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High Speed Chaos in Optical Feedback System
with Flexible Timescales

J. N. Blakely, Lucas Illing and Daniel J. Gauthier

Abstract— We describe a new opto-electronic device with time-
delayed feedback that uses a Mach-Zehnder interferometer as
passive nonlinearity and a semiconductor laser as a current-to-
optical-frequency converter. Bandlimited feedback allows tuning
of the characteristic time scales of both the periodic and high
dimensional chaotic oscillations that can be generated with the
device. Our implementation of the device produces oscillations
in the frequency range of tens to hundreds of MHz. We develop
a model and use it to explore the experimentally observed
Andronov-Hopf bifurcation of the steady state and to estimate
the dimension of the chaotic attractor.

Index Terms— Feedback lasers, Optoelectronic devices, Elec-
trooptic devices, Delay effects, Bifurcation, Chaos, Nonlinear
systems, Nonlinear differential equations

I. I NTRODUCTION

T IME delay systems are widely used as generators of
chaos in applications such as chaos communication [1]–

[7] and chaos control [8]–[12]. Many of the experiments
conducted so far employed lasers with delayed feedback [1]–
[6], [8]–[12], owing to the simplicity of implementation and
feasibility of extension to high-speed operation. Delayed-
feedback laser systems also have the potential to generate
very high-dimensional and complex chaotic dynamics [13]
and strategies for controlling fast chaos exist for these type
of systems [14].

In this paper we describe a new fast optical time-delay
feedback device with flexible dynamical timescales and com-
plexity. Adjusting the pass-band characteristics of the feedback
loop allows tuning of the characteristic time scale while the
time-delay and the feedback strength control the complexity
of the dynamics. The device belongs to the class of optical
systems with passive nonlinearity in the feedback loop (see
Fig. 1). In our device a Mach-Zehnder interferometer is the
source of nonlinearity while the semiconductor laser that
provides the optical power acts as a linear current-to-optical-
frequency converter. The nonlinearity of the interferometer
coupled with the delay in the feedback loop combine to
produce a range of steady state, periodic, and chaotic behavior.

The flexible time scale allows us to operate the device at
moderate speeds to perform detailed system characterization
while it can be also operated at high-speed for applicationslike
chaos communication and control of fast chaos. In this paper
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we tune the device to a moderate speed so that it generates
dynamics with frequencies of hundreds of MHz. Another
advantage of the device is that the nonlinearity (interferometer)
is easily accessible and tunable so that it can be reproducedand
controlled accurately, without involving the internal dynamics
of semiconductor lasers as in other devices. Furthermore, this
system is constructed with relatively inexpensive components
making it an economical choice as a chaotic optical source in
future applications.

A distinguishing feature of our device is that it uses an
AC-coupled amplifier in the feedback loop so that it has
bandpass characteristics. It can thus operate, in principle, in
the radio frequency or microwave range using readily available
components. This contrasts previous research that used DC-
coupled low-pass filter components [15]–[17]. Time-delay dy-
namical systems with bandpass filtering has only recently been
investigated and has the advantage that the bandwidth of the
chaotic signal can be tailored to fit the desired communication
band [18], [19].

The goal of this paper is to present details about the
experimental implementation of our new device and to develop
a model that allows us to investigate the nonlinear dynamics
of the system. A thorough characterization of the system and
a good model are prerequisites for investigating applications
such as control of fast chaos, that will be reported elsewhere
[14]. We describe the experiment in Sec. II and develop a
deterministic model for the device in Sec. III. Subsequently,
we investigate in Sec. IV the Andronov-Hopf bifurcation of the
steady state. Finally, we will present evidence that our opto-
electronic feedback system generates high-dimensional chaos
in Sec. V.

II. EXPERIMENTAL SETUP

In this section we describe details of the experimental
implementation of the active laser interferometer with AC-
coupled feedback. The device consists of the laser, that acts a
current controlled source, the interferometer, that constitutes
the passive nonlinearity in the system, and the feedback loop
with bandpass characteristics. A schematic of the experimental
setup is shown in Fig. 1 where the labels A-L correspond to
components that we refer to and describe below.

