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Abstract

This paper describes the security weakness of a recently proposed secure commu-
nication method based on discrete-time chaos synchronization. We show that the
security is compromised even without precise knowledge of the chaotic system used.
We also make many suggestions to improve its security in future versions.

1 Introduction

In recent years, a growing number of cryptosystems based on chaos have been
proposed [1,2], many of them fundamentally flawed by a lack of robustness
and security [3,4,5,6,7,8,9,10,11,12,13,14,15]. In [16], a secure communication
system based on chaotic modulation using discrete-time chaos synchronization
is proposed. Two different schemes of message encoding are presented. In the
first scheme, the binary message (m(i) = ±1) is multiplied by the chaotic
output signal of the transmitter and then sent to drive the receiver system. In
the second scheme, the binary message is modulated by multiplication with
the chaotic output signal and then is fed back to the transmitter system and
simultaneously sent to the receiver system.

Discrete-time chaotic systems are generally described by a set of nonlinear
difference equations. The first communication system based on modulation by
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multiplication can be described by:

transmitter



























x1(i+ 1) = 1− αx2
1(i) + x2(i)

x2(i+ 1) = βx1(i)

s(i) = x1(i) ·m(i)

(1)

receiver



























x̂1(i+ 1) = 1− αs2(i) + x̂2(i)

x̂2(i+ 1) = βx̂1(i)

m̂(i) = s(i)/x̂1(i)

(2)

The communication scheme using modulation by multiplication and feedback,
with a modification to avoid divergence due to feedback, is described by:
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x1(i+ 1) = 1− α(s(i)−
⌊

s(i)+P

2P

⌋

2P )2 + x2(i)

x2(i+ 1) = βx1(i) + 0.05x1(i)(m(i)− 1)

s(i) = x1(i) ·m(i)

(3)

receiver



























x̂1(i+ 1) = 1− α(s(i)−
⌊

s(i)+P

2P

⌋

2P )2 + x̂2(i)

x̂2(i+ 1) = βx̂1(i) + 0.05(s(i)− x̂1(i))

m̂(i) = s(i)/x̂1(i)

(4)

with P = (1 +
√
6.6)/2.8.

Although the authors seemed to base the security of their cryptosystems on
the chaotic behavior of the output of the Henon non-linear dynamical system,
no analysis of security was included. It was not considered whether there
should be a key in the proposed system, what it should consist of, what the
available key space would be, what precision to use, and how the key would
be managed.

In the next section we discuss the weaknesses of this secure communication
system using the Henon attractor and make some suggestions to improve its
security.
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2 Attacks on the proposed system

2.1 The key space

Although it is not explicitly stated in [16], it is assumed that the key is formed
by the two parameters of the map, α and β. Thus, in [16], the key is fixed to
k = {α, β} = {1.4, 0.3}. However, in [16] there is no information given about
what the key space is. The key space is defined by all the possible valid keys.
The size of the key space r is the number of encryption/decryption key pairs
that are available in the cipher system.

In this chaotic scheme the key space is nonlinear because all the keys are not
equally strong. We say that a key is weak or degenerated if it is easier to break
a ciphertext encrypted with this key than breaking a ciphertext encrypted
with another key from the key space.

The study of the chaotic regions of the parameter space from which valid keys,
i.e., parameter values leading to chaotic behavior, can be chosen is missing in
[16]. A possible way to describe the key space might be in terms of positive
Lyapunov exponents. According to [17, p. 196], let f be a map of Rm, m ≥ 1,
and {x0,x1,x2, . . . } be a bounded orbit of f . The orbit is chaotic if

(1) it is not asymptotically periodic,
(2) no Lyapunov exponent is exactly zero, and
(3) the largest Lyapunov exponent is positive.

The largest Lyapunov exponent can be computed for different combinations
of the parameters. If it is positive, then the combination can be used as a
valid key. In Fig. 1, the chaotic region for the Henon attractor used in [16] has
been plotted. This region corresponds to the keyspace. In general, parameters
chosen from the lower white region give rise to periodic orbits, undesirable
because the ciphertext is easily predictable. Parameters chosen from the upper
white region give rise to unbounded orbits diverging to infinity, and hence the
system can not work. Therefore, both regions should be avoided to get suitable
keys. Only keys within the black region are good. And even within this region,
there exist periodic windows, unsuitable for robust keys.

This type of irregular and often fractal chaotic region shared by most secure
communication systems proposed in the literature is inadequate for crypto-
graphic purposes because there is no easy way to define its boundary. And if
the boundary is not mathematically and easily defined, then it is hard to find
suitable keys within the key space. This difficulty in defining the key space
discourages the use of the Henon map. Instead, complete chaoticity for any
parameter value should be preferred. Piecewise linear (PWL) maps are a good
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choice because they behave chaotically for any parameter value in the useful
interval [18].

2.2 Insensitivity to parameter mismatch

Both communication systems, the one based on modulation by multiplication
and the one using modulation by multiplication and feedback, can only have
valid keys carefully chosen from the chaotic region plotted in Fig. 1 to avoid
periodic windows and divergence. Due to low sensitivity to parameter mis-
match, if the system key is fixed to k = {α, β} = {1.4, 0.3} as in [16], then
any key k′ chosen from the same key space will decrypt the ciphertext into a
message m′ with an error rate which is well below 50%. Fig. 2 plots the bit
error rate (BER) when the ciphertext encrypted with k = {α, β} = {1.4, 0.3}
is decrypted using keys k′ from the valid key space at a distance d from k. For
this experiment the Euclidean distance was chosen:

d =
√

(α− α ′)2 + (β − β ′)2 (5)

This insensitivity to parameter mismatch due to the coupling between trans-
mitter and receiver renders the system totally insecure when the Henon map
is used. A different map more sensitive to small differences in the parameter
values should be used to grant security.

