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Abstract

We present a geometric description, based on the affine Weyl group E
(1)
6 , of two

discrete analogues of the Painlevé VI equation, known as the asymmetric q-PV and
asymmetric d-PIV. This approach allows us to describe in a unified way the evolution
of the mapping along the independent variable and along the various parameters (the
latter evolution being the one induced by the Schlesinger transformations). It turns
out that both discrete Painlevé equations exhibit the property of self-duality: the

same equation governs the evolution along any direction in the space of E
(1)
6 .

1 Introduction

The study of integrable discrete systems has revealed the most interesting fact that these
systems present many common points with their continuous counterparts. One of these
points was the role played by singularities in discrete integrability [1]. By examining the
singularities of a given mapping, and requesting that those which appear spontaneously do
not propagate ad infinitum, we were able to derive the discrete analogue of the Painlevé
equations [2].

Painlevé equations were introduced one century ago in order to extend to the nonlinear
domain the notion of special function defined by a differential equation. The Painlevé
transcendents were discovered in that way. Discrete forms of the Painlevé equations were
discovered as soon as 1939 [3] (and are present in essence if not in precise form in the work of
Laguerre [4] which precedes that of Painlevé) but were not recognised as such till recently.
However it was only after the discovery of the singularity confinement property that the
study of the discrete Painlevé equations received a substantial boost. The principle for
their derivation is simple: start from an integrable autonomous mapping (typically one of
the QRT [5] family) which contains free parameters and apply the singularity confinement
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criterion in order to fix the n-dependence of the parameters. This approach made possible
the derivation of the q-analogues of the Painlevé equations. The latter are mappings where
the independent variable enters not in an additive but, rather, in a multiplicative way. The
first instance of such an equation was [6]:

xx =
cd(x − aλn)(x− bλn)

(x− c)(x − d)
, (1.1)

where x = x(n), x = x(n + 1), x = x(n − 1) and a, b, c, d are constant. This equation
was shown to be a q-discrete analogue of PIII provided one discards the possible even-odd
dependence of the coefficients. However when the full freedom of the coefficients is restored
and one rewrites the equation in an asymmetric form (the term ‘asymmetric’ being used
here in the QRT sense):

yy =
cd(x− aλn)(x− bλn)

(x− p)(x− q)
, (1.2a)

xx =
pq(y − rλn)(y − sλn)

(y − c)(y − d)
, (1.2b)

where a, b, c, d, p, q, r, s are constants constrained by pqrs = λabcd. It can be shown,
as was done by Jimbo and Sakai [7], that this equation is a discrete form of PVI. The
interesting property of equations where no artificial limitation of the richness of their
parameters is imposed is the self-duality, first discovered in [8]. While studying the action
of Schlesinger transformations of discrete Painlevé equations it was found that the same
equation governs the evolution along the independent variable and the Schlesinger-induced
shifts of parameters. We know today that not all discrete Painlevé equations posses the
property of self-duality [9], however it was this discovery which made possible a geometrical
description [10] of the discrete Painlevé equations and their classification. This geometrical
description relies heavily on affine Weyl groups (as the one of the continuous Painlevé
equations) and was dubbed in [11] the “Grand Scheme”.

In this paper we shall present the geometrical, affine Weyl group-based, description of
two equations. The first is known as asymmetric d-PIV:

(x+ y)(y + x) =
(y − a)(y − b)(y − c)(y − d)

(y − z − κ/2)2 − e2
,

(y + x)(x+ y) =
(x+ a)(x+ b)(x+ c)(x+ d)

(x− z)2 − f2
, (1.3)

where z = κn+µ and the constants a, b, c, d, e, f satisfy the constraint a+ b+ c+ d = 0.
The second is known as the asymmetric q-PV

(xy − 1)(yx− 1) =
rsλ2n+1(y − a)(y − b)(y − c)(y − d)

(y − pλn)(y − qλn)
,

(yx−1)(xy − 1) =
pqλ2n−1(x− 1/a)(x − 1/b)(x− 1/c)(x − 1/d)

(x− rλn)(x− sλn)
, (1.4)

where the constants a, b, c, d, p, q, r, s satisfy the constraint pq = λabcdrs. These equa-
tions have been first proposed in [12] and further studied in [13, 14] but their geometrical
description had not been presented yet.



A Unified Description of the Asymmetric q-PV and d-PIV Equations 217

2 The geometry of the E
(1)
6 weight lattice

Our basic assumption is that the τ -functions of both the discrete Painlevé equations under

study live on the points of the weight lattice of the affine Weyl group E
(1)
6 . It turns out

that there is no orthonormal basis invariant under the action of the group. In analogy to

what we did in the case of E
(1)
7 [15] we will choose an orthogonal basis where all vectors

are not equivalent. The squared length of the first vector will be chosen equal to 1/2,
while that of the five others will be taken equal to 3/2. In this basis, these points are such
that their coordinates are of the form (a; b1, b2, b3, b4, b5), where a (the coordinate along
the squared-length-1/2 vector) and the coordinates bi’s (on the five squared-length-3/2
vectors) are either all integer or all half-integers, with the additional constraint that the
sum of all coordinates (a and b’s) is even.