The light source is an AlGaInP diode laser (A - Hitachi
HL6501MG, wavelength 0.65µm) with a multi-quantum well
structure. The diode is housed in a commercial mount (B -
Thorlabs TCLDM9) equipped with a bias-T for adding an RF
component to the injection current. Thermoelectric coolers in
the mount are connected to a proportional-integral-derivative
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feedback controller (Thorlabs TEC2000) to provide1 mK
temperature stability thereby minimizing frequency and power
drift. The output light of the laser is collimated by a lens (D-
Thorlabs C230TM-B, f=4.5mm) producing an elliptical beam
(1 mm× 5 mm) with a maximum output power of 35 mW.

The passive nonlinearity in the experiment consists of a
Mach-Zehnder interferometer with unequal path lengths (path
difference 45 cm) into which the laser beam is directed. A
silicon photodetector (E - Hammamatsu S4751, DC-750 MHz
bandwidth, 15 V reverse bias) measures the intensity of light
emitted from one output port of the interferometer. The size
of the photodiode is much smaller than the width of the
laser beam so only a fraction of the interferometer’s outputis
detected. The small detector size ensures that only one fringe
appears within the beam cross section thus compensating for
wavefront aberrations and slight laser beam misalignment and
improving the fringe visibility. A neutral density filter isfixed
to the front of the laser mount limiting the optical power
reaching the photodiode to prevent saturation.

The feedback-loop photodiode produces a current propor-
tional to the optical power falling on its surface. The current
flows through a50Ω resistor. The voltage across that resistor
is transmitted down a coaxial cable (F - RU 58, total length
∼ 327 cm). The signal emanating from the cable passes
through a low-noise, fixed-gain, AC-coupled amplifier (G -
MiniCircuits ZFL-1000LN, bandwidth 0.1-1000 MHz), a DC-
blocking chip capacitor (H - 220 pF), an AC-coupled amplifier
(K - Mini-Circuits ZFL-1000GH, bandwidth 10-1200 MHz),
and a second DC-blocking chip capacitor (L - 470 pF). The
capacitors reduce the loop gain at frequencies below∼ 7
MHz where a thermal effect enhances the laser’s sensitivity
to frequency modulation [20], [21]. The resulting voltage
is applied to the bias-T (B) in the laser mount. The bias-
T converts the signal into a current and adds it to a DC
injection current from a commercial laser driver (C - Thorlabs
LDC500).

The entire system is fixed on an optical table using short
(2 inch) mounts for mechanical stability. This stability is
extremely important as variation in the path length on the
order of the wavelength of the laser light (0.65µm) produces
significant power variations at the output of the interferometer.
Furthermore, the entire apparatus is covered by an insulating
box to prevent thermal expansion or contraction of the mirror
mounts due to air currents.

III. M ATHEMATIC MODEL OF THE OPTO-ELECTRONIC

DEVICE

To obtain a model of the device, we consider in turn
the relevant physics of the laser diode, the Mach-Zehnder
interferometer, and the feedback loop components.

A. Source: Semiconductor Laser

The injection current applied to the laser diode is a combi-
nation of the DC-bias current and the high-frequency currents
due to the time-delayed output of the feedback loop. Modulat-
ing semiconductor lasers by varying the input current results
primarily in changes of the laser frequency and, to a lesser
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Fig. 1. Schematic of experimental setup. The device consists of a voltage
controlled source, a passive nonlinearity, and a feedback loop with bandpass
characteristics. The components labeled A-L and details ofthe setup are
explained in the text.

extend, the laser power. One mechanism relating the input
current and frequency shifts is the change of carrier density in
the laser device as result of the modulation. A changed carrier
density shifts the refractive index of the material that makes
up the laser cavity and thereby changes the frequency of the
lasing mode. A second mechanism that leads to changes in the
optical frequency is a thermal effect that enhances frequency
modulations below∼ 5 MHz by as much as a few orders of
magnitude [20], [21]

If the pumping current is modulated at a rate significantly
slower than the GHz internal time scale typical for semi-
conductor lasers, then the output power and frequency will
adiabatically follow the input so that they depend in a linear
fashion on the current when the laser is operated far above
threshold.

