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Analytic Considerations in the Study of Spatial Patterns Arising from Non-local
Interaction Effects in Population Dynamics
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Simple analytic considerations are applied to recently discovered patterns in a generalized Fisher
equation for population dynamics. The generalization consists of the inclusion of non-local compe-
tition interactions among individuals. We first show how stability arguments yield a condition for
pattern formation involving the ratio of the pattern wavelength and the effective diffusion length
of the individuals. We develop a mode-mode coupling analysis which might be useful in shedding
some light on the observed formation of small-amplitude versus large-amplitude patterns.
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We have shown recently that the Fisher equation used
frequently for investigations of biological or ecological
systems, when generalized to include spatially non-local
competition interactions, leads to interesting patterns in
the steady state density ﬂ, E] In this Note we attempt
to shed some analytic light on the formation of these pat-
terns. The original Fisher equation E, E] is

Ou (Z,t)

S = DV (@) +au (@ t) —be’ (@), (1)

where u (Z,t) is the population density of individuals un-
der investigation (bacteria, rodents, etc.) at position &
and time ¢, and D, a, b are, respectively, the diffusion
coefficient, population growth rate, and competition pa-
rameter. The generalized equation ﬂ, E] features compe-
tition interactions linking u(Z,t) at point & with u(¥,t)
at point ¢ through an influence function f,(Z,¥) of range
g,

Ou (Z,t)

raiie DV?u (Z,t) + au(Z,t) (2)

Cbu(E ) /glu<g,t>fg<f,g>dy,

2 being the domain for the non-local interaction.

In [1], we found that the introduction of the finite-
range competition interactions gives rise to the emer-
gence of patterns in the steady state density u(Z) with
the following features:

e No patterns appear ﬁ] in the two extremes of zero
range (in which the generalization reverts to the
Fisher equation) and full range (in which the pop-
ulation density is linked equally to all points in the
domain).

e The pattern structure depends crucially on features
of the influence function, specifically, its cut-off
length and its width.

e Even when patterns appear, their steady-state am-
plitude can change abruptly from substantial to
negligible as the parameters of the system are var-
ied.

e The critical quantity determining the separation
of large-amplitude patterns from small-amplitude
ones appears to be the ratio of the cut-off length of
the influence function to its width.

These findings raise two questions. Why do the pat-
terns form at all? And, what causes the separation of the
large-amplitude patterns from the small-amplitude ones?
Both questions are interesting. The first is amenable to
understanding via standard stability analysis consider-
ations. The second is more difficult but might be ap-
proachable through a mode-mode coupling analysis, as
we show below.

In order to address the first question, consider a 1-
dimensional version of Eq. @) for simplicity, and substi-
tute in it

u(z,t) = ugp + ecos(kx) exp(pt). (3)

Here ug is the homogeneous steady-state solution a/b.
Considering periodic boundary conditions, and retaining
only first order terms in €, we obtain the following dis-
persion relation between the wavenumber k£ of any mode
of the pattern and the rate ¢ at which it tends to grow:

¢ = —Dk* — aF (k). (4)

In this expression, the influence function (assumed to
be even) is represented by its cosine (Fourier) transform
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F(k) defined as

f(k)z/ﬂcos(kz)fg(z)dz. (5)

Stable steady-state patterns require that

D
A > 27 m, (6)

where A = 27/k is the wavelength associated with the
k—mode of the Fourier expansion of the pattern.

Condition (@) allows us to check for the existence or
absence of inhomogeneity, i.e., patterns, in the steady
state. We see from (@) that the Fourier transform of the
influence function at the wavelength under consideration
should be negative for the patterns to appear and that
its magnitude should be large enough. One way of un-
derstanding this condition is to recast it as requiring that
27 times the ‘effective diffusion length’ should be smaller
than the wavelength for the patterns to occur. By the ef-
fective diffusion constant is meant D divided by —F(\),
which is a factor decided by the influence function, and
by the diffusion length is meant the distance traversed
diffusively in a time interval of the order of the inverse of
the growth rate. If the influence function is smooth such
as in the case of a Gaussian in an infinite domain, the
Fourier transform is positive and no patterns appear. A
cut-off in the influence function produces oscillations in
the Fourier transform which can go negative for certain
wavelengths. The reported finding [1] that the cut-off na-
ture is essential to pattern formation can be understood
naturally in this way.