The origin satisfies these requirements. It has 54 nearest-neighbours (NN) of the fol-
lowing form. First, (±2; 0, 0, 0, 0, 0), then 20 such that a = ±1 and one nonzero coordinate
bi = ±1 while the other four vanish and finally 32 where both a and each bi have abso-
lute value 1/2 and arbitrary signs, up to the constraint that the total number of minus
signs be odd, to ensure that the total sum be even, thus leading to 32 rather than 64
points. The squared distance of each of these points to the origin is always 2, be it 4/2,
1/2 + 3/2 or 1/8 + 5(3/8). Though in this particular basis these points look very differ-
ent, they are in fact all equivalent. They define 27 directions along which NV’s vectors
exist and this notation stands for ‘Nearest-neighbour-connecting Vectors’. Contrary to

the case of E
(1)
7 [15] where we could not fix consistently the orientations of the NV’s, for

the case of E
(1)
6 if we choose as our oriented NV’s (2; 0, 0, 0, 0, 0), (−1; 0, . . . ,±1, . . . ) and

(1/2;±1/2,±1/2,±1/2,±1/2,±1/2) (with odd number of minus signs in the last case),
then the scalar products of any two distinct NV’s is either −1 or 1/2 but never 1 nor
−1/2. Moreover each NV has scalar product −1 with exactly 10 NV’s and 1/2 with the
16 others. This shows again that all NV’s are equivalent. Also their total sum is zero, as
can be easily checked. (For instance see that the scalar product of the sum with any NV
is 2 + 10(−1) + 16(1/2) = 0).

The sum of two NV’s of scalar product −1 has squared length 2, and in fact is just the
opposite of some other NV. So to get further away from the origin, to a τ which is next-
nearest-neighbour (NNN) of the origin, we have to translate by the sum of two vectors of
scalar product −1/2, i.e. the difference of two NV’s of scalar product 1/2, to get an NNV
of squared length 3. Here NNV stands for ‘Next-Nearest-neighbour-connecting Vectors’.
Contrary to the NV’s that can be consistently oriented, the NNV’s cannot (the orienta-
tion of the NV’s does not carry over because we are taking differences). Though there are
216 (= 27×16/2) pairs of NV’s of scalar product 1/2, there are only 36 NNV’s, since each
can be obtained in six different ways. For instance the NNV (0; 1, 1, 0, 0, 0) is the difference
of the pairs {(−1; 1, 0, 0, 0, 0), (−1; 0,−1, 0, 0, 0)} and {(−1; 0, 1, 0, 0, 0), (−1;−1, 0, 0, 0, 0)}
but also of four pairs {(1/2; 1/2, 1/2,±1/2,±1/2,±1/2), (1/2;−1/2,−1/2,±1/2,±1/2,
±1/2)} where the three signs are the same for two vectors in a pair, and are constrained
by the even-sum rule to comprise an odd number of minus signs. In the basis we consider
there are 20 NNV’s of this form, with a and three bi’s vanishing and the two others of
absolute value 1 with arbitrary sign, (but only 20 rather than 40 = 4(5 × 4/2) because
we ignore the orientation of the NNV’s) and 16 more which have a = −3/2 and the same
values of the bi’s as the 16 last NV’s, but again, all NNV’s are equivalent.
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3 The nonlinear variables and the Hirota–Miwa equation

Consider a 2-dimensional plane containing the origin, say, and two τ ’s, both NN’s of the
origin, such that the relevant NV’s have scalar product 1/2, for instance (−1; 1, 0, 0, 0, 0)
and (−1; 0,−1, 0, 0, 0). They are in NNN position with respect to each other, since their
squared-distance is 3. But what is interesting is to consider the fourth point in the paral-
lelogram, the one obtained in translating the origin by the sum of these two NV’s. This
point (in our case (−2; 1,−1, 0, 0, 0)) is at a squared-distance 5 from the origin, and is
in next-next-nearest-neighbour (NNNN) position with respect to it. This means that the
center of our parallelogram, midpoint of a pair of NNN τ ’s is also the midpoint of pair
of two NNNN τ ’s. Moreover, since there are six different ways to write an NNV as the
difference of two NV’s, the same point is altogether the midpoint of six different pairs
of NNNN τ ’s. In our case, the point X, (−1; 1/2,−1/2, 0, 0, 0), midpoint of the NNN
pair {(−1; 1, 0, 0, 0, 0), (−1; 0,−1, 0, 0, 0)}, is also midpoint of the NNNN pairs, not only
{(0; 0, 0, 0, 0, 0), (−2; 1,−1, 0, 0, 0)} but also {(−2; 0, 0, 0, 0, 0), (0; 1,−1, 0, 0, 0)} and four
pairs of the form {(−1/2; 1/2,−1/2,±1/2,±1/2,±1/2), (−3/2; 1/2,−1/2,∓1/2,∓1/2,
∓1/2)}, where the three last signs have opposite values in the two points of a given
pair, the number of minus signs being odd (resp. even) for the first (resp. second) point in
each pair, which guarantees that the even-sum rule always holds. These points, midpoints
of one pair of NNN τ ’s and of six pairs of NNNN τ ’s, are the points where we will define
nonlinear variables, X or x for the asymmetric d-PIV and q-PV equations respectively.

