
ar
X

iv
:n

lin
/0

31
10

17
v1

  [
nl

in
.P

S]
  1

1 
N

ov
 2

00
3

Analyti
 Considerations in the Study of Spatial Patterns Arising from Non-lo
al

Intera
tion E�e
ts in Population Dynami
s

M. A. Fuentes,

1

M. N. Kuperman,

1, 2

and V. M. Kenkre

1

1

Consortium of the Ameri
as for Interdis
iplinary S
ien
e and Department of Physi
s and Astronomy,

University of New Mexi
o, Albuquerque, NM 87131, U.S.A.

2

Centro Atómi
o Barilo
he and Instituto Balseiro, 8400 S. C. de Barilo
he, Argentina

Simple analyti
 
onsiderations are applied to re
ently dis
overed patterns in a generalized Fisher

equation for population dynami
s. The generalization 
onsists of the in
lusion of non-lo
al 
ompe-

tition intera
tions among individuals. We �rst show how stability arguments yield a 
ondition for

pattern formation involving the ratio of the pattern wavelength and the e�e
tive di�usion length

of the individuals. We develop a mode-mode 
oupling analysis whi
h might be useful in shedding

some light on the observed formation of small-amplitude versus large-amplitude patterns.

PACS numbers: 87.17.Aa, 87.17.Ee, 87.18.Hf

We have shown re
ently that the Fisher equation used

frequently for investigations of biologi
al or e
ologi
al

systems, when generalized to in
lude spatially non-lo
al


ompetition intera
tions, leads to interesting patterns in

the steady state density [1, 2℄. In this Note we attempt

to shed some analyti
 light on the formation of these pat-

terns. The original Fisher equation [3, 4℄ is

∂u (~x, t)

∂t
= D∇2u (~x, t) + au (~x, t)− bu2 (~x, t) , (1)

where u (~x, t) is the population density of individuals un-

der investigation (ba
teria, rodents, et
.) at position ~x
and time t, and D, a, b are, respe
tively, the di�usion


oe�
ient, population growth rate, and 
ompetition pa-

rameter. The generalized equation [1, 2℄ features 
ompe-

tition intera
tions linking u(~x, t) at point ~x with u(~y, t)
at point ~y through an in�uen
e fun
tion fσ(~x, ~y) of range
σ,

∂u (~x, t)

∂t
= D∇2u (~x, t) + a u(~x, t) (2)

−b u(~x, t)

∫

Ω

u(~y, t)fσ(~x, ~y)dy,

Ω being the domain for the non-lo
al intera
tion.

In [1℄, we found that the introdu
tion of the �nite-

range 
ompetition intera
tions gives rise to the emer-

gen
e of patterns in the steady state density u(~x) with
the following features:

• No patterns appear [2℄ in the two extremes of zero

range (in whi
h the generalization reverts to the

Fisher equation) and full range (in whi
h the pop-

ulation density is linked equally to all points in the

domain).

• The pattern stru
ture depends 
ru
ially on features

of the in�uen
e fun
tion, spe
i�
ally, its 
ut-o�

length and its width.

• Even when patterns appear, their steady-state am-

plitude 
an 
hange abruptly from substantial to

negligible as the parameters of the system are var-

ied.

• The 
riti
al quantity determining the separation

of large-amplitude patterns from small-amplitude

ones appears to be the ratio of the 
ut-o� length of

the in�uen
e fun
tion to its width.

These �ndings raise two questions. Why do the pat-

terns form at all? And, what 
auses the separation of the

large-amplitude patterns from the small-amplitude ones?

Both questions are interesting. The �rst is amenable to

understanding via standard stability analysis 
onsider-

ations. The se
ond is more di�
ult but might be ap-

proa
hable through a mode-mode 
oupling analysis, as

we show below.

