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High Speed Chaos in Optical Feedback System
with Flexible Timescales

J. N. Blakely, Lucas llling and Daniel J. Gauthier

Abstract— We describe a new opto-electronic device with time- we tune the device to a moderate speed so that it generates
delayed feedback that uses a Mach-Zehnder interferometer & dynamics with frequencies of hundreds of MHz. Another
passive nonlinearity and a semiconductor laser as a currerto- advantage of the device is that the nonlinearity (interfester)

optical-frequency converter. Bandlimited feedback allove tuning . . . .
of the characteristic time scales of both the periodic and fgh is easily accessible and tunable so that it can be reproduaed

dimensional chaotic oscillations that can be generated wit the Contm”_ed accurately, WithOU_t involving the internal di]ni(.?S
device. Our implementation of the device produces oscillains of semiconductor lasers as in other devices. Furthermbi, t

in the frequency range of tens to hundreds of MHz. We develop system is constructed with relatively inexpensive comptsie
a model and use it to explore the experimentally observed maying it an economical choice as a chaotic optical source in
Andrqnov-Hopf bifurcation pf the steady state and to estimae fut licati
the dimension of the chaotic attractor. uture _aPp 'C‘?‘ 'O_ns' . .
) ) A distinguishing feature of our device is that it uses an
Index Terms—Feedback lasers, Optoelectronic devices, Elec- \c_cqpled amplifier in the feedback loop so that it has
trooptic devices, Delay effects, Bifurcation, Chaos, Noimear o . ..
systems, Nonlinear differential equations bandpass characteristics. It can thus operate, in pracipl
the radio frequency or microwave range using readily alabgla
components. This contrasts previous research that used DC-
coupled low-pass filter components [15]-[17]. Time-delgy d
IME delay systems are widely used as generators némical systems with bandpass filtering has only recentiynbe
chaos in applications such as chaos communication [lifvestigated and has the advantage that the bandwidth of the
[7] and chaos control [8]-[12]. Many of the experimentshaotic signal can be tailored to fit the desired commurocati
conducted so far employed lasers with delayed feedback [Hand [18], [19].
[6], [8]-[12], owing to the simplicity of implementation dn  The goal of this paper is to present details about the
feasibility of extension to high-speed operation. Delaye@xperimental implementation of our new device and to develo
feedback laser systems also have the potential to genewt@odel that allows us to investigate the nonlinear dynamics
very high-dimensional and complex chaotic dynamics [13}f the system. A thorough characterization of the system and
and strategies for controlling fast chaos exist for thegetya good model are prerequisites for investigating appbcati
of systems [14]. such as control of fast chaos, that will be reported elseavher
In this paper we describe a new fast optical time-delgg4]. We describe the experiment in S&d. Il and develop a
feedback device with flexible dynamical timescales and comieterministic model for the device in Sdcl Ill. Subsequentl
plexity. Adjusting the pass-band characteristics of tlegllack we investigate in SeE1V the Andronov-Hopf bifurcation loét
loop allows tuning of the characteristic time scale while thsteady state. Finally, we will present evidence that oup-opt
time-delay and the feedback strength control the complexilectronic feedback system generates high-dimensiorzalsch
of the dynamics. The device belongs to the class of optidal Sec[V.
systems with passive nonlinearity in the feedback loop (see
Fig. D). In our device a Mach-Zehnder interferometer is the
source of nonlinearity while the semiconductor laser that
provides the optical power acts as a linear current-toeapti  In this section we describe details of the experimental
frequency converter. The nonlinearity of the interferomnetimplementation of the active laser interferometer with AC-
coupled with the delay in the feedback loop combine tooupled feedback. The device consists of the laser, thataact
produce a range of steady state, periodic, and chaotic mehawcurrent controlled source, the interferometer, that dtrist
The flexible time scale allows us to operate the device tite passive nonlinearity in the system, and the feedbagk loo
moderate speeds to perform detailed system characterizatvith bandpass characteristics. A schematic of the experiahe
while it can be also operated at high-speed for applicatikas setup is shown in Fidd1 where the labels A-L correspond to
chaos communication and control of fast chaos. In this paggrmponents that we refer to and describe below.
This work was supported by the US Army Research Office (grant # The light source is an AlGalnP. diode Ia}ser (A - Hitachi
DAAD19-99-1-0199). HL6501MG, wavelength 0.6mm) with a multi-quantum well
J. N. Blakely is with the US Army Research, Development, andifeering ~ Structure. The diode is housed in a commercial mount (B -
Command, AMSRD-AMR-WS-ST, Redstone Arsenal, Alabama 8589 Thorlabs TCLDM9) equipped with a bias-T for adding an RF
Lucas llling and Daniel J. Gauthier are with the DepartmdriRlyysics and L .
the Center for Nonlinear and Complex Systems, Duke UnigerBiO. Box component to the Injection current. Thermoelectric caolar
90305, Durham, NC 27708 (e-mail:illing@phy.duke.edu) the mount are connected to a proportional-integral-déviea
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Il. EXPERIMENTAL SETUP
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feedback controller (Thorlabs TEC2000) to provitlemK II_<_||_<}