Note that, contrary to the NNV’s which cannot be oriented consistently, the NNNV’s
are sums of NV’s and can all be consistently oriented by carrying over the orientation
of the NV’s. The six NNNV’s around the site of a particular nonlinear variable are
not independent: they all lie in the same hyperplane orthogonal to the NNV joining
the pair of NNN τ ’s around the same site. In fact one can easily convince oneself that
their sum vanishes: each of them has scalar product −1 with each of the five others (we
recall that their squared sum is precisely 5). In the particular case we are considering,
the correctly oriented NNNV’s are (−2; 1,−1, 0, 0, 0), (−2;−1, 1, 0, 0, 0), and four of the
form (1; 0, 0,±1,±1,±1) with an odd number of minus signs (such a vector, with an even
number of minus signs, would still be a valid NNNV between some τ ’s, as we shall see
later, but not around the point we are considering). Let us choose some point O′, not

necessarily the origin of coordinates, and call Ci the scalar products of the vector
−−→
O′X

with these six NNNV’s, and introduce ci = qCi , for some number q. We have of course
∑

iCi = 0 and
∏

i ci = 1.

We are now in a position to express the value of the nonlinear variable at the point we
considered. Let ψ be the product of the two NNN τ ’s (in our case, τx at (−1; 1, 0, 0, 0, 0)
and τ ′x (−1; 0,−1, 0, 0, 0)) and φi the product of two NNNN τ ’s at the ends of the vector
that defines Ci. Then, for asymmetric d-PIV we have:

X = Ci +
φi
ψ

(3.1)

and for asymmetric q-PV

x = ci + c
1/3
i

φi
ψ
. (3.2)
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This implies compatibility conditions, which are non-autonomous Hirota–Miwa [16] sys-
tems:

φi − φj + (Ci − Cj)ψ = 0, (3.3)

c
1/3
i φi − c

1/3
j φj + (ci − cj)ψ = 0. (3.4)

The set of equations (3.3) (resp. (3.4)) around all possible sites for nonlinear variables is
overdetermined but consistent over the entire lattice and is nothing but the bilinear form
of the asymmetric d-PIV (resp. q-PV) equation.

4 The nonlinear equations

Around each site like X, among the 27 NV’s, exactly 12 are used up in constructing, in
pairs, the 6 NNNV’s around X, (or, equivalently, lead by their differences to the NNV
around X). There are 15 NV’s left. On the other hand there are exactly 15 ways to choose
two among the six NNNV’s. It turns out that, for any choice of a pair of NNNV around
X, the sum of these vectors is exactly twice the opposite of one of the 15 remaining
NV’s. Not only that, but if one translates X by half of any of these NV’s in either
direction, one finds another point Y where a nonlinear variable can be defined. This was
by no means obvious: if we translate X by half of any of the first 12 NV’s, the resulting
point would not be the midpoint of two τ ’s in NNN position. To be specific, we easily
see that no pair of NV’s containing (2; 0, 0, 0, 0, 0) allows to construct, by difference, the
NNV (0; 1, 1, 0, 0, 0) around X. Conversely, if we take (−2; 1,−1, 0, 0, 0), (−2;−1, 1, 0, 0, 0)
among the 6 NNNV’s around X, their sum is twice the opposite of this NV. Thus the point
X can be translated by (±1; 0, 0, 0, 0, 0) to lead to new sites Y (0; 1/2,−1/2, 0, 0, 0) and
Y (−2; 1/2,−1/2, 0, 0, 0), where nonlinear variables can be constructed. Note that the
environments of Y , Y in terms of τ ’s are identical (since the distance between these two
points is a full NV) but are not the same as that of X. For instance the NNV around Y
(and Y ) is not (0; 1, 1, 0, 0, 0) but (0;−1, 1, 0, 0, 0), and the NNNV’s also differ from those
at X, being (−2; 1, 1, 0, 0, 0), (−2;−1,−1, 0, 0, 0) and of the form (1; 0, 0,±1,±1,±1) but

with an even number of minus signs. So, if (a; bi) are the components of the vector
−−→
O′X

the six Ci’s aroundX come into two groups (this is because we are distinguishing a specific
NV, that of the direction XY ; from an absolute point of view all Ci’s are equivalent):

