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Abstract

Two generalized Harry Dym equations, recently found by Brunelli,
Das and Popowicz in the bosonic limit of new supersymmetric ex-
tensions of the Harry Dym hierarchy [J. Math. Phys. 44:4756–4767
(2003)], are transformed into previously known integrable systems:
one—into a pair of decoupled KdV equations, the other one—into a
pair of coupled mKdV equations from a bi-Hamiltonian hierarchy of
Kupershmidt.

1 Introduction

Integrable supersymmetric differential equations have been attracting much
attention in modern mathematical physics and soliton theory (see, e.g., [1]
and references therein). Supersymmetric extensions of known integrable
bosonic (or classical) systems are of particular interest, because, if the num-
ber N of Grassmann variables is greater than one, those extensions can gen-
erate, in their bosonic limits, some new integrable classical systems which
generalize the initial ones.

Recently, Brunelli, Das and Popowicz [2] studied supersymmetric exten-
sions of the Harry Dym hierarchy, and found, as bosonic limits of N = 2
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supersymmetric extensions, the following two new classical generalizations
of the Harry Dym equation:
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where w0 and w1 are functions of x and t. Note that in the system (1), in the
seventh term of the right-hand side of its second equation, we have corrected
a misprint made in [2]: the degree of w0 should be −7/2 there.

In the present paper, we find chains of transformations which relate these
new generalized Harry Dym (GHD) equations (1) and (2) with previously
known integrable classical systems. In Section 2, the GHD equation (1) is
transformed into a pair of decoupled KdV equations. In Section 3, the GHD
equation (2) is transformed into a pair of coupled mKdV equations which
belongs to the bi-Hamiltonian hierarchy of the modified dispersive water
waves equation of Kupershmidt [3] (see also [4], p. 84). Section 4 contains
concluding remarks.

2 Transforming the first GHD equation

There are no general methods of transforming a given nonlinear system into
another one, less complicated or better studied. The usual way of finding
necessary transformations is based on experience, guess and good luck. For
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this reason, we give no comments on how these transformations were found
in the present case.

First, the transformation

w0 = u(x, t)−2, w1 = v(x, t), t 7→ −4t (3)

brings the GHD equation (1) into the following simpler form:
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Second, we try to transform x, u and v in (4) as follows:

x = p(y, t), u(x, t) = py(y, t), v(x, t) = q(y, t). (5)

This is an extension of the transformation used by Ibragimov [5] to relate
the original Harry Dym equation with the Schwarzian-modified KdV equa-
tion. In the case of scalar evolution equations, the Ibragimov transformation
(i.e. (5) with v = q = 0) is an essential link in chains of transformations
between constant separant equations and non-constant separant ones [6, 7].
The transformation (5) really works and relates the system (4) with the sys-
tem
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(6)

To verify this, one may use the following identities:

u∂x = ∂y, ut = pyt − p−1

y pyypt, vt = qt − p−1

y qypt. (7)

Note that (5) is not an invertible transformation: it maps the system (6)
into the system (4), whereas its application in the opposite direction, from
(4) to (6), requires one integration by y. We have omitted the terms α(t)py
and α(t)qy in the right-hand sides of the first and second equations of (6),
respectively, where this arbitrary function α(t) appeared as a ‘constant’ of
that integration.

Third, we make the transformation

f(y, t) = p−1

y pyy, g(y, t) = p3yq, (8)
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admitted by the system (6) owing to the form of its equations, and obtain
the pair of decoupled mKdV equations
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Needless to say that the pair of Miura transformations
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with independent choice of the ± signs, relates (9) with the two copies of the
KdV equation

at = ayyy + 3aay, bt = byyy + 3bby. (11)

3 Transforming the second GHD equation

We follow the same three-step transformation as used in Section 2.
First, the transformation (3) brings the GHD equation (2) into the form

ut = u3uxxx −
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Second, we apply the transformation (5) to the system (12) and obtain
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where the terms α(t)py and α(t)qy, with arbitrary α(t), have been omitted
in the right-hand sides of the first and second equations, respectively.

Third, the transformation (8) relates the system (13) with the following
system of coupled mKdV equations:
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The system (14) does not admit any further transformation into a system
of coupled KdV equations. It is possible to transform (14) into a system of
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a KdV–mKdV type, but we will not follow this way. Instead, we notice that
the system (14) is invariant under the change of variables f 7→ f , g 7→ −g.
Therefore the transformation

f = c1(a + b), g = c2(a− b), (15)

with any nonzero constants c1 and c2, relates the system (14) with a system
of symmetrically coupled mKdV equations for a(y, t) and b(y, t), which is
invariant under a 7→ b, b 7→ a. Systems of symmetrically coupled mKdV
equations possessing higher-order generalized symmetries were classified by
Foursov [8]. The choice of

c1 = 1, c2 = ±i (16)

in the transformation (15) brings the system (14) into the form
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y
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which is exactly the case (K) in the Foursov classification [8].
Foursov [8] proved that the system (17) represents the third-order gener-

alized symmetry of the system of coupled Burgers equations
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y
, bt =

(

−by + 2ab− b2
)

y
, (18)

and found the bi-Hamiltonian structure of this hierarchy with the Hamilto-
nian operators
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In its turn, the system of coupled Burgers equations (18) has a long
history. As a system of coupled second-order evolution equations possess-
ing higher-order symmetries, it appeared in the classifications of Mikhailov,
Shabat and Yamilov [9] and Olver and Sokolov [10]. Moreover, the bi-
Hamiltonian structure (19) turns out to be not new. Indeed, the trans-
formation

a = −r, b = s− r, t 7→ −
1

2
t (20)
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relates the system (18) with the modified dispersive water waves equation

rt = 1
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which was introduced, together with its bi-Hamiltonian structure, by Ku-
pershmidt [3] (see also [4], p. 84). The bi-Hamiltonian structures of (18)
and (21) are related by the transformation (20) as well. For this reason,
the system (17) is equivalent to a third-order member of the bi-Hamiltonian
hierarchy of the modified dispersive water waves equation (21).

4 Conclusion

In this paper, we found chains of transformations which relate the new GHD
equations (1) and (2) of Brunelli, Das and Popowicz with previously known
integrable systems. The transformations (3), (5), (8) and (10) relate the
GHD equation (1) with the pair of decoupled KdV equations (11). The
transformations (3), (5), (8), (15) with the choice of (16), and (20) relate the
GHD equation (2) with a third-order member of the bi-Hamiltonian hierarchy
of the modified dispersive water waves equation (21).

It can be observed in the literature (see, e.g., [5, 6, 7, 9] and references
therein) that quite often a newly-found remarkable equation turns out to be
related to a well-studied old equation through an explicit chain of transfor-
mations. In such a situation, one gets a possibility not to study the new
equation directly but to derive its properties from the well-known properties
of the corresponding old equation, using the transformations obtained. Now
this applies to the new generalized Harry Dym equations of Brunelli, Das
and Popowicz as well.
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