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Chaos-induced breaking of the Franck-Condon approximation
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We investigate the vibrational structure of electronic spectra for the transition from the non-
degenerate A state to E states in Eg ⊗ eg Jahn-Teller systems with the trigonal field included. In
connection with the underlying chaotic behavior for vibronic energy levels in this model reported
by the present authors in Phys.Rev.E68(2003)046201, we extend the analysis by Longuet-Higgins
et al. to the classically chaotic system. In particular, the triple-humped structure is manifest with
increasing the anharmonicity. Such structure is completely inconsistent with the shape obtained
from Franck-Condon(FC) approximation, and is caused by the chaos-induced beaking of the FC
principle.

PACS numbers: 05.45.Mt,71.70.Ej,82.90.+j,03.65.-w,31.30.Gs

We investigate the vibronic problem in degenerate
Eg orbitals of d-levels in transition metal ions coupled
with 2-d vibrational modes eg expressed by coordinates
Q1(= Qegu) and Q2(= Qegv) by taking into account the
trigonal distortion. This Eg ⊗ eg model is the typical
system[1] showing dynamic Jahn-Teller effects(DJTE),
which has been discussed in the field of magnetism for
transition-metal ions. In fact, the numerical work was
launched [2, 3] by Longuet-Higgins et al[LH] in 1958.
Since then, the double-humped vibrational structure of
electronically allowed transitions from the electronically
non-degenerate ground state A to a Jahn-Teller degen-
erate state Eg ⊗ eg has been the fundamental subject in
optical properties of transition-metal ionic compounds.
There the ground state is taken as the level of zero-
phonon in A state at zero temperature.

Recently, the present authors[4] found the relationship
between the chaotic behavior of this system and the mag-
netic g-factors of electronic orbital angular momentum as
well as features of level statistics for vibronic states. The
statistical properties of those levels and the energy depen-
dence of g-factor shed light on the quantum signature of
“Chaos” in this Jahn-Teller system.

In the present paper, we first report the novel vibra-
tional structure in the spectra of the transition from the
non-degenerateA state to the excited states in the Eg⊗eg
model. Secondly, the comparative study between vibra-
tional structure in quantum mechanical treatment and
the semiclassical one in Condon approximation for the
adiabatic potential is made in order to see the role of
“Quantum Chaos”[5, 6].
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The Hamiltonian matrix H is expressed as

H = −~
2

2

(

∂2

∂Q2
1

+
∂2

∂Q2
2

)

I+
1

2
ω2(Q2

1 +Q2
2)I

+ k[−Q1σ3 +Q2σ1] + bQ1(Q
2
1 − 3Q2

2)I, (1)

where I is the unit matrix and σi with i = 1, 2, 3 are
Pauli matrices. This Hamiltonian operates on ϕu and ϕv

bases in Eg state, which are expressed as |3z2 − r2〉 and
|x2 − y2〉, respectively. In the third term called “linear
Jahn-Teller matrix”, k is the coupling between electronic
and vibrational states. The strength of the anharmonic
trigonal field is expressed by b of the forth term.
Without the trigonal field, the second and the lin-

ear Jahn-Teller matrix give the adiabatic potential en-
ergy surfaces(APES) for axial symmetry: APES is ex-

pressed as (1/2)ω2ρ2 ± kρ, where ρ =
√

Q2
1 +Q2

2. It
should be noted that APES is independent on azimuthal
angle θ = tan−1(Q2/Q1). Therefore, APES for the
lower branch has the continuous minima whose value is
k2/ω2. Such minima draw the circle located at the bot-
tom of the so-called “Mexican Hat” potential. In the
vibronic problem, we take into account the first term
of (1) in addition to the other static terms. Namely,
we treat the vibrational modes eg as the 2-dimensional
harmonic oscillator for quantum mechanics in order to
investigate the dynamical effects: Wavefunctions are de-
scribed as φnm = Fn|m|(ρ)e

imθ, where n = 1, 2, . . . and
m = n − 1, n − 3, . . . , n + 1. Here, Fn|m|(ρ) is the
confluent hypergeometric function[7, 8]. According to
the conventional procedure for the degenerate electronic
state Eg, we employ the expressions ϕ± of eigenfunc-
tions for 2-dimensional angular momentum, which are
transformed from ϕu and ϕv: The transformation is
ϕ± = (1/

√
2)(ϕu±iϕv). Thus, the linear Jahn-Teller ma-

trix in (1) is transformed to
√
2kρeiθiσ2. Using φnm(ρ, θ)

and ϕ±, we can express bases of present vibronic wave-
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functions as

Φ±
nm = ϕ± · φnm(ρ, θ). (2)