−a+ 3/2(b1 − b2) ≡ −2Z + p,

−a− 3/2(b1 − b2) ≡ −2Z − p (4.1)

on the one hand,

a/2− 3/2(b3 + b4 + b5) ≡ Z + α,

a/2 + 3/2(−b3 + b4 + b5) ≡ Z + β,

a/2 + 3/2(b3 − b4 + b5) ≡ Z + γ,

a/2 + 3/2(b3 + b4 − b5) ≡ Z + δ (4.2)

on the other, where Z = a/2 and obvious notations for p, α, β, γ and δ, with α +
β + γ + δ = 0. The six Dj ’s around Y are −(a + 1) + 3/2(b1 + b2) ≡ (−2Z − 1 + r),



220 B Grammaticos, A Ramani and Y Ohta

−(a+ 1)− 3/2(b1 + b2) ≡ (−2Z − 1− r) and four of the form Z + 1/2− α, etc., the ones
around Y being the same up to replacing Z + 1/2 by Z − 1/2.

Consider now one of the pairs of NNNN τ ’s around X associated to one of the four
last Ci’s, say Z + α. The NNNV is (1; 0, 0, 1, 1, 1) and the two relevant τ ’s are τα at
(−1/2; 1/2,−1/2,−1/2,−1/2,−1/2) and τ ′α at (−3/2; 1/2,−1/2, 1/2, 1/2, 1/2). The first
one also forms an NNNN pair near Y while the second forms an NNNN pair near Y , both
corresponding to the Dj involving α. Thus if for instance τα vanishes, we know the values
of both X and Y (from (3.1) and (3.2) because the corresponding φ vanishes). At this
point we must start to separate the study of q-PV from that of d-PIV.

Let us first consider d-PIV. Then, if τα vanishes, from (3.1) we have X = Z + α and
from its analogue at Y , Y = Z + 1/2 − α, because the quantity φ in that case is τατ

′
α for

X and τατ
′
α for Y where τ ′α is at the point (1/2; 1/2,−1/2, 1/2, 1/2, 1/2) (translated from

the site of τ ′α by the full NV along XY ). The quantities at the denominators of X and
Y are respectively τxτ

′
x and τ0τy where we recall that τx is at point (−1; 1, 0, 0, 0, 0) and

τ ′x at (−1; 0,−1, 0, 0, 0), while τ0 is at the origin (0; 0, 0, 0, 0, 0) and τy at (0; 1,−1, 0, 0, 0)
symmetric of the origin with respect to Y . Consider now the quantity X + Y − 2Z − 1/2.
Computing X through (3.1) and the appropriate instance of (4.2) (namely the first one),
and similarly Y through their analogues for we have

X + Y − 2Z − 1/2 =
τατ

′
α

τxτ ′x
+
τατ

′
α

τ0τy
=
τα(τ0τyτ

′
α + τxτ

′
xτ

′
α)

τxτ ′xτ0τy
. (4.3)

The four numbers α, β, γ and δ are equivalent, and to each of them one can assign a τ
which forms an NNNN pair around both X and Y . Whenever each of them vanishes, both
X and Y take the corresponding Ci and Dj value, the sum of which is 2Z+1/2 in all four
cases. This quantity is the scalar product of the NV (2; 0, 0, 0, 0, 0) in the direction of XY
with the vector from O′ to the midpoint of XY . The left hand side of (4.3) thus vanishes
whenever one of these four τ ’s vanish. It follows that the numerator of the right hand side
must also vanish, since it is equal to the product of the vanishing quantity X+Y −2Z−1/2
by a product of τ ’s which, being entire functions, may never become infinite. Hence this
numerator is proportional not only to τα but also to the product of the three others. It
follows that:

τ0τyτ
′
α + τxτ

′
xτ

′
α = Kτβτγτδ. (4.4)

By homogeneity, K does not depend on any other τ ’s. This is thus a trilinear equation
satisfied by the τ ’s. One does not need to impose it independently of (3.3). In fact one
can show, eliminating repeatedly various τ functions between (3.3) and its analogues at
appropriate points, that (4.4) is just a consequence of the bilinear equation (3.3) and
moreover that K is just −1. So one gets:

τ0τyτ
′
α + τxτ

′
xτ

′
α + τβτγτδ = 0. (4.5)

Indeed the three products play the same role, each being the product of three τ form-
ing an equilateral triangle the side of which has squared-length 3 (indeed, each side is
an NNV), all three triangles having the same center of mass, namely the point G at
(−1/2; 1/2,−1/2, 1/6, 1/6, 1/6). These nine τ ’s are the only ones at distance 1 from G,
and there is no other way to arrange them in three such equilateral triangles. Equation
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(4.5) is thus an instance of a very general trilinear equation which is true around every
point on the lattice equivalent to G, as a consequence of (3.1). The numerator of the r.h.s.
of (4.3) can be replaced by a monomial using (4.5) and we find:

X + Y − 2Z − 1/2 = −
τατβτγτδ
τxτ ′xτ0τy

. (4.6)