Let us consider, in turn, three cases of the influence
function which we have used in our earlier investigations
[1]: square, cut-off Gaussian, and intermediate.

First we take

fa—y) = {6l — (@ — lw + @ -]}, ()

2w

where 0 is the Heaviside function. The influence function

is thus a square of cut-off range measured by w from its

center. We will consider the case here when the range w is

smaller than, or equal to, the domain length L. Equation

@) then involves an integral from 0 to w, and gives
sin(kw)

¢ = —a————= — DI”. (8)

In terms of dimensionless parameters

¢ = ¢/a,
k' = kv/D/a,
n = w/a/D,
we have
(K
S0/ _ _Sln( 77) _ k/27 (9)

k'n
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FIG. 1: The dispersion relation (&) between the dimensionless

growth exponent np, and wavenumber &’ plotted for different
values of the ratio 1 of the influence function range to the
diffusion length (see text). Values of n are 50 (solid line), 10
(dashed line), and 2 (dotted line). Patterns appear for those
values of k' for which ¢ is positive.

which we plot in Fig. 1 for three different values (50,
10 and 2) of the ratio n of the width to the diffusion
length (not effective diffusion length). For the third case
there are no patterns: diffusion is strong enough to wash
them out. For the intermediate case, patterns can occur
with wavelengths corresponding to values around k' =
0.4 while for the n = 50 case, they occur around &’ ~ 0.1.

The earlier finding |1, 2] that no patterns appear for
extremes of the range of the influence function is clear
from Eq. (@). As the influence width vanishes, i.e., as 7
goes to zero, both terms in ¢ are negative and there can
be no steady state patterns: we recover the solution for
the local limit, corresponding to Eq. (Il), when w — 0.
Since the boundary conditions are periodic in a domain
of length L, there are only the allowed values k = nw/L
of the wavenumber. Therefore, in the opposite limit of
full range, i.e., w — L, the sine term vanishes, ¢’ = —k'2,
and again there are no patterns.

Precisely the same qualitative behavior occurs for
other non-square influence functions such as the Gaus-
sian with a cut-off, i.e., for

fle—y) = - Werlf(w/a)expl(g’:;y)Q]. (10)

We again consider the case when the cut-off length does
not exceed the domain length. This leads to the Fourier
transform of the influence function involving an integral
from 0 to w. In these as well as other cases considered,
it should be appreciated that the domain length L, if
taken to be smaller than the cut-off length, becomes itself




the cut-off length: factors such as kw appearing in the
Fourier transform become then kL instead.

For this cut-off Gaussian case, the square case disper-
sion relation (B) is replaced by

__a exp[— (ko /2)?]
2erf(w/o)

T .
[erf (E - ﬂ) + erf (E + Zk—a)} — DK2.
o 2 o 2

The dimensionless version (@) is replaced by

= _%ﬁz)ﬁz) {erf(a — ik’ B) + erf(a + ik/ﬁ)}_klz'
(11)

Here « and 25 are the ratios of the cut-off length to the
range and of the range to the diffusion length respec-
tively:

! w/o,
28 = o+/a/D.

What is analogous to 7 in the square case is their product
2a8 = wy/a/D. Plots which are essentially the same as
those in Fig. 1 can be drawn for this Gaussian case.

It is interesting to note that, while there is a single
quantity 7 in the square case, there are two quantities, «
and 3, in the cut-off Gaussian case. This arises from the
fact that, although there are generally two lengths asso-
ciated with any influence function, the cut-off length and
the width, the latter is infinite for the square case. The
width has been defined in Ref. |E|] as being inversely pro-
portional to the second derivative of the influence func-
tion evaluated at its central point, and has been denoted
by the symbol ¥. The cut-off length measures the dis-
tance beyond which the influence function is exactly zero
and has been denoted ﬂ] by &.. For the cut-off Gaussian,
this £, = z. = w. The symbol z. has been used in Ref.
[1] and w in the present Note. The width ¥ obeys ¥ = &
for the Gaussian case and X = oo for the square case.