temperature stability thereby minimizing frequency and/go
drift. The output light of the laser is collimated by a lens{D
Thorlabs C230TM-B, f=4.5mm) producing an elliptical beam
(2 mm x 5 mm) with a maximum output power of 35 mW.

The passive nonlinearity in the experiment consists of a . Soure
Mach-Zehnder interferometer with unequal path length¢h(pa 5 l—@l
difference 45 cm) into which the laser beam is directed. A [ac €=

bandwidth, 15 V reverse bias) measures the intensity of ligh

emitted from one output port of the interferometer. The size L - ‘ Passive Nonlinearity

silicon photodetector (E - Hammamatsu S4751, DC-750 MHz —_” ”L“} D
| A

of the photodiode is much smaller than the width of the
laser beam so only a fraction of the interferometer’s ouiputFig. 1. Schematic of experimental setup. The device cansista voltage
detected. The small detector size ensres that orly ongefffeNioles s, pasie nonlnesny a1 & eecioh Wt bacpess
appears within the beam cross section thus compensating d@fiained in the text.
wavefront aberrations and slight laser beam misalignmedt a
improving the fringe visibility. A neutral density filter ixed
to the front of the laser mount limiting the optical poweextend, the laser power. One mechanism relating the input
reaching the photodiode to prevent saturation. current and frequency shifts is the change of carrier dgisit
The feedback-loop photodiode produces a current propgte laser device as result of the modulation. A changedararri
tional to the optical power falling on its surface. The cutre density shifts the refractive index of the material that esak
flows through a50Q2 resistor. The voltage across that resistaip the laser cavity and thereby changes the frequency of the
is transmitted down a coaxial cable (F - RU 58, total lengtlasing mode. A second mechanism that leads to changes in the
~ 327 cm). The signal emanating from the cable passestical frequency is a thermal effect that enhances frecuen
through a low-noise, fixed-gain, AC-coupled amplifier (G modulations below~ 5 MHz by as much as a few orders of
MiniCircuits ZFL-1000LN, bandwidth 0.1-1000 MHz), a DC-magnitude [20], [21]
blocking chip capacitor (H - 220 pF), an AC-coupled amplifier |f the pumping current is modulated at a rate significantly
(K - Mini-Circuits ZFL-1000GH, bandwidth 10-1200 MHz), slower than the GHz internal time scale typical for semi-
and a second DC-blocking chip capacitor (L - 470 pF). Theonductor lasers, then the output power and frequency will
capacitors reduce the loop gain at frequencies below adiabatically follow the input so that they depend in a linea
MHz where a thermal effect enhances the laser’s sensitivigshion on the current when the laser is operated far above
to frequency modulation [20], [21]. The resulting voltagehreshold.
is applied to the bias-T (B) in the laser mount. The bias- To determine the main internal time scale of the laser
T converts the signal into a current and adds it to a D@ynamics in the absence of time-delay feedback we determine
injection current from a commercial laser driver (C - Thbda jts relaxation oscillation frequencs)z, by measuring the peak
LDC500). in the power spectrum of the intensity noise using a high-
The entire system is fixed on an optical table using shapeed spectrum analyzer (Hewlett-Packard 8566B, 22 GHz
(2 inch) mounts for mechanical stability. This stability issandwidth). We find, as expected [22], ti§&} oc i—i.;, where
extremely important as variation in the path length on theis the DC-injection current and,, is the laser threshold
order of the wavelength of the laser light (0.661) produces injection current. The relaxation oscillation frequenaytize
significant power variations at the output of the interfeeden. nominal operating current of 75 mA used in the experiment
Furthermore, the entire apparatus is covered by an insglatis O, = 2.7 GHz, andi;;, = 40.7 mA.
box to prevent thermal expansion or contraction of the mirro Based on our measurements, we see that the laser will
mounts due to air currents. adiabatically follow the injection current for frequensi@uch
less than~ 2.5 GHz (bounded by2z) and much greater than
I1l. M ATHEMATIC MODEL OF THE OPTO-ELECTRONIC ~ 5 MHz (bounded by the enhanced frequency tuning due
DEVICE to the thermal effect). Our feedback loop is bandpass lanite
To obtain a model of the device, we consider in turfP Within this range and hence the laser can be modeled as