To determine the main internal time scale of the laser
dynamics in the absence of time-delay feedback we determine
its relaxation oscillation frequency,ΩR, by measuring the peak
in the power spectrum of the intensity noise using a high-
speed spectrum analyzer (Hewlett-Packard 8566B, 22 GHz
bandwidth). We find, as expected [22], thatΩ2

R
∝ i−ith where

i is the DC-injection current andith is the laser threshold
injection current. The relaxation oscillation frequency at the
nominal operating current of 75 mA used in the experiment
is ΩR = 2.7 GHz, andith = 40.7 mA.

Based on our measurements, we see that the laser will
adiabatically follow the injection current for frequencies much
less than∼ 2.5 GHz (bounded byΩR) and much greater than
∼ 5 MHz (bounded by the enhanced frequency tuning due
to the thermal effect). Our feedback loop is bandpass limited
to within this range and hence the laser can be modeled as
a voltage controlled source, a linear device which converts
variations of the input voltageU(t) that drives the input current
into corresponding oscillations of the optical frequencyω(t)
and powerP (t).

The model for the laser we propose is simply

P (t) = κ U(t) + P0, (1)

ω(t) = η U(t) + ω0 =
η

κ
(P (t)− P0) + ω0, (2)

whereP0 (ω0) denote the emission power (the optical fre-
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quency) of the steady-state,U(t) is the voltage applied to the
bias-T, andκ andη are, respectively, the voltage-to-power and
voltage-to-frequency conversion strength.

We note that it is possible to obtain Eqs. (1) and (2) from
a direct analysis of the standard rate equations describing
semiconductor laser dynamics [22] in the limit when the
amplitude of the injection current modulation is small in
comparison to the DC-injection current, which is appropriate
for our device. For higher-frequency operation of the device,
aboveΩR, the full semiconductor laser rater equations would
have to be used in place of Eqs. (1) and (2). Such high-
frequency modulation can lead to nonlinear phenomena such
as period-doubling cascades, period tripling, and chaos [23]
when the modulation amplitude is large. We do not consider
further such behavior.

B. Passive Nonlinearity: Mach-Zehnder Interferometer

The passive nonlinearity in our system is an unequal-path
Mach-Zehnder interferometer that converts frequency varia-
tions of the light emitted by the laser into intensity variations at
the photodetector. The photocurrent produced by the detector
is converted into a voltageVdet(t) by a resistancer = 50 Ω
and is subsequently amplified. The difference in propagation
time between the two paths of the interferometer is∆t = 1.5
ns, much smaller than the time scale of variation of the laser
injection current. Therefore, we can assume that the light
waves that reach the detector through the two different paths
have the same optical frequency. The voltageVdet is thus given
by

Vdet(t) = γ P (t) {1 + b cos [ω(t)∆t]} , (3)

whereω(t) is the optical frequency. The parameterγ describes
the overall feedback strength which is determined by the
fraction of the power in the laser beam that actually falls
onto the detector, the sensitivity of the photodiode, and the
electronic amplification of the signal. The parameterb ∈ [0, 1]
is the fringe visibility and is defined as

b =
Pmax − Pmin

Pmax + Pmin

, (4)

b = 1 corresponds to the ideal situation where the light waves
in the interferometer are perfect plane waves and where the
beamsplitters divide them exactly in half. In our experiment
we find b ≈ 0.8.