The qunatum mechanical expression of the present Eg ⊗
eg model is obtained from the following nonvanishing el-
ements:

〈φn,m|ρeiθ|φn′,m′〉

= { ~

2ω
[n± (m− 1)]}1/2δn′,n∓1δm′,m−1

〈φn,m|ρe−iθ|φn′,m′〉

= { ~

2ω
[n± (m+ 1)]}1/2δn′,n±1δm′,m+1. (3)

If we assign the quantum numbers j = ±1 to Φ±
n,m,

the Jahn-Teller interaction without the anharmonic term
connects the states with the same quantum number,
ℓ = m − (1/2)j (j = ±1). The present matrix decom-
poses into matrices labeled by quantum number ℓ. For
any given value of ℓ, m can take two values, m = ℓ− 1/2
and ℓ + 1/2 corresponding to j = −1 and +1, respec-
tively. Thus, the p-th eigenfunction for a given ℓ is ex-
pressed as Ψp,ℓ. As a results, the total angular momen-
tum ℓ whose values are ±1/2,±3/2,±5/2, . . . becomes
the good quantum-number in the case of b = 0.

FIG. 1: APES with the trigonal distortion expressed as
bQ1(Q

2

1 − 3Q2

2). Three minima are induced. The full point
means the conical intersection.

In the absence of the trigonal field in (1), LH obtained
the vibrational structure appearing in allowed electronic
spectra from the non-degenerates electronic state A to
Eg ⊗ eg system for various values of k, finding the struc-
ture with two intensity maxima in the energy region of
−10~ω ≤ ε ≤ 15~ω. This double-humped structure can
be explained by the transitions to a pair of branches of
APES in the Eg ⊗ eg system.

In this paper, we consider the third term (b 6= 0) in
(1), which expresses the anharmonicity keeping invariant
to any operation in the cubic group. In fact, it gives the
trigonal ligand field ρ3 cos 3θ = Q1(Q

2
1−3Q2

2) to the adia-
batic potential as shown in Fig.1: The continuous circular
symmetry is destroyed and three minima appear in the
lower branch. We shall calculate vibrational structures
in the spectra in this case. O’Brien investigated[9] the
system (1) with the trigonal field in the low-energy ap-
proximation that ρ is fixed to be ρ0 at the bottom of the
Mexican-hat, but gave no discussion on the spectra[9].
Here we numerically calculate eigenvalues and eigenvec-
tors without having recourse to such an approximation
in order to obtain the spectra exactly. In this case, the
angular momentum ℓ is not a good quantum number: By
the trigonal field, the levels for ℓ = 1/2± 3ν (where ν =
1, 2, 3, . . .) are mixed into the levels of ℓ = 1/2. We get
in this way a set of vibronic doublets arising from com-
binations with ℓ = ±1/2,∓5/2,±7/2,∓11/2,±13/2, . . .
(where either the upper or lower sign is to be taken
throughout). Namely, we treat the doubly degenerate
E representations of the symmetry group C3v. On the
other hand, solutions with ℓ = ±3/2,±9/2,±15/2, . . .
correspond to identical representation A and B of group
C3v: A is the mode with the symmetric composition for
ℓ > 0 and ℓ < 0, while B with anti-symmetric one.

One of the observable phenomena where the trigonal
field plays an notable role is the spectral line shape of a
parity-allowed transition in which the final state is Eg⊗eg
while the initial state is an orbital singlet A. The quan-
tum mechanical calculation of the spectral line-shape is
possible if the eigenvectors of the matrix with elements
(3) are known. In short, the spectra are made of the prob-
ability density to find the first basis Φ− ≡ u−(r)φ1,0(ρ, θ)
in the final state of the transition.

The calculated vibrational structure in the transi-
tion spectra from A to the excited levels are shown in
Fig.2(a),(b),(c) and (d), where the strength of the trig-
onal field b is 0,1.41,2.5 and 5, respectively. Here, the
coupling parameter k in (1) is fixed to be 4.47 (i.e.,
k2 = 20). It is certain that the double-humped struc-
ture for b = 0(see Fig.2(a)), composed of transitions only
to levels in ℓ = 1/2, agrees with that in LH[2]. As b in-
creases, however, the double-humped structure changes
into the triple-humped one, because of the mixing of lev-
els for ℓ = ∓5/2,±7/2,∓11/2, . . . into the excited E
state. In other words, an extra new hump appears at
the conical interaction, i.e., around the dip of double-
humped structures. The central branch in the spectrum
is the common result proper to the system with the trig-
onal field, as shown in Fig.2(b),(c) and (d). This new
hump can also be interpreted as “Quantum Chaos” em-
anating in the region b . k[4], as explained below.