the relevant physics of the laser diode, the Mach-Zehndvoltage controlled source, a linear device which converts
into corresponding oscillations of the optical frequengy)

and powerP(t).

A. Source: Sermiconductor Laser The model for the laser we propose is simply

The injection current applied to the laser diode is a combi-
nation of the DC-bias current and the high-frequency cusren P(t) = rU(t)+ P, (1)
_due to the time-delayed output of f[he feed_back loop. Modulat wt) = nU@E) +wy= n (P(t) — Py)) +wo, (2)
ing semiconductor lasers by varying the input current tesul k
primarily in changes of the laser frequency and, to a lessehere P, (wy) denote the emission power (the optical fre-



guency) of the steady-stat€(t) is the voltage applied to the
bias-T, andk andn are, respectively, the voltage-to-power and
voltage-to-frequency conversion strength.

We note that it is possible to obtain Eq8l (1) abd (2) from
a direct analysis of the standard rate equations describing
semiconductor laser dynamics [22] in the limit when the
amplitude of the injection current modulation is small in
comparison to the DC-injection current, which is approjgria
for our device. For higher-frequency operation of the deyic
aboveQ) g, the full semiconductor laser rater equations would
have to be used in place of Eq§l (1) afd (2). Such high- 0 ‘ | ‘
frequency modulation can lead to nonlinear phenomena such 0 100 200

Frequency (MHz)

as period-doubling cascades, period tripling, and cha8% [2

when the modulation amplitude is large. We do not consid®ig. 2. Frequency response of the open loop electronic fedfor a gain
further such behavior value v = 14.6 mV/mW. Circles denote experimental results and the line
’ shows the best fit of the theoretical model.

n

[P®-Pyl / &IV, | (4W/mV)

B. Passive Nonlinearity: Mach-Zehnder Interferometer

The passive nonlinearity in our system is an unequal-p . . :
Mach-Zehnder interferometer that converts frequencyava$UCtE?t'ons is less than 10% &%, corresponding te: ~ 1.9
tions of the light emitted by the laser into intensity vanast at mwW=".
the photodetector. The photocurrent produced by the detect
is converted into a voltag¥..(t) by a resistance = 502 C. Electronic Feedback Loop

and is subsequently amplified. The difference in propagatio he electronic feedback loop connecting the detector and
time between the two paths of the interferometedis= 1.5 giode laser introduces a time-delay. The total roundtripye
ns, much smaller than the time scale of variation of the lasghe + is somewhat larger than this time-delay, because

injection current. Therefore, we can assume that the "gﬂcludes, for instance, the free-space propagation time of
waves that reach the detector through the two differentpaipe |aser light. However, for the purpose of modeling, we

have the same optical frequency. The voltage is thus given 5y assume all processes to be instantaneous and assign the
by total roundtrip delay-time to the propagation of the signal