The optical frequency is related to the observed output
power by Eq. (2), which allows us to rewrite Eq. (3) as

Vdet(t) = γ P (t) {1 + b sin [α (P (t)− P0) + φ]} , (5)

Here, the parameterα = η∆t/κ and the constant offsetφ =
ω0∆t−π/2 are tunable. By varying the DC component of the
injection current, we adjustφ to ≈ 0. The constant parameter
α determines the sensitivity of the interferometer and can be
tuned by varying the path imbalance∆t.

The useful range of path-length-differences is limited by the
phase noise of the laser light, which is a consequence of the
quantum process of spontaneous emission. Increasing the sen-
sitivity of the interferometer by increasing the path difference
proportionally increases the effect of phase noise. We chose to
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Fig. 2. Frequency response of the open loop electronic feedback for a gain
value γ = 14.6 mV/mW. Circles denote experimental results and the line
shows the best fit of the theoretical model.

set the sensitivity to a value such that the amplitude of noise
fluctuations is less than 10% ofP0, corresponding toα ∼ 1.9
mW−1.

C. Electronic Feedback Loop

The electronic feedback loop connecting the detector and
diode laser introduces a time-delay. The total roundtrip delay-
time τ is somewhat larger than this time-delay, becauseτ
includes, for instance, the free-space propagation time of
the laser light. However, for the purpose of modeling, we
may assume all processes to be instantaneous and assign the
total roundtrip delay-time to the propagation of the signal
through the feedback loop. The frequency-limiting effectsof
the different components in the feedback loop are modeled by
a combination of single-pole low- and high-pass filters. The
feedback loop is described by

τlV̇ (t) = −V (t) + Vdet(t− τ), (6)

U̇(t) = −U(t)

τh
+ V̇ (t), (7)

whereτl (τh) is the low-pass (high-pass) filter time constant,
Vdet is the voltage output of the photodiode, andV and U
are the voltages at the output of the low- and high-pass filters,
respectively. The voltageU(t) is used to generate the time-
dependent current that is injected into the laser diode. Low-
pass filtering in the experiment is provided by the limited
bandwidth of the photodiode and the electrical connections
to the laser. High-pass filtering is due to the two capacitors
and the bias-T (see Fig. 1).

Using Eq. (1) we can rewrite Eq. (7) in terms of the laser
output powerP (t)

Ṗ (t) = −P (t)− P0

τh
+ κV̇ (t). (8)

We determine the parametersτl, τh, κ by measuring the open-
loop transfer characteristic of the electronic feedback loop. A
signal generator is connected in place of the photodetector
so that a sinusoidal voltageVin of known amplitude and
frequency is injected into the opened feedback loop and even-
tually into the laser. The optical power is measured directly at
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TABLE I

DEFINITION OF SYMBOLS AND MEASURED VALUES OF THE MODEL

PARAMETERS.

Symbol Value Description
τl 0.66± 0.05 ns Low-pass filter time constant
τh 22 ± 0.5 ns High-pass filter time constant
τ 19.1± 0.1 ns Feedback delay time
κ (4.8 ± 0.1) µW

mV Modulation sensitivity
α 1.89± 0.05 mW−1 Interferometer sensitivity
b 0.8 ± 0.02 Fringe visibility
P0 26 ± 0.5 mW Operating point optical power
γ 0 - 18 mV/mW Feedback gain

the laser output. Figure 2 shows the result of the experiment
and the best fit of the model (Eq. (8) and Eq. (6) withVdet

replaced byξVin, whereξ is the electronic amplification) with
parameter values given in Tab. I. It is seen that the theoretical
curve fits to within a few percent of the experimental data
everywhere except in the region between 80 and 140 MHz.
The dip in the response is caused by either the bias-T or the
electronics in the commercial laser mount for which we do
not have a detailed circuit diagram.

Aside from this discrepancy, the simple model of the
feedback based on single-pole low- and high-pass filters fits
the experiment rather well. We choose to ignore the remaining
discrepancy because the model successfully reproduces most
features of the observed dynamics.