In order to address the �rst question, 
onsider a 1-

dimensional version of Eq. (2) for simpli
ity, and substi-

tute in it

u(x, t) = u0 + ǫ cos(kx) exp(ϕt). (3)

Here u0 is the homogeneous steady-state solution a/b.
Considering periodi
 boundary 
onditions, and retaining

only �rst order terms in ǫ, we obtain the following dis-

persion relation between the wavenumber k of any mode

of the pattern and the rate ϕ at whi
h it tends to grow:

ϕ = −Dk2 − aF(k). (4)

In this expression, the in�uen
e fun
tion (assumed to

be even) is represented by its 
osine (Fourier) transform

http://arxiv.org/abs/nlin/0311017v1


2

F(k) de�ned as

F(k) =

∫

Ω

cos(kz)fσ(z)dz. (5)

Stable steady-state patterns require that

λ > 2π

√

D

−aF(λ)
, (6)

where λ = 2π/k is the wavelength asso
iated with the

k−mode of the Fourier expansion of the pattern.

Condition (6) allows us to 
he
k for the existen
e or

absen
e of inhomogeneity, i.e., patterns, in the steady

state. We see from (6) that the Fourier transform of the

in�uen
e fun
tion at the wavelength under 
onsideration

should be negative for the patterns to appear and that

its magnitude should be large enough. One way of un-

derstanding this 
ondition is to re
ast it as requiring that

2π times the `e�e
tive di�usion length' should be smaller

than the wavelength for the patterns to o

ur. By the ef-

fe
tive di�usion 
onstant is meant D divided by −F(λ),
whi
h is a fa
tor de
ided by the in�uen
e fun
tion, and

by the di�usion length is meant the distan
e traversed

di�usively in a time interval of the order of the inverse of

the growth rate. If the in�uen
e fun
tion is smooth su
h

as in the 
ase of a Gaussian in an in�nite domain, the

Fourier transform is positive and no patterns appear. A


ut-o� in the in�uen
e fun
tion produ
es os
illations in

the Fourier transform whi
h 
an go negative for 
ertain

wavelengths. The reported �nding [1℄ that the 
ut-o� na-

ture is essential to pattern formation 
an be understood

naturally in this way.

Let us 
onsider, in turn, three 
ases of the in�uen
e

fun
tion whi
h we have used in our earlier investigations

[1℄: square, 
ut-o� Gaussian, and intermediate.

First we take

f(x− y) =
1

2w
{θ[w − (x− y)]θ[w + (x − y)]}, (7)

where θ is the Heaviside fun
tion. The in�uen
e fun
tion
is thus a square of 
ut-o� range measured by w from its


enter. We will 
onsider the 
ase here when the range w is

smaller than, or equal to, the domain length L. Equation
(4) then involves an integral from 0 to w, and gives

ϕ = −a
sin(kw)

kw
−Dk2. (8)

In terms of dimensionless parameters

ϕ′ = ϕ/a,

k′ = k
√

D/a,

η = w
√

a/D,

we have

ϕ′ = − sin(k′η)

k′η
− k′2, (9)

FIG. 1: The dispersion relation (9) between the dimensionless

growth exponent ϕ
′

and wavenumber k
′

plotted for di�erent

values of the ratio η of the in�uen
e fun
tion range to the

di�usion length (see text). Values of η are 50 (solid line), 10

(dashed line), and 2 (dotted line). Patterns appear for those

values of k′
for whi
h ϕ is positive.

whi
h we plot in Fig. 1 for three di�erent values (50,
10 and 2) of the ratio η of the width to the di�usion

length (not e�e
tive di�usion length). For the third 
ase

there are no patterns: di�usion is strong enough to wash

them out. For the intermediate 
ase, patterns 
an o

ur

with wavelengths 
orresponding to values around k′ ≈
0.4 while for the η = 50 
ase, they o

ur around k′ ≈ 0.1.

The earlier �nding [1, 2℄ that no patterns appear for

extremes of the range of the in�uen
e fun
tion is 
lear

from Eq. (9). As the in�uen
e width vanishes, i.e., as η
goes to zero, both terms in ϕ are negative and there 
an

be no steady state patterns: we re
over the solution for

the lo
al limit, 
orresponding to Eq. (1), when w → 0.
Sin
e the boundary 
onditions are periodi
 in a domain

of length L, there are only the allowed values k = nπ/L
of the wavenumber. Therefore, in the opposite limit of

full range, i.e., w → L, the sine term vanishes, ϕ′ = −k′2,
and again there are no patterns.