Vaet(t) = P(t) {1 +b cos[w(t) A}, ®3) through the feedback loop. The frequency-limiting effeats
wherew(t) is the optical frequency. The parametedescribes the different components in the feedback loop are modeled by
the overall feedback strength which is determined by ttfeCombination of single-pole low- and high-pass filters. The
fraction of the power in the laser beam that actually fal¢edback loop is described by

ﬁt the sensitivity to a value such that the amplitude ofenois

onto the detector, the sensitivity of the photodiode, aral th V) = —V) 4V (t — 6
electronic amplification of the signal. The paraméier [0, 1] g . ®) U((t))+ fiet( 7 ©
is the fringe visibility and is defined as uit) = S +V (), (7)
h
Pmam - szn

=P 1P (4) wherer; (13,) is the low-pass (high-pass) filter time constant,
max men Vet is the voltage output of the photodiode, abdand U

b =1 corresponds to the ideal situation where the light wavgge the voltages at the output of the low- and high-passdjlter

in the interferometer are perfect plane waves and where 'i*é%pectively. The voltag#/(t) is used to generate the time-

beamsplitters divide them exactly in half. In our experitmegjependent current that is injected into the laser diode.-Low

we findb ~ 0.8. pass filtering in the experiment is provided by the limited
The optical frequency is related to the observed outpghndwidth of the photodiode and the electrical connections

power by Eg.[R), which allows us to rewrite EQ] (3) as  to the laser. High-pass filtering is due to the two capacitors

Viee () =~ P() {1+ si Pt — P NG and the bias-T (see Fif 1).
ae(t) =7 PO {1 +b sinfa (P() o) +¢l} ®) Using Eg. 1) we can rewrite Eq[1(7) in terms of the laser

Here, the parameter = nA;/x and the constant offset = output powerP(t)

woA¢ —7/2 are tunable. By varying the DC component of the P(t)— P,

injection current, we adjust to ~ 0. The constant parameter P(t) = e KV (t). (8)
« determines the sensitivity of the interferometer and can be Th

tuned by varying the path imbalancg. We determine the parametets 7;,, < by measuring the open-

The useful range of path-length-differences is limitedHy t loop transfer characteristic of the electronic feedbadploA
phase noise of the laser light, which is a consequence of #ignal generator is connected in place of the photodetector
guantum process of spontaneous emission. Increasingrhe s® that a sinusoidal voltag®;, of known amplitude and
sitivity of the interferometer by increasing the path diffiece frequency is injected into the opened feedback loop and-even
proportionally increases the effect of phase noise. Weekhms tually into the laser. The optical power is measured diyeat!



TABLE |
DEFINITION OF SYMBOLS AND MEASURED VALUES OF THE MODEL

~

D
LB —

PARAMETERS _
gr\ 51
a— 32 |
Symbol Value Description O€g
T 0.66+ 0.05 ns Low-pass filter time constant 84T
Th 22+ 0.5ns High-pass filter time constant “E’g r
T 19.1+ 0.1 ns Feedback delay time SX= 31
K (4.8+0.1) 4N Modulation sensitivity %g r
@ 1.894 0.05 mW-! | Interferometer sensitivity = 2r
b 0.8+ 0.02 Fringe visibility [
Py 26 =+ 0.5 mW Operating point optical powe 1=
0% 0 - 18 mvV/Imw Feedback gain L& i ‘ ‘ ‘ ‘ ‘