Clearly the same reasoning can be done forX and Y . If τ ′α at (−3/2; 1/2,−1/2, 1/2, 1/2,
1/2) vanishes, X has still the value Z +α, but while we have no direct information on Y ,
the value of Y is Z − 1/2 − α, because τ ′α does form an NNNN pair around Y . Thus one
has X +Y = 2Z − 1/2, but this is also true when the analogous τ ′β, etc. vanish. So again:

X + Y − 2Z + 1/2 = −
τ ′ατ

′
βτ

′
γτ

′
δ

τxτ ′xτ0τy
, (4.7)

where τ0τy is the ψ corresponding to Y , at points (−2; 0, 0, 0, 0, 0) and (−2; 1,−1, 0, 0, 0)
Taking the product we find:

(X + Y − 2Z − 1/2)(X + Y − 2Z + 1/2) =
τατβτγτδ
τxτ ′xτ0τy

τ ′ατ
′
βτ

′
γτ

′
δ

rτxτ ′xτ0τy
. (4.8)

From (3.1) and (4.2) we recognize at the numerator of the right-hand side the product of
the numerators of the quantities (X − Z − α), etc. thus:

(X + Y − 2Z − 1/2)(X + Y − 2Z + 1/2)

= (X − Z − α)(X − Z − β)(X − Z − γ)(X − Z − δ)
τ2xτ

′
x
2

τ0τyτ0τ y
. (4.9)

But τ0 and τy, on the one hand, and τ0 and τy, on the other, are precisely the last two
pairs of NNNN τ ’s around X and from (3.1) and (4.1), the last factor in (4.9) is just the
inverse of (X + 2Z − p)(X + 2Z + p). Thus:

(X + Y − 2Z − 1/2)(X + Y − 2Z + 1/2)

=
(X − Z − α)(X − Z − β)(X − Z − γ)(X − Z − δ)

(X + 2Z − p)(X + 2Z + p)
. (4.10)

This is one of the two equations of the system defining the asymmetric d-PIV equation [14],
though in a slightly unusual form. In order to obtain the other one, we need to consider
the point X at (1; 1/2,−1/2, 0, 0, 0). The couple of points (Y,X) is translated from (Y ,X)
by exactly one NV, so the environment is the same and from (4.7) one gets (with obvious
notations)

X + Y − 2Z − 3/2 = −
τ ′ατ

′
βτ

′
γτ

′
δ

τxτ
′
xτ0τy

. (4.11)

Multipling with (4.6) we see appearing on the right hand side products of τ ’s near Y .
Finally what we get is the analogue of (4.10):

(X + Y − 2Z − 1/2)(X + Y − 2Z − 3/2) (4.12)

=
(Y − Z − 1/2 + α)(Y − Z − 1/2 + β)(Y − Z − 1/2 + γ)(Y − Z − 1/2 + δ)

(Y + 2Z + 1− r)(Y + 2Z + 1 + r)
.
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To recover the usual form, we redefine X, Y , Y and X by adding to them the relevant
value of the independent variable (Z, Z + 1/2, Z − 1/2 and Z + 1, respectively) to get in
the translated variables:

(X + Y )(X + Y ) =
(X − α)(X − β)(X − γ)(X − δ)

(X + 3Z − p)(X + 3Z + p)
, (4.13a)

(X + Y )(X + Y ) =
(Y + α)(Y + β)(Y + γ)(Y + δ)

(Y + 3Z + 3/2− r)(Y + 3Z + 3/2 + r)
. (4.13b)

Equation (4.13) is exactly the asymmetric d-PIV equation [14] up to a redefinition of the
variable Z.

The case of the asymmetric q-PV equation is similar but slightly more complicated. The
positions of the relevant τ ’s are exactly the same, so we will keep the same names, but the
equations coming from (3.2) are not quite the same. Let us follow the corresponding steps.
When τα vanishes, we have x = qZ+α, y = qZ+1/2−α so xy = q2Z+1/2. Let us compute in
all generality, the quantity xyq−2Z−1/2. To get x we use (3.2) with the instance of (4.2)
involving α, and similarly for y. We find

xyq−2Z−1/2 = 1 + q−2(Z+α)/3 τατ
′
α

τxτ ′x

+ q−2(Z+1/2−α)/3 τατ
′
α

τ0τy
+ q−(4Z+1)/3 τ

2
ατ

′
ατ

′
α

τxτ ′xτ0τy
(4.14)

so indeed
(

xyq−2Z−1/2 − 1
)

vanishes when τα does. But though we have expressed this
quantity with emphasis on α, the three other quantities β, γ and δ play the same role and
(

xyq−2Z−1/2 − 1
)

also vanishes whenever the associated τ does. With the same argument
as above, it follows that the numerator of the right hand side of (4.14), after subtracting 1,
must be proportional to the product of these τ ’s. So we get the analogue of equation (4.4)

q−2(Z+α)/3τ ′ατ0τy + q−2(Z+1/2−α)/3τ ′ατxτ
′
x + q−(4Z+1)/3τατ

′
ατ

′
α = Kτβτγτδ. (4.15)

As in the case of (4.4), homogeneity shows that K does not depend on any τ ’s. But
contrary to the previous case, K is not a constant, but a function of the point on the
lattice. Let us look at this trilinear equation more closely. Three of the products are the
same as in (4.5), but they have a prefactor which is not unity. The last product on the
left-hand-side was not present in (4.4). It involves one new τ , namely τα, plus one τ from
two of the three other products. These three τ ’s form an isosceles triangle of sides of
squared-length 2, 5 and 5. Its center of mass is still the same point G as that of the three
others, but now τα is at squared-distance 2 from it. There are thus many such equations
that are true around the same point, one for each of the 27 ways to pick one τ out of two
of the three three-τ ’s products in (4.5), and complete the triangle of center of mass G to
a τ at squared-distance 2 from it.

