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Nonlinear Beltrami equation and τ -function for

dispersionless hierarchies

L.V. Bogdanov∗ and B.G. Konopelchenko†

Abstract

It is proved that the action for nonlinear Beltrami equation (quasi-
classical ∂̄-problem) evaluated on its solution gives a τ -function for dis-
persionless KP hierarchy. Infinitesimal transformations of τ -function
corresponding to variations of ∂̄-data are found. Determinant equa-
tions for the function generating these transformations are derived.
They represent a dispersionless analogue of singular manifold (Schwar-
zian) KP equations. Dispersionless 2DTL hierarchy is also considered.

1 Introduction

Dispersionless integrable hierarchies attracted a considerable interest during
the last ten years (see e.g. [1]-[13]). Recently it became clear that they
play an important role in various problems of hydrodynamics and complex
analysis [14]-[21].

Dispersionless integrable hierarchies can be described in different forms
within different approaches. In the papers [22, 23, 24] it was shown that such
hierarchies can be introduced starting with the nonlinear Beltrami equation
(quasi-classical ∂̄-problem)

Sz̄ = W (z, z̄, Sz), (1)

where z ∈ C, bar means complex conjugation, Sz =
∂S(z,z̄)

∂z
, Sz̄ =

∂S(z,z̄)
∂z̄

, and
W (quasi-classical ∂̄-data) is an analytic function of Sz. Applying the quasi-
classical ∂̄-dressing method based on equation (1), one can get dispersionless
integrable hierarchies and the corresponding addition formulae in a very
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regular and simple way. Such an approach reveals also the connection of
dispersionless hierarchies with the quasi-conformal mappings on the plane.

In the present paper we demonstrate that the quasi-classical ∂̄-dressing
method based on equation (1) leads to explicit formula for the τ -function
for dispersionless hierarchies, which is connected with the Lagrangian for
equation (1) and the corresponding action, evaluated on the solution of the
boundary problem for this equation. We will also derive determinant form
of the generating equations for the function Sz, defining infinitesimal defor-
mations of the τ -function. In this paper we concentrate on the dispersionless
Kadomtsev-Petviashvili (dKP) hierarchy, but we present also the basic for-
mulae for the dispersionless 2DTL hierarchy.

2 τ-function as an action for nonlinear Beltrami

equation

It was shown in [22, 23] that the dKP hierarchy is connected with Bel-
trami equation (1) with the ∂̄-data equal to zero outside the unit disc. This
problem can be formulated as a boundary problem for equation (1) in the
unit disc as follows. Let the function S0(z) analytic in the unit disc D be
given. The problem is to find the function S = S0 + S̃, satisfying (1), with
S̃ analytic outside the unit disc and decreasing at infinity (this is in fact
a boundary condition on the unit circle, which can be written down using
standard projection operator). We suggest that the function W is of the
form

W (z, z̄, Sz) =

∞∑

p=0

wp(z, z̄)(Sz)
p, (2)

where wp(z, z̄) are arbitrary smooth functions in the unit disc vanishing on
the boundary.

Introducing parameterization of the function S0(z) in terms of times,
S0(z) =

∑∞
n=1 tnz

n, and using the technique of quasi-classical ∂̄-dressing
method, it is possible to demonstrate that S(z, t) is a solution of Hamilton-
Jacobi equations for dKP hierarchy, and the first coefficient of expansion of
S̃(z, t) as z → ∞ satisfies equations of dKP hierarchy (see [22, 23, 24, 27]).

Here we establish a relation between the action for the problem (1) and
the τ -function for dKP hierarchy. This relation illustrates a well-known
observation that a transition from dispersionfull to dispersionless hierarchies
resembles a transition from quantum mechanics to classical mechanics.
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It was noted in [24] that equation (1) is a Lagrangian one. It can be
obtained by variation of the action (for the boundary problem in the unit
disc)

f = −
1

2πi

∫∫

D

(
1

2
S̃z̄S̃z −W−1(z, z̄, Sz)

)
dz ∧ dz̄, (3)

where

W−1(z, z̄, Sz) =

∞∑

p=0

wp(z, z̄)
(Sz)

p+1

p+ 1
, ∂ηW−1(z, z̄, η) = W (z, z̄, η).

One should consider independent variations of S̃, possessing required an-
alytic properties (analytic outside the unit circle, decreasing at infinity),
keeping S0 fixed.

