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Abstract

Sampling equation method is presented to look for exact solutions of

nonlinear differential equations. Application of this approach to one of

the extensive chaos model is considered. Exact solutions of this model in

travelling wave are given. Nonlinear evolution equation for the considered

extensive chaos model is shown to have solitary and periodical waves.
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1 Introduction

In recent years one can observe a systematical study of a novel type of chaos that
is called by ”soft-mode turbulence” [1,2,3]. These chaos types are characterized
by a smooth interplay of different spatial scales. Properties of these types are
qualitatively different from the well known models that are described by the
complex Ginzburg–Landau and the Kuramoto–Sivashinsky equations.

The simplest model exhibiting the soft-mode turbulence can be described by
the higher order nonlinear evolution equation with the simplest nonlinearity.

This equation was introduced by N.A. Kudryashov [4] and V.N. Nikolaevskiy
[5] to describe longitudinal seismic waves in viscoelastic media. The simplest
case of this equation takes the form

ut + uux + βuxx + δuxxxx + εuxxxxxx = 0 (1.1)

It is known that the Ginzburg–Landau and the Kuramoto–Sivashinskiy equa-
tions are not integrable equations because these ones do not pass the Painleve
test [6, 7]. However these equations have some list of special solutions [6, 7, 8, 9,
10, 11, 12].
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Eq. (1.1) can be normalized. Assuming ε 6= 0, δ 6= 0 and setting

u =
δ2

ε

(

δ

ε

)
1

2

u′, x =
(ε

δ

)
1

2

x′, t =
ε2

δ3
t′, σ =

βε

δ2
(1.2)

Then Eq.(1.1) takes the form

ut + uux + σuxx + uxxxx + uxxxxxx = 0 (1.3)

(the primes of the variables are omitted).
Equation (1.3) is invariant under transformations

u → −u, x → −x (1.4)

which allows us to study this equation for x ≥ 0.
Eq.(1.1) does not pass the Painlevé test and this is not integrable equation

but one can expect that Eq.(1.1) has some special solutions.
The aim of this letter is to present some exact solutions of Eq.(1.1). The out-

line of this letter is as follows. The sampling equation method to look for exact
solutions of nonlinear differential equations is discussed in Section 2. Applica-
tion of this approach to search exact solitary solutions of Eq.(1.1) is considered
in Section 3. Exact periodic solutions are presented in Section 4.

2 Sampling equation method

It is well known that all nonlinear differential equations can be connectionally
divided into three types: exactly solvable, partially solvable and those that
have no exact solution. At the present we have a lot of different approaches to
look for exact solutions of nonlinear differential equations (see, for a example,
refs. [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]). Usually investigators use some
sampling functions that are hyperbolic and elliptic functions. However one can
note that as a rule partially solvable nonlinear equations have exact solutions
that are general solutions of solvable equation of lesser order. In this connection
we apply later the sampling equation method to look for exact solutions of
Eq.(1.1). Our approach takes into consideration the following simple idea.

Let us assume we have two differential equations

E[y] = 0 (2.1)

and

D[u] = 0 (2.2)

and let us also assume that Eq.(2.1) is not integrable equation but Eq. (2.2)
is solvable equation of lesser order then Eq.(2.1). If we find the transformation
for solution y of Eq.(2.1) that allows us to connect y with the general solution
of Eq.(2.2) we have the following relation between Eq.(2.1) and (2.2)

E[y] = ÂD[u] (2.3)

2



where Â is a operator and y is a transformation that is determined by the
formula

y = F (u) (2.4)

This raises the question as to whether finding transformation (2.4) and ex-
actly solvable equation (2.2) as the sampling equation.

One of the impressive method to look for the transformation like (2.4) is the
singular manifold method by J.Weiss, M.Tabor and G.Carnevalle [21] that is
used to study both integrable and nonintegrable differential equations. Success
of this approach for nonintegrable differential equations is explained by so-called
truncated expansions that are transformations similar to formula (2.4). In this
case for the polynomial class of nonintegrable equations (2.1) one can suggest
corresponding exactly solvable equation (2.2) as the Riccati equation, the elliptic
equation or other solvable ordinary differential equation [6, 7, 10, 22].

As a example let us consider the ordinary differential equation in the form

E[y] = yxxxx + yyxxx − 6yyxx − 6y2x − 6y2yx − βy = 0 (2.5)

This equation is not integrable equation but this one has some exact solu-
tions.