5 6 7
Feedback Gain y (mV/mWw)

the laser output. Figu 2 shows the result of the experimé:ﬁﬁ- 3. The os_cill_ation amplitude meas_ured at Fhe secongiferometer
and the best fit of the model (EQJ(8) and EG. (6) with.. output versus gain is shown for the experiment (triangles) model (dots).
replaced by¢V;,, where¢ is the electronic amplification) with
parameter values given in Tdb. I. It is seen that the thexaleti
curve fits to within a few percent of the experimental da
everywhere except in the region between 80 and 140 M
The dip in the response is caused by either the bias-T or
electronics in the commercial laser mount for which we
not have a detailed circuit diagram. .
Aside from this discrepancy, the simple model of th
feedback based on single-pole low- and high-pass filters i I ) o . X
the experiment rather well. We choose to ignore the remginiﬂsc'”""t'on period of finite size that is approximately ctamg

discrepancy because the model successfully reproducets n?ésthe, blfurgauon parameter '_5 var!ed. ) )
features of the observed dynamics. To investigate the bifurcations in our device, we varied

the feedback gainy, which serves as our main bifurcation
arameter. A second bifurcation parameter of interestés th
D. Full Model and Parameter Values (FJ)IeIay timer. Experimentally we cgn changeby adding or
We obtain a full description of our opto-electronic devicgubtracting fixed lengths of coaxial cable to the feedbaok.lo
by combining Eq.[(6) and EqC](8) with the expression relating For gain values below a critical value< ~c, the system is
the detector voltage to the laser power, ). (5). All par@nset iy 5 steady state with fluctuations of the observed laseruutp
in this model can be measured and are displayed iflTab.lI. Tﬁtﬁ/ver due only to the inherent phase noise. When the gain is
only parameter that was not measured directly is the timgereased through the critical valug: = 5.1 + 0.5 mV/mW
delayr. Direct measurement of this parameter is complicatggy - ~ 19.1 ns, the steady state is replaced by periodic
by contributions of the several electronic componentsheaggciliations. The dominant frequency of the oscillation is
o_f which introdu_ces some unknown phase Igg _in additiqn ¥ 5 4+ 1 MHz, which is roughly equal td /7. This frequency
simple propagation delay. So we use the periodic dynamics@fes not change substantially as the gain is increasedefurth
the device to determine more precisely. In the next sectionThe gscillation amplitude, on the other hand, grows smgothl
we present evidence that the steady state becomes unstgble, zero with increasing gain, as shown in FIJ. 3. The
through an Andronov-Hopf bifurcation. The frequency of thgpontaneous emission noise of the semiconductor lases fead
resulting periodic oscillation depends on the time del@nd  an amplification of the amplitude variations (indicated by t
we use the experimentally measured frequency close to {Bgyer error bars) close to the bifurcation [25]. It is tHere
bifurcation point to improve the estimate ofthat we obtain ot possible to pinpoint the bifurcation point exactly ahdre
by measuring the propagation delay of the feedback loop. js no clear,/y —7¢ scaling of the amplitude, as expected
for an Andronov-Hopf bifurcation. Nevertheless, the snhoot
IV. FIRST INSTABILITY: ANDRONOV-HOPFBIFURCATION  gmplitude growth and the finite period of the limit cycle at
Our opto-electronic time-delay feedback device can displa 2 v¢ indicate a supercritical Andronov-Hopf bifurcation at
very complex dynamics. As parameters of the device ame. In the model, which is noise-free, we find an Andronov-
changed a series of different bifurcations results in asitam Hopf bifurcation atyc = 5.34 mV/mW.
from the initial steady state behavior to chaotic dynamics. Next, we experimentally determined the frequency of the
In this section we discuss the first such transition in whidimit cycle close to the bifurcation point for different dgl
the steady state becomes unstable and self-sustainedliperitmes~. In all cases the steady state becomes unstable through
oscillations arise. an Andronov-Hopf bifurcation. However, we find that the
We know of no exhaustive list of all possible ways that limitelation f ~ 1/7 between the frequency and the delay time
cycles (periodic oscillations) can arise in time-delaytegss. 7 holds only for a limited range of. Figure[3 summarizes
However, for the well known bifurcations of cycles (thosatth the relation betweeri andr that we obtain from experimental