D. Full Model and Parameter Values

We obtain a full description of our opto-electronic device
by combining Eq. (6) and Eq. (8) with the expression relating
the detector voltage to the laser power, Eq. (5). All parameters
in this model can be measured and are displayed in Tab.I. The
only parameter that was not measured directly is the time-
delayτ . Direct measurement of this parameter is complicated
by contributions of the several electronic components, each
of which introduces some unknown phase lag in addition to
simple propagation delay. So we use the periodic dynamics of
the device to determineτ more precisely. In the next section
we present evidence that the steady state becomes unstable
through an Andronov-Hopf bifurcation. The frequency of the
resulting periodic oscillation depends on the time delayτ and
we use the experimentally measured frequency close to the
bifurcation point to improve the estimate ofτ that we obtain
by measuring the propagation delay of the feedback loop.

IV. F IRST INSTABILITY : ANDRONOV-HOPFBIFURCATION

Our opto-electronic time-delay feedback device can display
very complex dynamics. As parameters of the device are
changed a series of different bifurcations results in a transition
from the initial steady state behavior to chaotic dynamics.
In this section we discuss the first such transition in which
the steady state becomes unstable and self-sustained periodic
oscillations arise.

We know of no exhaustive list of all possible ways that limit
cycles (periodic oscillations) can arise in time-delay systems.
However, for the well known bifurcations of cycles (those that
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Fig. 3. The oscillation amplitude measured at the second interferometer
output versus gain is shown for the experiment (triangles) and model (dots).

already exist in two-dimensional systems) this list existsand
by examining the scaling of the period and amplitude near the
bifurcation one can distinguish between the different bifur-
cation scenarios [24]. For instance, a supercritical Andronov-
Hopf bifurcation is characterized by an amplitude of the stable
limit cycle that scales as the square-root of the distance of
the bifurcation parameter from the bifurcation point and an
oscillation period of finite size that is approximately constant
as the bifurcation parameter is varied.

To investigate the bifurcations in our device, we varied
the feedback gainγ, which serves as our main bifurcation
parameter. A second bifurcation parameter of interest is the
delay timeτ . Experimentally we can changeτ by adding or
subtracting fixed lengths of coaxial cable to the feedback loop.

For gain values below a critical valueγ < γC , the system is
in a steady state with fluctuations of the observed laser output
power due only to the inherent phase noise. When the gain is
increased through the critical valueγC = 5.1 ± 0.5 mV/mW
for τ ∼ 19.1 ns, the steady state is replaced by periodic
oscillations. The dominant frequency of the oscillation is
51.5± 1 MHz, which is roughly equal to1/τ . This frequency
does not change substantially as the gain is increased further.
The oscillation amplitude, on the other hand, grows smoothly
from zero with increasing gain, as shown in Fig. 3. The
spontaneous emission noise of the semiconductor laser leads to
an amplification of the amplitude variations (indicated by the
larger error bars) close to the bifurcation [25]. It is therefore
not possible to pinpoint the bifurcation point exactly and there
is no clear

√
γ − γC scaling of the amplitude, as expected

for an Andronov-Hopf bifurcation. Nevertheless, the smooth
amplitude growth and the finite period of the limit cycle at
γ & γC indicate a supercritical Andronov-Hopf bifurcation at
γC . In the model, which is noise-free, we find an Andronov-
Hopf bifurcation atγC = 5.34 mV/mW.

Next, we experimentally determined the frequency of the
limit cycle close to the bifurcation point for different delay
timesτ . In all cases the steady state becomes unstable through
an Andronov-Hopf bifurcation. However, we find that the
relationf ∼ 1/τ between the frequencyf and the delay time
τ holds only for a limited range ofτ . Figure 4 summarizes
the relation betweenf andτ that we obtain from experimental
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Fig. 4. Frequency of the oscillations close to the Andronov-Hopf bifurcation
point versus the feedback delay timeτ . Measured (triangles) and numerically
estimated (circles) frequencies are shown. We display curvesn/τ with n =

1, 2, 3, 4 for visual guidance.