In order to obtain the value of K, one repeatedly applies the analogue of (3.4) around
various points. One can actually prove (4.15) and obtain the value of K which is
−q−(8Z+2)/3. Rewriting (4.15), divided by (−K):

τβτγτδ + q2Z+1/2−2(α−1/4)/3τ ′ατ0τy

+ q2Z+1/2+2(α−1/4)/3τ ′ατxτ
′
x + q(4Z+1)/3τατ

′
ατ

′
α = 0. (4.16)
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Subtracting one from the r.h.s. of (4.14) we see that we recover the l.h.s. of (4.15) up
to a global multiplicative factor. Multiplying by the same factor the r.h.s. of (4.15) and
using the value of K we find that the quantity (xyq−2Z−1/2 − 1) becomes:

xyq−2Z−1/2 − 1 = −q−(8Z+2)/3 τατβτγτδ
τxτ ′xτ0τy

(4.17)

and similarly between x and y we have

xyq−2Z+1/2 − 1 = −q−(8Z−2)/3
τ ′ατ

′
βτ

′
γτ

′
δ

τxτ ′xτ0τy
. (4.18)

Taking the product, we recover the products of τ ’s involving the quantities (x − ci).
When we take into account carefully all prefactors we find:

(

xyq−2Z−1/2 − 1
)(

xyq−2Z+1/2 − 1
)

= q−8Z

(

x− qZ+α
) (

x− qZ+β
) (

x− qZ+γ
) (

x− qZ+δ
)

(x− q−2Z+p) (x− q−2Z−p)
(4.19)

which is one of the two equations of the system defining the asymmetric q-PV equation [14],
although not in its usual form. Again, in order to obtain the second equation, we need to
consider the point x. Translating (4.18) by a full NV forwards, we get:

xyq−2Z−3/2 − 1 = −q−(8Z+6)/3
τ ′ατ

′
βτ

′
γτ

′
δ

τxτ ′xτ0τy
. (4.20)

Multiplying with (4.17) we find products of τ ’s near y, and get the analogue of (4.19):

(

xyq−2Z−1/2 − 1
)(

xyq−2Z−3/2 − 1
)

(4.21)

= q−8Z−4

(

y − qZ+1/2−α
) (

y − qZ+1/2−β
) (

y − qZ+1/2−γ
) (

y − qZ+1/2−δ
)

(y − q−2Z−1+r) (y − q−2Z−1−r)
.

The equations (4.21) and (4.19) together form the asymmetric q-PV equation. To recover
the usual form, we absorb q−Z into a redefinition of x (and appropriate factors for the
other variables) to get:

(xy − 1)(xy − 1) =
(x− qα)(x− qβ)(x− qγ)(x− qδ)

(1− xq3Z−p)(1− xq3Z+p)
, (4.22a)

(xy − 1)(xy − 1) =
(y − q−α)(y − q−β)(y − q−γ)(y − q−δ)

(1− yq3Z+3/2−r)(1 − yq3Z+3/2+r)
(4.22b)

which is the asymmetric q-PV equation in its usual form up to a redefinition of Z.

The continuous limits of asymmetric q-PV and asymmetric d-PIV were presented in [14],
where it was shown that both equations have PVI as continuous limit.
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5 The contiguity relations and the Miura’s

Among the 15 NV’s around X which allow to reach sites of nonlinear variables, 8 have
scalar product 1/2 with the NV (2; 0, 0, 0, 0, 0) along XY (corresponding to taking one
of the two NNNV with a = −2 and one of the four ones with a = 1) and 6 with
scalar product −1 with this NV (taking 2 among the 4 NNNV’s with a = 1). Note
that the latter six come by pairs, the sum of two NV’s of one pair being the opposite
of the NV along XY . This is the case, for instance, for the NV (−1; 0, 0, 1, 0, 0) related
to α and β, say – half the opposite of the sum of the two NNNV’s (1; 0, 0,−1,−1,−1)
and (1; 0, 0,−1, 1, 1) – which lead to the two first Ci’s in (4.2) and the one related to γ
and δ, namely (−1; 0, 0,−1, 0, 0). The point W