2.3 Brute force attacks

A brute force attack is the method of breaking a cipher by trying every possible
key. The quicker the brute force attack, the weaker the cipher. Feasibility of
brute force attacks depends on the key space size r of the cipher and on
the amount of computational power available to the attacker. Given today’s
computer speed, it is generally agreed that a key space of size r < 2100 is
insecure.

However, this requirement might be very difficult to meet by this cipher be-
cause the key space does not allow for such a big number of different strong
keys. For instance, Fig. 1 was created using a resolution of 10−3, i.e., there
are 1400 × 3000 different points. To get a number of keys r > 2100 ≃ 1030,
the resolution should be 10−15. However, with that resolution, thousands of
keys would be equivalent, unless there is a strong sensitivity to parameter mis-
match, which is usually lost by synchronization, even when using a different
chaotic map.
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2.4 Statistical analysis

Fig. 2a shows that the error is upper bounded: BER≤ 0.33. This is a conse-
quence of the fact that the orbit followed by any initial point in the Henon
attractor is not uniformly distributed, because in average it spends two thirds
of the time above x = 0. As a consequence, mixing the cleartext with the out-
put of a function whose probability density is not uniform will result in a weak
cryptosystem. In Fig. 3 the Henon attractor is plotted. It can be observed that
the distribution is far from flat because the orbit visits more often the region
x > 0. In average, two thirds of the iterates lie to the right of x = 0 (depicted
as a dashed line). This fact allows the attacker to guess in average two thirds
of the encrypted bits, even with no knowledge about the transmitter/receiver
structure.

To get a balanced distribution, the threshold should be moved to the right
[19]. Let xm denote the real value such that

P (xi ≤ xm) = P (xi > xm) = 0.5. (6)

A good estimation presented in [19] is x̂m = 0.39912, depicted as a dotted line
in Fig. 3. However, this result is difficult to apply provided the way in which
the Henon attractor is used by the cryptosystem. Therefore, it is seen again
that the Henon map is a bad choice as a chaotic map for this communication
scheme. A different map with a balanced distribution, i.e., whose orbit visits
with equal frequency the regions above and below a certain level x = 0, should
be chosen to prevent statistical attacks.

2.5 Plaintext attacks

In the previous sections we showed that the use of the Henon map is not ad-
visable because of its inability to define a good key space, of its low sensitivity
to parameter mismatch, and of its non uniformly distributed orbits. We are
to show next that if a different map is used, the security of the communica-
tion system will not improve if the same key is used repeatedly for successive
encryptions.

According to [20, p. 25], it is possible to differentiate between different lev-
els of attacks on cryptosystems. In a known plaintext attack, the opponent
possesses a string of plaintext, p, and the corresponding ciphertext, c. In a
chosen plain text, the opponent has obtained temporary access to the encryp-
tion machinery, and hence he can choose a plain text string, p, and construct
the corresponding cipher text string, c.
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The cipher under study behaves as a modified version of the one-time pad [20,
p. 50]. The one-time pad uses a randomly generated key of the same length
as the message. To encrypt a message m, it is combined with the random key
k using the exclusive-OR operation bitwise. Mathematically,

c(i) = m(i) + k(i) mod 2, (7)

where c represents the encrypted message or ciphertext. This method of en-
cryption is perfectly secure because the encrypted message, formed by XORing
the message and the random secret key, is itself totally random. It is crucial
to the security of the one-time pad that the key be as long as the message and
never reused, thus preventing two different messages encrypted with the same
portion of the key being intercepted or generated by an attacker.

Eq. (1) and Eq. (3) are used to generate a keystream {x1(1) = k(1), x1(2) =
k(2), x1(3) = k(3), . . .}. This keystream is used to encrypt the plain text string
according to the rule

c(i) = k(i) ·m(i) (8)

Therefore, if the attacker possesses the plaintext m(i) and its corresponding
ciphertext c(i), he will be able to obtain k(i). If the same key, i.e. the same
parameter values, is used to encrypt any subsequent message in the future, it
will generate an identical chaotic orbit, which is already known. As a conse-
quence, when c(i) and k(i) are known in Eq. (8), m(i) is readily obtained by
the attacker.

Obviously, when using this cryptosystem, regardless of the choice of the chaotic
map, the key can never be reused. A slight improvement to partially enhance
security even when the key is reused consists of randomly setting the ini-
tial point of the chaotic orbit at the transmitter end. Synchronization will
guarantee that the message is correctly decrypted by the authorized receiver.
However, an eavesdropper would have more difficulty in using past chaotic
orbits because they will diverge due to sensitivity to initial conditions.

3 Conclusions

The proposed cryptosystem using the Henon map is rather weak, since it can
be broken without knowing its parameter values and even without knowing the
transmitter precise structure. However, the overall security might be highly
improved if a different chaotic map with higher number of parameters is used.
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The inclusion of feedback makes it possible to use many different systems
with non symmetric nonlinearity as far as the whole space is folded into a
bounded domain to avoid divergence. However, to rigorously present future
improvements, it would be desirable to explicitly mention what the key is, how
the key space is characterized, what precision to use, how to generate valid
keys, and also to perform a basic security analysis. For the present work [16],
the total lack of security discourages the use of this algorithm as is for secure
applications.
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Figures

Fig. 1. Chaotic region for the Henon attractor.



Fig. 2. BER when decrypting the ciphertext with a key at a distance d from the
real encryption key, k = {α, β} = {1.4, 0.3}: (a) modulation by multiplication; (b)
modulation by multiplication and feedback. Note the difference in scale.



Fig. 3. 100,000 successive points obtained by iteration of the Henon map for
{α, β} = {1.4, 0.3}.
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