Proposition 1 The function

F (t) = −
1

2πi

∫∫

D

(
1

2
S̃z̄(t)S̃z(t)−W−1(z, z̄, Sz(t))

)
dz ∧ dz̄, (4)

i.e., the action (3) evaluated on the solution of the problem (1), is a τ -
function of dKP hierarchy.

Proof In order to prove that F (t) is a τ -function of dKP hierarchy, it is
sufficient to demonstrate that (see, e.g., [27])

S̃(z, t) = −D(z)F (t),

where D(z) is the quasiclassical vertex operator, D(z) =
∑∞

n=1
1
n

1
zn

∂
∂tn

,
|z| > 1. Applying the operator D(z) to the r.h.s. of formula (4), one gets
(we change the variable of integration to y)

D(z)W−1(y, ȳ, Sy(t)) = S̃ȳD(z)(S̃y + S0y).

Using the formula

D(z)S0y =
1

z − y
,

we get

1

2πi

∫∫

D

S̃ȳD(z)S0ydy ∧ dȳ = −
1

2πi

∮
1

z − y
S̃(y)dy = −S̃(z).
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Thus we have obtained the crucial term for our proof, and now we should
demonstrate that the combination of all other terms, namely,

−
1

4πi

∫∫

D

(S̃yD(z)S̃ȳ − S̃ȳD(z)S̃y)dy ∧ dȳ

is equal to zero. Indeed, using Green’s formula and taking into account
that S̃ȳ is equal to zero on the unit circle, and the function S̃(y) is analytic
outside the unit circle and decreases at infinity, we immediately come to the
conclusion that this combination is equal to zero. QED
Remark 1. Note that integral formulae for the τ -function of different type
has been derived also in [8, 20].
Remark 2. Let us consider also the integral

Fs(t) = −
1

2πi

∫∫

D

(
1

2
Sz̄(t)Sz(t)−W−1(z, z̄, Sz(t))

)
dz ∧ dz̄. (5)

Since ∂̄S0 = 0 for z ∈ D, using Green’s formula, one obtains

Fs = F +
1

4πi

∮
dzS̃(z)S0z.

Taking into account the relation S̃(z) = −D(z)F , one gets

Fs = F −
1

2

∞∑

n=1

tn
∂F

∂tn
. (6)

The dKP hierarchy and addition formula for F admits scale invariance

F (t) → F ′(λt) = λ2F (t).

A full infinitesimal variation of F under this transformation is

δsF = δformF + δtF = −2ǫF,

where δformF denotes a variation of the form of F , while δtF stands for the
variation due to the infinitesimal variation of times t. In virtue of (6), one
has δformF = 2ǫFs. In the particular case W (z, z̄, Sz) = µ(z, z̄)Sz we have
Fs = 0 and thus F is a homogeneous function of times of the second order.
Such a class of τ -functions has been considered within different approaches
in [14, 7]. Starting with linear Beltrami equation, we obtain only a subclass
of τ -functions, which are quadraic with respect to times.
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It is well known that dKP τ -function F obeys the dispersionless addition
formula [7, 11]

(z1 − z2)e
D(z1)D(z2)F + (z2 − z3)e

D(z2)D(z3)F + (z3 − z1)e
D(z3)D(z1)F = 0, (7)

z1, z2, z3 ∈ C \D.

The formula (4) gives a solution to this equation in terms of solution of
nonlinear Beltrami equation (1).

3 Variations of the τ-function

The function W is the ∂̄ data for the dKP hierarchy. Its variations provide
us with a wide class of variations of the function F . For the functions W of
the form (2), varying wn(z, z̄), one has

δW =
∞∑

n=1

δwn(z, z̄) (Sz)
n , δW−1 =

∞∑

n=1

δwn

n+ 1
(Sz)

n+1 ,

and

δF =
1

2πi

∫∫

D

(δW−1)(z, z̄, Sz)dz ∧ dz̄. (8)

Considering elementary variation δwn0
= ǫαn0

δ(z − z0), δwn = 0, n 6= n0,
one gets

δF =
ǫ

2πi

αn0

(n0 + 1)
(Sz)

n0+1 |z=z0 , (9)

and, respectively,

δS̃ = −
ǫ

2πi

αn0

(n0 + 1)
D(z) (Sz(z0))

n0+1 . (10)

Taking superposition of elementary variations (9), we obtain a general vari-
ation of the form

δF = ǫf(Sz(z0)), (11)

where f is an arbitrary analytic function (summation over different points
and integration over z0 are also possible).