˜
α,β (−1/2; 1/2,−1/2,−1/2, 0, 0), reached

by translating X by half the opposite of the first forms an equilateral triangle with X
and Y . Similarly, Wα,β at (−3/2; 1/2,−1/2, 1/2, 0, 0) forms an equilateral triangle with X

and Y . Contrary to the case of E
(1)
7 we considered in [15], where points analogous to

these two points were the only ones near X in the two-dimensional plane containing them
together with X and Y , Y , here the two points Wγ,δ at (−3/2; 1/2,−1/2,−1/2, 0, 0)
and W

˜
γ,δ at (−1/2; 1/2,−1/2, 1/2, 0, 0) are also in the same plane and form, with Y ,

Y , Wα,β and W
˜

α,β, a regular hexagon of center X. Note that the two τ ’s in NNV
relative position around W

˜
α,β are τα at (−1/2; 1/2,−1/2,−1/2,−1/2,−1/2) and a τ

at point (−1/2; 1/2,−1/2,−1/2, 1/2, 1/2) which is what we implicitly called τβ. We
will not consider all six possible pairs of NNNN τ ’s around W

˜
α,β, but two of such

pairs are precisely {τ ′γ , τ
′
δ} and {τ ′δ, τ

′
γ}, associated to the NNNV (−2; 0, 0, 0,−1, 1) and

(−2; 0, 0, 0, 1,−1) respectively. (We are not giving the coordinates of all these τ ’s; they
can be deduced from those of index α by changing the sign of two of the last three com-
ponents, the component which does not change sign being the fourth, fifth and sixth one,
respectively, for β, γ and δ). Moreover note that the τ0 at the origin and τy each be-
long to one NNNN pair, around W

˜
α,β, associated to the NNNV’s (1;−1, 1, 1, 0, 0) and

(1; 1,−1, 1, 0, 0). When τ ′γ , say, vanishes, both X and W
˜

α,β take specific values, namely
(Z + γ) and (−2Z + (δ − γ − 1)/2), respectively. So the sum (X +W

˜
α,β) takes the value

−(Z+(α+β+1)/2) (we have used the fact that the α+β+γ+ δ = 0), which, as it turns
out, is the same when either τ ′δ, τ0 or τy vanish. In fact these four τ ’s play, for the pair of
points {X,W

˜
α,β} the same role as τα, etc., for {X,Y }. If we were considering the asym-

metric q-PV equation, the relevant nonlinear variables x, w
˜
α,β are just q raised at a power

equal to the relevant quantities, and their product now takes the same values whether τ ′γ ,
τ ′δ, τ

′
0 or τ ′y vanish. What happens is that we have another instance of a trilinear equation

like (4.5) (resp. 4.16).
Considering first the asymmetric d-PIV equation, and following the same line of rea-

soning we find that:

X +W
˜

α,β + Z + (α+ β + 1)/2 = −
τ ′γτ

′
δτ0τy

τατβτxτ ′x
. (5.1)

One could easily obtain an equation relating W
˜

α,β , X and Wα,β, analogous to (4.10).
But we are here interested in the Miura relating W

˜
α,β, X and Y . Let us multiply (5.1)

and (4.6). Four τ ’s drop out and we are left with:

(X + Y − 2Z − 1/2)(X +W
˜

α,β + Z + (α+ β + 1)/2) =
τγτδτ

′
γτ

′
δ

τ2xτ
′
x
2

(5.2)
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which, if we compute X in two different ways from (3.1) with the appropriate instances
(namely the two last ones) of (4.2) is just:

(X + Y − 2Z − 1/2)(X +W
˜

α,β + Z + (α+ β + 1)/2)

= (X − Z − γ)(X − Z − δ). (5.3)

The quantity −(Z+(α+β+1)/2) is the scalar product of the NV (−1; 0, 0, 1, 0, 0) from
W
˜

α,β to X, with the vector joining O′ to the midpoint of W
˜

α,βX and plays exactly the
same role as 2Z + 1/2 between X and Y . We could get an analogous equation for any of
the six W

˜
that form an equilateral triangle with X and Y , with any two among α, β, γ, δ

as indices of W
˜

and the other two appearing in the rigth hand side. The factor involving
X and Y is the same for all six choices. Equation (5.3) on the equilateral triangle X, Y ,
W
˜

α,β seems to singularize X but this is not true. If we expand this equation we find:

XY +XW
˜

α,β + YW
˜

α,β − (2Z + 1/2)W
˜

α,β

+ (Z + (α+ β + 1)/2)Y + (Z − (α+ β)/2)X = (2Z + 1/2)2/2

+ (Z + (α+ β + 1)/2)2/2 + (Z − (α+ β)/2)2/2− (γ − δ)2/4. (5.4)

The quadratic terms are obviously symmetric, and the coefficients of the three linear
terms are just the opposite of the scalar product of the vector joining O′ to the relevant
point with the NV connecting the two others. As for the right hand side, it is a quantity
which treats these three NV’s in the same way. This is the Miura written in a symmetric
way. The translations of X, Y that were used to simplify (4.10) are not appropriate, but
there is still a way to simplify (5.4), by subtracting from each variable its coefficient in
this equation. In the new variables, one finds a very elegant result:

XY + XW
˜

α,β + YW
˜

α,β + (γ − δ)2/4 = 0. (5.5)

Unfortunately X and Y are not exactly the same variables as the X and Y of (4.13).
Equation (5.4) is the contiguity relation on a triangle, the Miura transformation that
allows to determine any nonlinear variable in the lattice from two inital data, for the
asymmetric d-PIV equation.