In order to discuss this triple-humped structure in
detail, we calculate semiclassical spectra in Franck-
Condon(FC) approximation, which is schematically
shown in Fig.3. The physical implication for this approx-
imation is intuitively clear: It shows that the electronic
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FIG. 2: The calculated vibrational structure in transition spectra from A to Eg ⊗ eg system with the trigonal field are shown in
(a)(b)(c)(d), where the strength of the field b is 0,1.41,2.5 and 5, respectively. The coupling k between electronic and vibrational
states is fixed to be 4.47. The envelop functions for line-spectra are drawn by solid lines.

transition takes place so rapidly that the nuclear posi-
tions do not change during the transition. In fact, the two
intensity maxima of the transition spectra without anhar-
monicity were revealed by Y.Toyozawa and M.Inoue[10].
They showed the absorption line-shape function for the
transition spectrum by using the semiclassical FC ap-
proximation. Here, we shall show the consequence of the
FC approximation applied explicity to the system with
cases of b 6= 0. Namely, APES consists of two branch
surfaces as shown in Fig.1, corresponding to

ε±(ρ, θ) = ε0 ∓ kρ+ bρ3 cos 3θ (4)

where ε0 is the excitation energy from the ground state
A to the excited one E at ρ = 0. Within the semiclassical
FC approximation, the normalized line-shape function of
the optical absorption is given by

F (~ω) =
1

2

∑

±

∫ ∫

dθ sin θdρρ

(

1

πκT

)

× exp

(

− ρ2

κT

)

δ{~ω − ε±(ρ, θ)}, (5)

where κ, T and ~ω are the Boltzmann constant, the ab-
solute temperature and the photon energy, respectively.

Namely κT give the width to line spectra. In the present
calculation, we use κT = 0.72~ω. Without anharmonic-
ity the absorption shape function is integrable[10].(b =
0): This gives a line-shape which is completely split into
upper and lower parts, as shown in Fig.3. In Fig.4, we
show the line shape in FC approximation for b = 2.5,
which is completely inconsistant with the triple-humped
feature in Fig.2(c).

In the presence of the trigonal(anharmonic) potential,
the nonadiabatic motion of electron wave packet can
show chaotic features with the outstanding occupation
probability at the conical intersection due to its subtle
distortions. This means the increase of density of state at
the energy where the conical intersection locates. There-
fore, the transition from A state has extra final states at
the level of the conical intersection, i.e., triple-humped
structure as a whole. Here a simple application of the
FC principle is not justified(see the pertinacious double-
humped structure in Fig.4).

As a result of comparative discussion between vibra-
tional structure and the semiclassical spectra in FC ap-
proximation, we would like to point out the following
fact: The new peak comes from the non-adiabatic dy-
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FIG. 3: APES of the electronic states A and E. The spec-
tral line-shape function for the transition from A to E states
obtained by the semiclassical Franck-Condon approximation
is shown by the solid curve for the typical case of b = 0,
which has been reported in [10]. This function becomes zero
at ε = 0 from mathematical nature of APES at ρ = 0. The
corresponding vibronic structures are also drawn by dotted
lines.

namic mixing to the pair of lower and upper APES for
electronic Eg state, which is a typical quantum manifes-
tation of the underlying chaos.
In conclusion, we find a new hump induced by the trig-

onal field in the transition spectrum, which is manifesting
of quantum chaos in vibrations coupled with electronic
states in the case of b = 0. In the strong coupling limit
(k ≫ 1), the void between a pair of APES is obvious.
This fact led to the double-humped structure of LH[2]

in the nonadiabatic spectra of the transition from A to
degenerate Eg ⊗ eg states. This spectra can be nicely
reproduced by application of the FC principle. However,
the anharmonic trigonal term, which yields the new den-
sity of states near the energy of the conical intersection,
breaks the FC principle.
In the case of the oscillation of magnetic g-factor[4] we

assumed the small k value. The quenching of the regular
oscillation was also caused by the underlying classical
chaos due to anharmonic term. On the contrary, in the
present work, we require the k value to be sufficiently
large to ensure the double-humped transition spectra due
to the obvious splitting of two APES, and chaos in the
nonadiabatic electron wave packet plays an essential role.
The relationship between vibrational structures of

spectra and chaotic behavior in the present quantum sys-

FIG. 4: The shape of spectra for k = 4.47 and b = 2.5
obtained by Franck-Condon approximation discussed in the
text. Temperature is determined to be 0.72~ω/κ. The shape
is completely inconsistent with feature in Fig.2(c).

tem is quite attractive, though there is very much left to
study of analyzing this characteristic structure in con-
nection with experimental work for transition-metal ions
in compounds.
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