Pre
isely the same qualitative behavior o

urs for

other non-square in�uen
e fun
tions su
h as the Gaus-

sian with a 
ut-o�, i.e., for

f(x− y) =
1

σ
√
πerf(w/σ)

exp

[

(

x− y

σ

)2
]

. (10)

We again 
onsider the 
ase when the 
ut-o� length does

not ex
eed the domain length. This leads to the Fourier

transform of the in�uen
e fun
tion involving an integral

from 0 to w. In these as well as other 
ases 
onsidered,

it should be appre
iated that the domain length L, if
taken to be smaller than the 
ut-o� length, be
omes itself
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the 
ut-o� length: fa
tors su
h as kw appearing in the

Fourier transform be
ome then kL instead.

For this 
ut-o� Gaussian 
ase, the square 
ase disper-

sion relation (8) is repla
ed by

ϕ = −a exp[−(kσ/2)2]

2erf(w/σ)
[

erf

(

w

σ
− ikσ

2

)

+ erf

(

w

σ
+

ikσ

2

)]

−Dk2.

The dimensionless version (9) is repla
ed by

ϕ′ = −exp(−k′2β2)

2erf(α)
{erf(α− ik′β) + erf(α + ik′β)}−k′2.

(11)

Here α and 2β are the ratios of the 
ut-o� length to the

range and of the range to the di�usion length respe
-

tively:

α = w/σ,

2β = σ
√

a/D.

What is analogous to η in the square 
ase is their produ
t
2αβ = w

√

a/D. Plots whi
h are essentially the same as

those in Fig. 1 
an be drawn for this Gaussian 
ase.

It is interesting to note that, while there is a single

quantity η in the square 
ase, there are two quantities, α
and β, in the 
ut-o� Gaussian 
ase. This arises from the

fa
t that, although there are generally two lengths asso-


iated with any in�uen
e fun
tion, the 
ut-o� length and

the width, the latter is in�nite for the square 
ase. The

width has been de�ned in Ref. [1℄ as being inversely pro-

portional to the se
ond derivative of the in�uen
e fun
-

tion evaluated at its 
entral point, and has been denoted

by the symbol Σ. The 
ut-o� length measures the dis-

tan
e beyond whi
h the in�uen
e fun
tion is exa
tly zero

and has been denoted [1℄ by ξc. For the 
ut-o� Gaussian,

this ξc = xc = w. The symbol xc has been used in Ref.

[1℄ and w in the present Note. The width Σ obeys Σ = σ
for the Gaussian 
ase and Σ = ∞ for the square 
ase.

Both the 
ut-o� Gaussian and the square 
an be ob-

tained as parti
ular 
ases of a general fun
tion [1, 5℄

whi
h we 
all the intermediate in�uen
e fun
tion:

f(x− y) =
Γ(1/r + 3/2)√
πwΓ(1/r + 1)

[

1− r (x− y)2

(2 + 3r)σ2

]1/r

{θ[w − (x− y)]θ[w + (x− y)]}. (12)

For r → 0 the intermediate in�uen
e fun
tion goes to

the 
ut-o� Gaussian, while for r → ∞ it yields he square

fun
tion. The 
ut-o� length of the in�uen
e fun
tion is

given by

w =

√

(2 + 3r)

r
σ. (13)

FIG. 2: The dispersion relation (15) between the dimension-

less growth exponent ϕ
′

and wavenumber k
′

plotted for the

intermediate in�uen
e fun
tion. Values of η are as in Fig. 1:

50 (solid line), 10 (dashed line), and 2 (dotted line). Patterns

appear for those values of k′
for whi
h ϕ

′

is positive.