(triangles) and numerically calculated (circles) time series. The
data suggest that the device transitions from a steady stateto
limit cycle oscillations with frequencies roughlyn/τ , where
n = n(τ) can be1, 2, 3, . . ..

The origin of the fundamental frequency (n = 1) can be un-
derstood intuitively by considering whether a wave circulating
in the feedback loop will reinforce itself. If the feedback is
positive, a wave will reinforce itself if an integer number of
wavelengths equals the propagation length in the loop. If the
feedback gain is negative, the propagation length must be a
half integer number of wavelengths. In the experiment, we can
achieve negative gain by tuning the offsetφ in Eq. (5) such that
φ ≈ π. For this setup we observe, as expected,f ∼ 1/(2τ)
for τ ∼ 19.1 ns (data not shown).

The appearance of modes withn > 1 for larger delay times
τ is due to the fact that the gain in the feedback loop is not
perfectly flat over the pass-band. Thus, as the gain is increased
from a low level, one particular wavelength will first reach the
threshold where the gain in the loop balances the losses. In a
system with only low-pass feedback, the gain is highest at low
frequencies, so the mode with the lowest frequency is always
the one that becomes stable first independent of the delay. On
the other hand, the high-pass filter introduces a bias toward
high frequencies. For each moden the frequency scales as
f ∼ τ−1. This implies that the damping effect of the high
pass filter on a particular mode becomes more pronounced
with increasing delay timeτ . Finally, a higher order mode
n > 1, one that has a higher frequency for a given delay, will
reach the stability threshold first. This explains the different
modes of periodic oscillations observed in the experiment.In
addition, it follows from this argument that there exist specific
delay times for which two modes with different frequencies
have equal threshold gainγC (double Hopf point). However,
since none of the delay-times used in the experiment are close
to one of these specialτ we do not consider further this case.

V. CHAOS

Beyond the Hopf bifurcation successively more complex
dynamics develops as the gain is increased, as shown in
Figure 5. At feedback gains higher than the Andronov-Hopf
bifurcation point, the initially sinusoidal oscillationsbegin to
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Fig. 5. Experimentally measured time series (panels a,c,e)and power spectra
(panels b,d,f) obtained from the second output port of the interferometer are
shown.γ = 9.4 mV/mW for a) and b),γ = 13.2 mV/mW for c) and d), and
γ = 17.6 mV/mW for e) and f).

square off, as shown in Fig. 5a. The square shape of the
waveform results in prominent odd harmonics in the spectrum
(Fig. 5b). As the gain increases, a small, broad peak appears
at about half the fundamental frequency as shown in Fig. 5d.
The peak at roughly half the fundamental frequency is three
orders of magnitude below the fundamental. The weakness
and broadness of this peak coupled with the presence of phase
noise may explain why no clearly period doubled behavior is
apparent in the time domain (Fig. 5c). As the gain is increased
further, the broad background rises and the tall peaks at the
fundamental frequency and its harmonics weaken. The power
spectrum forγ = 17.6 mV/mW, shown in Fig. 5f, is quite
broad and the peaks have nearly dropped to the level of
background which has risen significantly above the noise floor
(2 × 10−3 mW2/MHz2 measured just below the Andronov-
Hopf bifurcation point). This is indicative of high dimensional
chaos in the system.

A similar very broad and featureless power spectrum in
the chaotic regime for an optical system with passive non-
linearity and bandpass feedback was reported in Ref. [18].
There, the authors synchronize two devices and successfully
communicate information, thus demonstrating that the cause of
the broadband spectrum is deterministic chaos. Because of the
similarity of their device to ours, we believe that the observed
complex behavior for large gain values shown in Fig. 5e is
due to chaotic deterministic dynamics.