Taking into consideration leading members of Eq.(2.5) one can find that
solution of Eq.(2.5) have the second degree singularity. In this connection we
can find solution of Eq.(2.5) using the truncated expansion

y(z) = A0 +A1Y +A2Y
2 (2.6)

where A0, A1 and A2 are unknown parameters and Y (z) satisfies to the Riccati
equation

D[Y ] = Yz + Y 2 − α = 0 (2.7)

Here α is a parameter that will be found too. Substituting transformation
(2.6) info Eq.(2.5) and taking into account Eq.(2.7) and its consequences

Yzz = 2Y 3 − 2αY (2.8)

Yzzz = −6Y 4 + 8αY 2 − 2α2 (2.9)

Yzzzz = 24Y 5 − 40αY 3 + 16α2Y (2.10)

we have solution of Eq.(2.5) at β = 0 that is expressed by Eq.(2.6) where Y (z)
is the solution of Eq.(2.7)
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One can use another transformation

y(z) = B0 +B1R (2.11)

Where B0 and B1 are constant that are found. As this takes place we take
into consideration that R has second degree singularity and R = R(z) is a
solution of the elliptic function equation

R2
z = −2R3 + aR2 + 2bR+ d (2.12)

In this case we obtain the elliptic solution at β = 0 again.
However if we use formula (2.11) and take the first Painlevé equation except

Eq.(2.12)

Rzz = 3R2 + βx (2.13)

we find that Eq.(2.5) has exact solution (2.11) at B0 = 0, B1 = 1 and β 6= 0
where R(z) is the Painlevé transcendent. We can see that we have obtained
much more interesting solution of Eq.(2.5) than (2.7)and (2.11). This solution
can not be found using sampling functions.

3 Exact solitary solutions of Eq.(1.1).

Let us look for exact solutions of Eq.(1.1) in the form of travelling waves using
variables

u(x, t) = y(z), z = x− C0t (3.1)

Eq.(2.1) takes the form after integration over z

C1 − C0y +
1

2
y2 + βyz + δyzzz + εyzzzzz = 0 (3.2)

Assuming

y = a0z
p (3.3)

and substituting into leading members of Eq.(3.2) we have a0 = 30240ε and
p = −5. Solution of Eq.(3.2) has fifth degree singularity and following to the
sampling equation method we can look for the exact solution of Eq.(3.2) in the
form

y(z) = A0 +A1Y +A2Y
2 +A3Y

3 +A4Y
4 +A5Y

5 (3.4)

Where Y (z) satisfies to the Riccati equation

D[Y ] = Yz + Y 2 − α = 0 (3.5)
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Constants A0, A1, A2, A3, A4, A5 and α are found after substitution of the
truncated expansion (3.4) into Eq.(2.1). We need also to take into account the
following formulas

Yzz = 2Y 3 − 2αY

Yzzz = −6Y 4 + 8αY 2 − 2α2

Yzzzz = 24Y 5 − 40αY 3 + 16α2Y

Yzzzzz = −120Y 6 + 240αY 4 − 136α2Y 2 + 16α3

(3.6)

As a result of calculations we have

A5 = 30240 ε, A4 = 0, A3 =
2520δ

11
− 50400εα, A2 = 0,

A1 = −2520

11
δ α+ 20160 ε α2 +

1260

251
β − 12600

30371

δ2

ε
, A0 = C0

(3.7)

Where β is determined by the formula

β = −213811840 ε3α3 − 10204656 δ ε2α2 − 2045 δ3 − 92400 δ2ε α

121ε (9240 ε α+ 79 δ)
(3.8)

Denoting

α =
δw

ε
(3.9)

we obtain for w the following six values

w1 = − 1

220
, w2 = − 5

176
, w3 = − 1

440
(3.10)

w4 =
1

52800

(

557− 46031

m
+m

)

(3.11)

m = (113816753+ 1260
√
8221079733)

1

3 ≈ 610, 966 (3.12)

w5,6 =
1

52800

(

46031

2m
− m

2
+ 557± i

√
3

2

(

m+
46031

m

)

)

(3.13)
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Exact solutions of Eq.(1.1) can be written in the form

y (z) = 30240 ε Y 5 +

(

2520

11
δ − 50400 ε α

)

Y 3+

+

(

−2520

11
δ α+ 20160 ε α2 +

1260

251
β − 12600

30371

δ2

ε

)