We will follow the notation

ν = 1/r + 1/2,

and evaluate the Fourier transform of the in�uen
e fun
-

tion by 
al
ulating the integral [6℄

2w−2νΓ(ν + 1)√
πΓ(ν + 1

2
)

∫ w

0

cos(ks)
[

w2 − s2
]ν− 1

2 ds

=

(

2

kw

)ν

Γ(ν + 1)Jν(kw),

(14)

for

k > 0, w > 0,Re[ν] >
1

2
,

Γ and J being the gamma and the Bessel fun
tions re-

spe
tively. The dimensionless dispersion relation analo-

gous to (9) is, for this general 
ase,

ϕ′ = −
(

2

k′η

)ν

Γ(ν + 1)Jν(k
′η)− k′2. (15)

Here, as in the square 
ase, η = w
√

a/D is the ratio of

the in�uen
e fun
tion width to the di�usion length.

It is straightforward to obtain the two limits, square

and Gaussian, from this dispersion result (15) for the

intermediate in�uen
e fun
tion. In Fig. 2 we plot the

intermediate 
ase for ν = 1 and see the same general

behavior as in the Gaussian and the square 
ounterparts

(see, e.g., Fig. 1). Steady state patterns appear only

around k′ = 0.1.
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Having understood the appearan
e of the patterns, we

now 
ome to the se
ond issue mentioned in the intro-

du
tion: the transition from small-amplitude to large-

amplitude patterns [1℄. This is mu
h more di�
ult to

address analyti
ally. We present here a pro
edure that

we believe has the potential to shed some light on this is-

sue. We substitute the Fourier mode expansion of u(x, t),

u (~x, t) =
∑

An(t) cos(knx), (16)

in (2), expli
itly noting that kn = πn/L, and using the

orthogonality properties of trigonometri
 fun
tions, ob-

tain separate equations for the n = 0 mode,

dA0

dt
= aA0 − bA2

0 − b

∞
∑

n=1

A2
n

2
F(kn), (17)

and for other modes n 6= 0:

dAn

dt
= −Dk2nAn + aAn (18)

−bA0An [1 + F(kn)]

−b

n−1
∑

j=1

AjAn−j

2
F(kj)

−b
∞
∑

j=n+1

AjAj−n

2

[F(kj) + F(kj−n)] .

Equations (17) and (18) are the 
omplete set of equations

for the evolution of the amplitudes of all modes in the

non-lo
al problem given by Eq. (2). The appearan
e of

stable patterns only for those values of kn for whi
h ϕ is

positive as seen in our Figs. 1 and 2, suggests that we

envisage an intera
tion between only two modes, the zero

mode and the one whose growth we examine, say n = m.

In a situation as in the plots shown in whi
h ϕ > 0 only

for a small k− range, the dis
rete nature of the allowed k
values 
ould lead to only a single non-zero mode lying in

the stable range. Then we would have only two 
oupled

nonlinear equations for the mode amplitudes,

dA0

dt
= aA0 − bA2

0 − b
A2

m

2
F(km),

dAm

dt
= −Dk2mAm + aAm − bA0Am [1 + F(km)]

whi
h lead, in the steady state, to

A0 =
a−Dk2m

b [1 + F(km)]
(19)

A2
m = −2

[

bA2
0 − aA0

bF(km)

]

. (20)

Substitution of the zero mode amplitude in Am gives

an expli
it expression for the latter:

A2
m = − 2

F(km)b

[

(a−Dk2m)2

b(1 + F(km))2
− a(a−Dk2m)

b(1 + F(km)

]

.

(21)

Preliminary investigations lead us to believe that the

appearan
e of small and large amplitude patterns for

di�erent parameter regimes might emerge from 
onsid-

erations of (21). The two-mode approa
h is, however,

plagued by the fa
t that variation of the parameters of

the system 
an make the approa
h invalid in one regime

even if it is valid in another. Surely steady state pattern

amplitudes 
an always be obtained by a simultaneous so-

lution of the algebrai
 equations obtained by putting the

left side of (17) and (18) to zero. This is a straightforward

numeri
al task if we 
an make the reasonable assumption

that the number of modes to be 
onsidered has a �nite


ut-o�. Su
h a 
ut-o� is an obvious 
onsequen
e of the

fa
t the Fourier transform of a typi
al in�uen
e fun
tion

disappears for high values of n. These and related studies
will be reported in the future.
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