To support this claim we show in Fig. 6 time series
and power spectra obtained by numerical simulation of the
deterministic model1. The match with the experimental data is
good, as can be seen by comparing Fig. 5 to Fig. 6, despite the
simplicity of the model and the uncertainty in the estimation
of the parameters. Figure 6 also shows Poincaré sections
obtained by recording the location where the trajectory uni-
directionally crosses the planeV (t) = γP0 in the three-

1Time series from the model are obtained using an Adams-Bashforth-
Moulton predictor-corrector algorithm.
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Fig. 6. Numerical time series (panels a,d,g), power spectra(panels b,e,h),
and Poincaré sections (panels c,f,i) are shown. The gain values are as in Fig.5,
that is,γ = 9.4 mV/mW (a,b,c),γ = 13.2 mV/mW (d,e,f), andγ = 17.6
mV/mW (g,h,i).

dimensional space spanned by(V (t), P (t), P (t − ∆)) with
∆ < τ . The simulations confirm that the system is on a
limit cycle for γ = 9.4 mV/mW, which is clear from the
power spectrum (Fig. 6b) and immediately obvious in the
Poincaré section (Fig. 6c). They also show that the limit cycle
bifurcates to a torus-attractor for increased gain (γ = 13.2
mV/mW) appearing as closed curve in the Poincaré section
(Fig. 6f). The power spectrum (Fig. 6e) exhibits a comb-like
structure due to the two incommensurate frequencies of the
quasi-periodic oscillation. Note, that there is not only a strong
peak at∼26.6 MHz, roughly half the fundamental frequency,
but a definite peak at 1.8 MHz. This is well below the 3
dB cutoff point of the high-pass filter. At present we do not
understand the origin of this low-frequency feature and cannot
explain why the main new frequency component should be so
close to one half the fundamental frequency. For even larger
gains the system is chaotic, with a very broadband spectrum
(Fig. 6h) and no discernible structure in the Poincaré section
(Fig. 6i). We computed the spectrum of Lyapunov exponents
for the model withγ = 17.6 mV/mW and find that the largest
few exponents are positive (details on the computation of the
Lyapunov spectrum can be found in Ref. [26]). This proves
that the model dynamics shown in Fig. 6g are on a chaotic
attractor. We estimate the attractor’s Lyapunov dimensionto
beDL ∼ 22.

In this section we have presented evidence that our device
exhibits high dimensional chaos. We showed that the device
undergoes a sequence of bifurcations from steady state to
aperiodic oscillations with a broad and featureless power
spectrum. We were able to reproduce this behavior with the
deterministic model and we quantified the dimensionality of
the chaotic attractor.

VI. SUMMARY AND DISCUSSION

We describe an optical feedback device that can produce
high-dimensional chaos and that allows adjustment of the

characteristic time scales of the oscillations by changingthe
bandpass characteristics in the feedback loop. The nonlinearity
in the device is accessible and reproducible. We develop a
simple model that allows quantitative predictions about the
behavior of the physical device and use it to determine the
critical gain and frequency of the Andronov-Hopf bifurcation
of the steady state. We observe that the device transitions to
chaos with a very broadband frequency spectrum and find that
this matches the model behavior.

We find that the inclusion of a high-pass filter significantly
changes the qualitative dynamics of optical feedback systems
with passive nonlinearity in comparison to only low-pass
filtering as in the Ikeda system [13]. Bandpass feedback
allows not only “fundamental” frequenciesf ∼ (2τ)−1 but
oscillations withf ∼ τ−1 become possible. The route to chaos
is apparently changed when the feedback of DC-signals is
blocked. That is, we do not observe a period doubling route
to chaos but a more complicated transition, the details of which
are not yet fully understood.

This chaotic opto-electronic device is ideally suited for
both experimental investigation of fast nonlinear dynamics and
technological application of high-speed chaos. For example,
we use it to investigate control of fast chaos and are able to
successfully stabilize a periodic orbit with a period of 12 ns,
faster than any reported [27]. This work will be described in
a later paper [14]. Also, by adjusting the time-scale of the
oscillation the device could be made to oscillate at GHz fre-
quencies suitable for use in a practical chaos communication
system.
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