Y + C0

(3.14)

where Y = Y (z) is a solution of Eq.(3.5)

Y (z) =
√
α tanh

(√
αz + ϕ0

)

(3.15)

Constant C1 is determined by formula

C1 =
4112640

11

δ5w4

ε3
− 9999360

δ5w5

ε3
− 5080320

251

δ3w3β

ε2
− 55460160

30371

δ5w3

ε3
+

+
1

2
C0

2 +
660240

2761

δ3w2β

ε2
− 25200

30371

δ5w2

ε3
− 1260

251

β2δ w

ε
+

12600

30371

β δ3w

ε2

(3.16)

Substituting solution (3.15) into (3.14) and taking into account that α =
αi = wiδ/ε (i = 1, ..., 6) we have different solutions of Eq.(1.1) in the form of
solitary waves.

4 Exact periodic solutions of Eq.(1.1).

We can see that solutions of Eq(1.1) have fivth degree singularity and one can
also look for exact solution of Eq.(1.1) in the form

y (z) = B1 +B2R(z) +B3Rz +B4R
2 +B5RRz (4.1)

where Bk (k = 1, ..., 5) are constants and R = R(z) is a second degree singularity
solution of the elliptic function equation

R2
z = −2R3 + aR2 + 2bR+ d (4.2)
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From Eq.(4.2) we get that R(z) satisfies also to equations

Rzz = −3R2 + aR+ b

Rzzz = −6RRz + aRz

Rzzzz = 30R3 − 15 aR2 − 18 bR− 6 d+ a2R+ ab

Rzzzzz = 90R2Rz − 30 aRRz − 18 bRz + a2Rz

Rzzzzzz = −630R4 + 420 aR3 + 504 bR2 + 180Rd−

−63 a2R2 − 108 abR− 30 ab− 18 b2 + a3R+ a2b

(4.3)

Substituting (4.1) into Eq.(1.1) and taking into account formulas (4.2) and
(4.3) we find

B4 = 0, B2 = 0, B1 = C0, B5 = −3780 ε, B3 = 630ε a+
630

11
δ (4.4)

β =
10

121

δ2

ε
(4.5)

As this takes place parameters b and d in Eq.(4.1) take two values

b1,2 = − 1

12
a2 +

1

1452

δ2

ε2
± 1

5082

√
21δ2

ε2
(4.6)

d1,2 =
1

108
a3 +

13

359370

δ3

ε3
± 1

119790

√
21δ3

ε3
− 1

4356

aδ2

ε2
∓ 1

15246

a
√
21δ2

ε2

(4.7)

Constant C1 in Eq.(2.1) in this case has two values too

C
(1,2)
1 = − 10854

161051

δ5

ε3
+

1

2
C0

2 ∓ 2484

161051

√
21δ5

ε3
(4.8)

Using (4.4) and (4.5) we obtain as resultant expression for the solution y(z)
in the form of periodic waves.

y(z) = C0 + 630

(

εa+
δ

11
− 6εR

)

Rz (4.9)
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where R = R(z) is a solution of the following equations

R2
z = −2R3 + aR2 − 1

6
a2R+

1

726

Rδ2

ε2
± 1

2541

R
√
21δ2

ε2
+

1

108
a3 +

13

359370

δ3

ε3
± 1

119790

√
21δ3

ε3
− 1

4356

aδ2

ε2
∓ 1

15246

a
√
21δ2

ε2

(4.10)

Assuming that R1, R2 and R3 with R1 ≥ R2 ≥ R3 real roots of equations

2R3 − aR2 +

(

1

6
a2 − δ2

726ε2
∓ δ2

√
21

2541ε2

)

R− 1

108
a3−

− 13

359379

δ3

ε3
∓ δ3

√
21

119790ε3
+

aδ2

4356ε2
± aδ2

√
21

15246ε2
= 0

(4.11)

We have solutions of Eq.(4.10) in the form

R(z) = R2 + (R1 −R2)cn
2(z
√

R1 −R2, S), S2 =
R1 −R2

R1 −R3
(4.12)

Thus Eq.(1.1) have a few exact solutions at different values of equation
parameters. These solution are solitary and periodic waves and they are deter-
mined by the formulas (3.14) and (4.9). We hope these solutions can be useful
for test of the numerical simulations of soft-mode turbulence.

This work was supported by the International Science and Technology Center
under the project 1379-2.
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