Iready exist in two-dimensional systems) this list exéatsl
examining the scaling of the period and amplitude near the
gurcation one can distinguish between the different mifu
d%ation scenarios [24]. For instance, a supercritical Andve
Hopf bifurcation is characterized by an amplitude of thdlgta
mit cycle that scales as the square-root of the distance of
bifurcation parameter from the bifurcation point and an
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i H i e 3 Fig. 5. Experimentally measured time series (panels aao@)power spectra
(triangles) and numerically calculated (circles) timderThe (panels b,d,f) obtained from the second output port of therfierometer are

data suggest that the device transitions from a steady tstat@hown.y = 9.4 mv/mw for a) and b);y = 13.2 mV/mW for c) and d), and
limit cycle oscillations with frequencies roughly/r, where ~ = 17.6 mvimW for e) and f).
n =n(r) can bel, 2,3, .. ..

The origin of the fundamental frequenay £ 1) can be un-
derstood intuitively by considering whether a wave cirting  square off, as shown in Figl 5a. The square shape of the
in the feedback loop will reinforce itself. If the feedback i waveform results in prominent odd harmonics in the spectrum
positive, a wave will reinforce itself if an integer number o(Fig.[b). As the gain increases, a small, broad peak appears
wavelengths equals the propagation length in the loop.df tAt about half the fundamental frequency as shown in[Hig. 5d.
feedback gain is negative, the propagation length must bl 3¢ peak at roughly half the fundamental frequency is three
half integer number of wavelengths. In the experiment, we c&rders of magnitude below the fundamental. The weakness
achieve negative gain by tuning the offgein Eq. () such that and broadness of this peak coupled with the presence of phase
¢ ~ . For this setup we observe, as expectgdy 1/(27) noise may explain why no clearly period doubled behavior is
for 7 ~ 19.1 ns (data not shown). apparent in the time domain (FIg. 5¢). As the gain is incrdase

The appearance of modes with> 1 for |arger de|ay times fUrther, the broad baCkgrOUnd rises and the tall peaks at the
7 is due to the fact that the gain in the feedback loop is nBtndamental frequency and its harmonics weaken. The power
perfectly flat over the pass-band. Thus, as the gain is iseceaspectrum fory = 17.6 mvV/mW, shown in Fig[hf, is quite
from a low level, one particular wavelength will first reatiet broad and the peaks have nearly dropped to the level of
threshold where the gain in the loop balances the losses. IRagkground which has risen significantly above the noise floo
system with only low-pass feedback, the gain is highestat Id2 x 107> mW?/MHz> measured just below the Andronov-
frequencies, so the mode with the lowest frequency is alwall@pf bifurcation point). This is indicative of high dimeosial
the one that becomes stable first independent of the delay. €\qos in the system.
the other hand, the high-pass filter introduces a bias towardA similar very broad and featureless power spectrum in
high frequencies. For each modethe frequency scales asthe chaotic regime for an optical system with passive non-
f ~ 1. This implies that the damping effect of the higHinearity and bandpass feedback was reported in Ref. [18].
pass filter on a particular mode becomes more pronouncliere, the authors synchronize two devices and successfull
with increasing delay time-. Finally, a higher order mode communicate information, thus demonstrating that theeafis
n > 1, one that has a higher frequency for a given delay, wilhe broadband spectrum is deterministic chaos. Becau$e of t
reach the stability threshold first. This explains the défe similarity of their device to ours, we believe that the olser
modes of periodic oscillations observed in the experimient. complex behavior for large gain values shown in fb. 5e is
addition, it follows from this argument that there existaifie due to chaotic deterministic dynamics.
delay times for which two modes with different frequencies To support this claim we show in Fidl 6 time series
have equal threshold gain (double Hopf point). However, and power spectra obtained by numerical simulation of the
since none of the delay-times used in the experiment are clg€terministic modél The match with the experimental data is

to one of these special we do not consider further this casegood, as can be seen by comparing Elg. 5 to[Hig. 6, despite the
simplicity of the model and the uncertainty in the estimatio

V. CHAOS of the parameters. Figurdg 6 also shows Poincaré sections

Beyond the Hopf bifurcation successively more complegpta'?ed ﬁy recordmgﬂ:he Iloc‘;t,'on Viher; the ttrhaje(t::]ory uni
dynamics develops as the gain is increased, as shownC|fFCtionally crosses the pian (t) = vP in the three-