The case of the asymmetric q-PV equation is similar. With the same reasoning we get
the relation between x, y and w

˜
α,β, first written in a way that seems to singularize x:

(

xyq−2Z−1/2 − 1
)(

xw
˜
α,βq

Z+(α+β+1)/2 − 1
)

= q2(−2Z+α+β)/3 τγτδτ
′
γτ

′
δ

τ2xτ
′
x
2

(5.6)

and thus
(

xyq−2Z−1/2 − 1
)(

xw
˜
α,βq

Z+(α+β+1)/2 − 1
)

=
(

q−Z−γx− 1
)

(

q−Z−δx− 1
)

. (5.7)

Again, six similar equations can be obtained by permuting the four quantities α, etc.
and (5.6) can also be written in a way that is symmetric in terms of x, y and w

˜
α,β. After

some elementary algebra we find:

xyw
˜
α,β = q−Z+(α+β)/2x+ q−Z−(α+β+1)/2y

+ q2Z+1/2w
˜
α+β − q(γ−δ)/2 − q(δ−γ)/2. (5.8)
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The coefficients of the nonlinear variables are just q raised to the opposite of the coefficients
that appear in (5.4). This shows that this equation is also invariant in the exchange of
the three variables. Obviously, a redefinition of the variables can put all their coefficients
to unity,

xyw
˜
α,β = x+ y+ w

˜
α,β − q(γ−δ)/2 − q(δ−γ)/2 (5.9)

but the x and y of (5.9) are not the same variables as the x and y of equation (4.22).
Equation (5.8) is the contiguity relation on a triangle, the Miura transformation that
allows to determine any nonlinear variable in the lattice from two inital data, for the
asymmetric q-PV equation.

In Section 4, we were able to write the equation between X, Y and Y (or x, y, y)
without having to go through the Miura’s. But it is interesting to show how to recover it
from the Miura’s. First, note that the various W obtained by translating X forward by
half of six of the NV’s form equilateral triangles with X and Y . In particular, we could
choose Wγ,δ. Then we have the analogues of (5.3) and (5.7) for asymmetric d-PIV and
asymmetric q-PV respectively.

(X + Y − 2Z + 1/2)(X +Wγ,δ + Z + (γ + δ − 1)/2)

= (X − Z − α)(X − Z − β), (5.10)
(

xyq−2Z+1/2 − 1
)(

xwγ,δq
Z+(γ+δ−1)/2 − 1

)

=
(

q−Z−αx− 1
)

(

q−Z−βx− 1
)

. (5.11)

But, as we mentioned above, Wγ,δ belongs to a regular hexagon around X that contains
Y , Y , W

˜
α,β and Wα,β, and in particular, forms an equilateral triangle with X and W

˜
α,β.

The analogues of (5.3) and (5.7) can easily be obtained. The factors in the left hand side
involving the W ’s, w’s are the same as those in the previously written equations, coupling
them to Y , y: indeed, they only depend on the NV relating the point under consideration
and X. Only the right hand side depends on what we are coupling them to. Carefully
checking which are the τ ’s that end up in the right hand side, we finally find:

(X +W
˜

α,β + Z + (α+ β + 1)/2)(X +Wγ,δ + Z + (γ + δ − 1)/2)

= (X + 2Z − p)(X + 2Z + p), (5.12)
(

xw
˜
α,βq

Z+(α+β+1)/2 − 1
)(

xwγ,δq
Z+(γ+δ−1)/2 − 1

)

=
(

q2Z−px− 1
) (

q2Z+px− 1
)

. (5.13)

From (5.3), (5.10), (5.12) and (5.7), (5.11), (5.13) respectively, one can easily recover (4.10)
and (4.19).

6 Conclusion

In this paper we have presented the geometrical description of the discrete Painlevé equa-
tions known as asymmetric q-PV and asymmetric d-PIV. (Despite these names both
equations are discrete analogues of PVI as can be assessed through their continuous lim-
its). This geometrical description was performed in the framework of the affine Weyl

group E
(1)
6 . It was shown that both discrete P’s possess the property of self-duality i.e. the
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same equation governs the evolution along the individual variable or along the parameters
of the d-P induced by the Schlesinger transformations. This geometrical approach allows
to describe all the known d-P’s in a unified approach. Moreover it makes possible the
investigation of all possible equations related to the basic ones (here asymmetric q-PV and

asymmetric d-PIV) by considering various evolution paths within the geometry of E
(1)
6

(a question we intend to return to in some future work).
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