Both the cut-off Gaussian and the square can be ob-
tained as particular cases of a general function |E|, E]
which we call the intermediate influence function:

/) [, r(x—yf]”r
Vrwl(1/r+1) (24 3r)o?
{0lw— (z—ylOlw+ (x -y}t (12)

flx—y) =

For r — 0 the intermediate influence function goes to
the cut-off Gaussian, while for r — oo it yields he square
function. The cut-off length of the influence function is
given by

(2+3r) o

r

(13)
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FIG. 2: The dispersion relation (X)) between the dimension-

less growth exponent np, and wavenumber k' plotted for the
intermediate influence function. Values of n are as in Fig. 1:
50 (solid line), 10 (dashed line), and 2 (dotted line). Patterns

appear for those values of k' for which go/ is positive.

We will follow the notation
v =1/r+1/2,

and evaluate the Fourier transform of the influence func-
tion by calculating the integral [d]

—2v w 1
w/ COS(kS) [w2 _ 82]1’*5 ds
Val(v+3) Jo

- (%) ’ T(v+1)J, (kw),

for

1
k> 0,w > 0,Re[v] > 3
I" and J being the gamma and the Bessel functions re-
spectively. The dimensionless dispersion relation analo-
gous to (@) is, for this general case,

’ 2 \" ’ 2
o =— (%) L(v+1)J,(k'n) — k= (15)

Here, as in the square case, n = w+/a/D is the ratio of
the influence function width to the diffusion length.

It is straightforward to obtain the two limits, square
and Gaussian, from this dispersion result (&) for the
intermediate influence function. In Fig. 2 we plot the
intermediate case for v = 1 and see the same general
behavior as in the Gaussian and the square counterparts
(see, e.g., Fig. 1). Steady state patterns appear only
around k' = 0.1.



Having understood the appearance of the patterns, we
now come to the second issue mentioned in the intro-
duction: the transition from small-amplitude to large-
amplitude patterns [1]. This is much more difficult to
address analytically. We present here a procedure that
we believe has the potential to shed some light on this is-
sue. We substitute the Fourier mode expansion of u(z, ),

= An(t)

in @), explicitly noting that k, = wn/L, and using the
orthogonality properties of trigonometric functions, ob-
tain separate equations for the n = 0 mode,

cos(knx), (16)

a4y

A2
— 2 E :
dt = aAo bA —b s n ) , (]. 7)

and for other modes n # 0:

dA,
dt

= —DKk2A, +aA, (18)
—bAoA [1 + F(kn))

_bz

—b Z Ajf‘;jfn

j=n+1

[(F(kj) + F(kj—n)]-

nJ]_-)

Equations (@) and (&) are the complete set of equations
for the evolution of the amplitudes of all modes in the
non-local problem given by Eq. (). The appearance of
stable patterns only for those values of k,, for which ¢ is
positive as seen in our Figs. 1 and 2, suggests that we
envisage an interaction between only two modes, the zero
mode and the one whose growth we examine, say n = m.
In a situation as in the plots shown in which ¢ > 0 only
for a small k— range, the discrete nature of the allowed k
values could lead to only a single non-zero mode lying in
the stable range. Then we would have only two coupled
nonlinear equations for the mode amplitudes,

dAg A7,

= aAo —bAZ —b 5 F(km),

dAm 2

—t = Dk Aw + ady = bAoA [+ F (k)

which lead, in the steady state, to

a— DEZ,
) "
2 bAZ — aA
o= 2 ] @

Substitution of the zero mode amplitude in A,, gives
an explicit expression for the latter:

22 2 (a — DK2)?
™ F k)b | b1+ F(kp))?

a(a — DK2)
b(1+ F(km)
(21)
Preliminary investigations lead us to believe that the
appearance of small and large amplitude patterns for
different parameter regimes might emerge from consid-
erations of ([I). The two-mode approach is, however,
plagued by the fact that variation of the parameters of
the system can make the approach invalid in one regime
even if it is valid in another. Surely steady state pattern
amplitudes can always be obtained by a simultaneous so-
lution of the algebraic equations obtained by putting the
left side of () and ([[X) to zero. This is a straightforward
numerical task if we can make the reasonable assumption
that the number of modes to be considered has a finite
cut-off. Such a cut-off is an obvious consequence of the
fact the Fourier transform of a typical influence function
disappears for high values of n. These and related studies
will be reported in the future.
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