The formulae (10), (9) can be also derived considering the deformations
of nonlinear Beltrami equation (1).
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Remark 3. Since a variation of the ∂̄-data W transforms solution of the
dKP hierarchy into another solution, then the formula (11) defines an in-
finitesimal symmetry transformation for the function F satisfying equation
(7). It is possible to prove this statement directly starting with the formula

p(z0)− p(z) + z exp(−D(z)S(z0)) = 0, z0 ∈ C, z ∈ C \D. (12)

Derivation of this formula can be found in, e.g., [27].

3.1 Determinant form of equation for φ

Existence of symmetry transformation of the form (11) leads us directly
to equation for the function φ = Sz(z0). Indeed, let us consider a special
symmetry transformation (11) of the form

F ′ = F + ǫ exp(Θφ),

where Θ is an arbitrary parameter, and substitute it to (7). Then we get a
system of linear equations





x+ y + z = 0,
(D2D3φ)x+ (D1D3φ)y + (D1D2φ)z = 0,
(D2φ)(D3φ)x+ (D1φ)(D3φ)y + (D1φ)(D2φ)z = 0,

where we use notations Di = D(zi) and

x = (z2 − z3)e
D2D3F , y = (z3 − z1)e

D3D1F , z = (z1 − z2)e
D1D2F .

The condition that determinant of this system is equal to zero gives the
equation for the function φ, (φi = Diφ)

det




1 1 1
φ2φ3 φ1φ3 φ1φ2

φ23 φ13 φ12


 = 0. (13)

Expanding the l.h.s. of this equation into powers of parameters z−1
1 , z−1

2 ,
z−1
3 , in the order z−1

1 z−2
2 z−3

3 one gets the equation

∂x

(
φt

φx
−

3

8

(
φy

φx

)2
)

=
3

4
∂y

(
φy

φx

)
, (14)

which is the KP singular manifold equation in dispersionless limit.
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It is interesting to note that equation (13) written in the form

D1 log

(
D2φ

D3φ

)
+D2 log

(
D3φ

D1φ

)
+D3 log

(
D2φ

D3φ

)
= 0 (15)

has been derived in [28] as a naive continuous limit of the discrete Möbius-
invariant KP equation [29] (see equation (20)) in connection with the Menelaus
theorem. It is easy to check that equation (13) (or, equivalently, (15)) is in-
variant under conformal transformation of dependent variable φ → f(φ),
where f is an analytic function.

The determinant form (13) gives some hint for the geometric interpreta-
tion of this equation. Indeed, as it is known (see, e.g., [30]), the area of the
plane triangle with the coordinates of vertices given by the pairs (x1, y1),
(x2, y2), (x3, y3), can be written as

A =
1

2
|detA| , A =




1 1 1
x1 x2 x3
y1 y2 y3


 .

Thus equation (13) means that area (may be complex) of corresponding
triangle vanish, that is, obviously, the only possibility for the geometry ad-
mitting arbitrary transformation φ → f(φ).

More general generating equation for the gauge-invariant function S =
S(z1)− S(z0)

∑
ǫijkDj log(exp(DiS)− 1) = 0 (16)

derived in [24] (from which equation (15) can be easily obtained by the limit
z1 → z0) can be also written in the determinant form,

det




1 1 1
(eS2 − 1)(eS3 − 1) (eS3 − 1)(eS1 − 1) (eS1 − 1)(eS2 − 1)

S23 S13 S12


 = 0,

where the subscript i refers to the derivative Di. We believe it is possible to
obtain this equation in a manner similar to the derivation of (13).

3.2 Determinant form of discrete SKP equation

The basic idea of derivation of the determinant form (13) is applicable to
the dispersionfull case too (in fact, originally we used it in the dispersionfull
case first). This idea gives another way to obtain discrete Swartzian KP
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equation, which was introduced in [29]. Instead of equation (7), we start
from the well-known addition formula for the KP τ -function

c1(T1τ)(T2T3τ) + c2(T2τ)(T1T3τ) + c3(T3τ)(T1T2τ) = 0, (17)

where Ti denotes a Sato shift, ci are certain coefficients.

Proposition 2 If for some function Φ the function

τ̃ = τ(1 + ΘΦ), (18)

satisfies equation (17) for arbitrary Θ (i.e., formula (18) defines a Bäcklund
transformation for the τ -function), then the function Φ satisfies the equation

det




1 1 1
(T1Φ+ T2T3Φ) (T2Φ+ T1T3Φ) (T3Φ+ T1T2Φ)
(T1Φ)(T2T3Φ) (T2Φ)(T1T3Φ) (T3Φ)(T1T2Φ)


 = 0. (19)

Proof Substituting (18) into (17), we obtain a system of linear equations





x+ y + z = 0,
(T1Φ+ T2T3Φ)x+ (T2Φ+ T1T3Φ)y + (T3Φ+ T1T2Φ)z = 0,
(T1Φ)(T2T3Φ)x+ (T2Φ)(T1T3Φ)y + (T3Φ)(T1T2Φ)z = 0,

where

x = c1(T1τ)(T2T3τ), y = c2(T2τ)(T1T3τ), z = c3(T3τ)(T1T2τ).

