

where ρ is the relative phase-space volume, occupied by
regular trajectories in the mixed system. The limit ρ → 1
corresponds to the regular system, while ρ → 0 represents
completely chaotic case. Although BR approach ade-
quately describes the tail of the spacing distribution, it
fails to describe the effect of level repulsion at small spac-
ings, present in numerical and experimental data from
various partially chaotic physical systems [1, 10, 12, 17]
(Fig.2). Several, mostly empirical, approaches were sug-
gested to explain this discrepancy [18, 19], however an
adequate description of the physics behind small-splitting
behavior of the level statistics still remains an unsolved
problem. In the present work we demonstrate that this
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FIG. 2: Level spacing statistics in quantum systems obeys
a universal law. We compare the BR formula (blue) and our
result, Eq. (4) (red) to the data (green) from: (a) optical mi-
croresonators, where the chaotic ray dynamics is introduced
by the deviation of the shape of the cavity from the perfect
ellipse; (b) Helium atom in a magnetic field, where the dy-
namics of the electrons becomes partially chaotic since the
magnetic field destroys the spherical symmetry of Coulomb
potential [1]; (c) acoustic resonances in Al blocks, where the
dynamics of the acoustic waves becomes chaotic when the
shape of the block deviates from parallelepiped [10]. Note the
suppression of the small-spacings observed in all systems in
agreement with the presented theory

discrepancy is a manifestation of a special kind of tun-
neling, known as Chaos-Assisted Tunneling (CAT).

While the tori represent impenetrable “dynamical”
barriers for the classical trajectories, the modes of quan-
tum system are allowed to break restrictions imposed
by classical mechanics, penetrating “under” dynamical
barriers. This phenomenon, known as the “dynamical
tunneling”[2, 3, 20, 22] is common for the multidimen-
sional quantum systems and is similar to tunneling un-
der the potential barrier in 1D systems. As any tun-
neling process, the dynamical tunneling is exponentially
suppressed by the “effective width” of the barrier in the
phase space.

While the onset of chaotic behavior in the regular sys-
tem does not cause direct interference of different regular
levels, the chaotic levels do interact with the regular ones
due to dynamical tunneling, which leads to the repul-
sion between their energy levels (Fig.3). Moreover, differ-
ent regular levels interact (via tunneling) with the same
chaotic state, repulsing from each other. This special

FIG. 3: Ray dynamics is integrable inside an elliptical res-
onator. Different ray trajectories lay on different tori, which
are projected as 1D lines in the Poincarè surface of section (a).
The modes, as visualized by their Husimi projections [11], also
closely follow the tori (b,c). As the level repulsion between
different modes is absent, the energies of the modes (b) and
(c) almost coincide. When the shape of the resonator deviates
from the perfect ellipse, the ray dynamics inside the cavity be-
comes partially chaotic. As the deformation increases, so does
the amount of chaos in the system. Finally, the tori around
mode (c) begin to break down (d). Although the torus sup-
porting the mode (b) survives, dynamical tunneling triggers
the interaction between the mode (b) and the states which are
localized in now chaotic portion of the phase space, leading
to the formation of the mode (e). The effect of the transition
to partial chaos on the mode (c) is similar, but quantitatively
weaker due to a large number of surviving tori surrounding it
(f). The result of this indirect “chaos-assisted” interaction of
the regular modes (b) and (c), is the level repulsion of their
successors (e) and (f) - as illustrated in the panel (g) which
shows the corresponding energy difference ∆ as a function of
deformation (parametrized by ε). The strong dependence of
∆ on ε confirms CAT nature of the level repulsion

kind of dynamical tunneling between two regular states
via a chaotic one is known as chaos assisted tunneling
[20, 21].

Because of its tunneling nature, level repulsion leads
to a small change in the energy level positions, thus af-
fecting only the small-spacing behavior of the distribu-
tion, and leaving large-spacing behavior practically un-
changed. Using the perturbative approach similar to that
developed in Ref. [21], we derive the following expression
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FIG. 4: By changing the “effective” Plank constant h̄eff , we
change the interaction between quantum states, keeping the
classical dynamics unchanged. This leads to a substantial
change in small-spacing behavior of the level-spacing distri-
bution [corresponding to change of tunneling parameter ν in
Eq. (4)], while its large-spacing part is governed by the same
classical parameter ρ and is well-described by the BR for-
mula. We compare the level statistics in deformed elliptical
resonator (green) to BR formula (blue) and our analytical ap-
proach (red); h̄eff = 1/75 (a), h̄eff = 1/100 (b). (In optical
microresonators h̄eff = 1/kR, where k is the wavevector inside
the cavity and R is average radius of the resonator. The shape
of the resonator boundary defines the classical ray dynamics
and is kept unchanged)

for the spacing distribution in the quantum system:

P (s) ∝ ρ2 F
( s

ν2

)

e−ρserfc

(√
π

2
(1− ρ)s

)

+
[π

2
(1− ρ)2s

+ 2ρF
( s

ν

)]

(1− ρ)e−ρs−π

4
(1−ρ)2s2 (4)

where

F(x) = 1−
1−

√

π
2 x

ex − x
(5)

In contrast to the parameter ρ, corresponding to the clas-
sical dynamics in the system, parameter ν describes the
tunneling between different modes, so it has intrinsically
quantum mechanical nature (see Fig.4). The effect of the
tunneling interaction between different modes of a quan-
tum system on the level spacing distribution can be de-
scribed by the universal function F(x), given by Eq. (5).
The limit F(x) ≡ 1 which neglects such interaction, leads
to BR distribution. Different dependence of function F
on the parameter ν in first and last terms of Eq.(4) cor-
responds to direct and chaos-assisted tunneling processes
respectively.
In Fig. 2 we illustrate the universality of the developed

approach and demonstrate an excellent agreement of our
analytical results with experimental and numerical data
in a variety of physical systems – from optical microres-
onators used in novel microdisk lasers [4] to resonances
of atomic Helium in magnetic field [1] to acoustic reso-
nances in Al blocks [10].
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METHODS

Poincaré surface of section (SOS) represents a
“stroboscopic” projection of the classical trajectories on
a 2D-plane. For the case of the optical microresonator
we start a ray trajectory at some point inside the cavity
and each time the ray hits boundary, we plot the polar
angle of the point of incidence and the sine of its angle of
incidence. Since the regular trajectories lie on tori, they
are constrained to 1D lines in SOS. Chaotic trajectories
occupy 2D “chaotic sea”.

Husimi projection is used to visualize the phase
space structure of a wavefunction, projecting it onto co-
herent state in the phase space [11].
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