F_igureB. At f_eedbad.( g?ins h-igher. than th_e Andron_OV'HOpflTime series from the model are obtained using an Adams-Betbhf
bifurcation point, the initially sinusoidal oscillationsegin to Moulton predictor-corrector algorithm.
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characteristic time scales of the oscillations by changirey

bandpass characteristics in the feedback loop. The namityie

in the device is accessible and reproducible. We develop a

simple model that allows quantitative predictions abowg th
26.5 behavior of the physical device and use it to determine the

f) critical gain and frequency of the Andronov-Hopf bifureati

of the steady state. We observe that the device transitmns t

chaos with a very broadband frequency spectrum and find that

this matches the model behavior.

We find that the inclusion of a high-pass filter significantly
changes the qualitative dynamics of optical feedback syste
with passive nonlinearity in comparison to only low-pass
filtering as in the lkeda system [13]. Bandpass feedback
allows not only “fundamental” frequencies ~ (27)~! but
oscillations withf ~ 7~ become possible. The route to chaos
is apparently changed when the feedback of DC-signals is
blocked. That is, we do not observe a period doubling route
to chaos but a more complicated transition, the details a€lvh
are not yet fully understood.

This chaotic opto-electronic device is ideally suited for
both experimental investigation of fast nonlinear dynanaind

. . . technological application of high-speed chaos. For exampl
dimensional space spanned b (t), P(t), P(t — A)) With e yse it to investigate control of fast chaos and are able to

A < 7. The simulations confirm that the system is 0n @ccessfully stabilize a periodic orbit with a period of 12 n

limit cycle for o = 9.4 mV/mW, which is clear from the aier than any reported [27]. This work will be described in

power spectrum (Figl16b) and immediately obvious in thg ater paper [14]. Also, by adjusting the time-scale of the
Poincaré section (Fi@l 6c). They also show that the limdl@y sciliation the device could be made to oscillate at GHz fre-

bifurcates to a tprus—attractor for incr_eased gqin:( }3.2 ‘quencies suitable for use in a practical chaos communitatio
mV/mW) appearing as closed curve in the Poincaré SeCt'Qﬂ?stem.

(Fig.[@f). The power spectrum (Fifll 6e) exhibits a comb-like
structure due to the two incommensurate frequencies of the
guasi-periodic oscillation. Note, that there is not onlytrasg REFERENCES
peak atN2.6_'6 MHz, rothly half the fgndamental freql'"':'ncy’[l] G. D. VanWiggeren, R. Roy, “Communication with chaotiasérs,”
but a definite peak at 1.8 MHz. This is well below the 3 = ience, vol. 279, pp. 1198-200, 1998
dB cutoff point of the high-pass filter. At present we do notf2] J. P. Goedgebuer, L. Larger, H. Porte, “Optical cryptieym based on
derstand the origin of this low-frequency feature andhoan synchronization of hyperchaos generated by a delayed &e&diinable
un . g_ ! Yy laser diode,”Phys. Rev. Lett., vol. 80, pp. 2249-52, 1998
explain why the main new frequency component should be §8] G. D. Vanwiggeren, R. Roy, “Optical communication witthaotic
close to one half the fundamental frequency. For even larger :N?:\{Ef?]rmsiprys FFfe\B Lett., \éol- 8#, pp. ?547-?0,h19§8 conduct
. H . . . Fischer, Y. Liu, P. Davis, “ yncnronization of chaosemiconauctor
ga_lns the system I_S ChaQIIC, with a Ve_ry broadt_)and ’s_pectruﬁq laser dynamics on subnanosecond time scales and its pbtientchaos
(Fig.[@h) and no discernible structure in the Poincaréisect communication,” Phys. Rev. A, vol. 62, pp. 011801, 2000
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few exponents are positive (details on the computation ef thjs] G. b. vanwiggeren, R. Roy, “Communication with dynamigaiuctu-
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