Then, from the requirement that determinant of this linear system should
be equal to zero, we get equation (19), QED.

It is easy to check that equation (19) coincides with discrete SKP equa-
tion, introduced in [29] in multiplicative form

(T2∆1Φ)(T3∆2Φ)(T1∆3Φ) = (T2∆3Φ)(T3∆1Φ)(T1∆2Φ), (20)

where ∆i = Ti − 1 is a difference operator.

4 Dispersionless 2DTL hierarchy

Most of the results presented above for dispesionless KP hierarchy are valid
after some modification for dispersionless 2DTL hierarchy. First we will
outline the basic notations, following the work [27], and then we will discuss
how the main formulae are modified.
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For the dispersionless 2DTL hierarchy the ∂̄-data are localized on the do-
main G which is an annulus a < |z| < b, where a, b (a, b ∈ R, a, b > 0; b > a)
are arbitrary (instead of the unit disc in KP case). To set the quasi-classical
∂̄-problem (1) correctly, in general we do not need to require analyticity of
the function S0 in G, it is enough to have analyticity of its derivative S0z.
A generic function S0 with S0z analytic in G can be represented as

S0(t,x,y) = t log z +

∞∑

n=1

znxn +

∞∑

n=1

z−nyn,

where t, xn, yn are free parameters [24]. We assume that S̃(z) ∼
∑∞

n=1
Sn

zn

as z → ∞ and denote S̃(0) = φ, G+ = {z, |z| > b}, G− = {z, |z| < a}.
Relations, characterizing the τ -function F , are φ = DF , S̃(z1) = −D+(z1)F
(z1 ∈ G+), S̃(z2) = φ−D−(z2)F (z2 ∈ G−), where D+(z) =

∑∞
n=1

1
n

1
zn

∂
∂xn

,

D−(z) =
∑∞

n=1
1
n
zn ∂

∂yn
, D = ∂

∂t
.

4.1 τ-function for dispersionless 2DTL hierarchy

Boundary problem for nonlinear Beltrami equation (1) in this case is formu-
lated on the boundary of the annulus G, and integration in the formula (4)
goes over the annulus.

Proposition 3 The function

F (t,x,y) =
−1

2πi

∫∫

G

(
1

2
S̃z̄(t,x,y)S̃z(t,x,y) −W−1(z, z̄, Sz(t,x,y))

)
dz ∧ dz̄

is a τ -function of dispersionless 2DTL hierarchy.

The proof is completely analogous to the KP case.
The formula for the τ -function may be also considered in a more general

context, for arbitrary domain G. In this case it defines F as a functional on
the space of functions S0(z), having the derivative S0z analytic in G. The
form of corresponding hierarchy depends on parameterization of this space
in terms of ‘times’.

4.2 Symmetries and singular manifold equations

Variations of the function F , preserving the hierarchy, have the same form
(11) as in KP case.

Dispersionless 2DTL equations can be obtained from KP case (equations
(16), (15), (13) ) by the transformations D1 → D+, D2 → D−+∂t, D3 → ∂t
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or, equivalently, D1 → D−, D2 → D+ − ∂t, D3 → −∂t, connected by the
the symmetry D+ → D−, D− → D+, ∂t → −∂t.

Equation (16) for S takes the form

(
eD+S(e−∂tS − 1) + eD−S(e∂tS − 1)

)
D+D−S

−(eD+S − 1)(eD−S − 1)∂t(D− −D+ + ∂t)S = 0. (21)

In the order z+(z−)
−1 of expansion of equation (21) one gets

Sxy − SxSy
Stt

(eSt − 1)(1 − e−St)
= 0, (22)

that is the dispersionless 2DTL singular manifold equation.
Generating equation for conformally invariant case reads

(∂tφ)(D+D−φ)(∂t +D− −D+)φ = (D+φ)(D−φ)∂t(∂t +D− −D+)φ. (23)

The order of expansion z+(z−)
−1 gives the conformally invariant dispersion-

less 2DTL equation

φxy

φxφy
=

φtt

φtφt
. (24)
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