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Abstract

A Mean-Field theory is presented and applied to a Cellular Automata

model of distributed packet-switched networks. It is proved that, under

a certain set of assumptions, the critical input traffic is inversely pro-

portional to the free packet delay of the model. The applicability of

Mean-Field theory in queue length estimation is also investigated. Re-

sults of theoretical derivations are compared with simulation samples to

demonstrate the availability of the Mean-Field approach.

1 Introduction

Modelling computer networks is important for understanding the network be-
haviors, especially those related to the critical phenomena. Models must assign
an assumption to network topology. Some of them make the assumption based
on graph theory [1], while some others based on regular lattices [2, 3, 4, 5].
What kind of models is chosen depends upon the application background.

This paper focuses on architectures of distributed packet-switched networks.
Some overlays, mobile ad-hoc networks and metropolitan area networks fall into
the category of “distributed”, without any central or hierarchical control and
without differentiation among transit and end-user sites. On account of these
characteristics, the model presented in this paper is extended from Fukś’ work
[3]. Actually, the same topology was studied even in the pre-Internet history,
within the reports of RAND on distributed networks authored by Paul Baran
and others [6, 7]. However, only survivability of the lattices was studied there.
We step forward this effort into dynamic behavior of packet-switched Cellular
Automata over the lattices.

On the other hand, previous works on Cellular Automata for data networks
have discovered in simulations that critical traffic behavior is related to free
packet delay in the networks [3]. By the help of Mean-Field Theory technique,
we step forward this discovery to an approximated analytical theorem for the ex-
tended model, where the critical traffic is inversely proportional to the free delay
of the network, provided the assumptions of Mean-Field Theory are available.
The most basic idea in the approximation relies on simplifying the system with

1

http://arxiv.org/abs/nlin/0311048v1


an identical open Jackson network. However, the application of the Mean-Field
Theory could not be exaggerated. In estimating queue length of the model, the
Mean-Field approach is not accurate.

The rest parts of the paper are organized as such: section 2 describes the
model and its parameters. Section 3 applies Mean-Field Theory to the model,
with a certain set of approximations. Some simulation results are shown, in or-
der to demonstrate that the Mean-Field Theory presented here are available for
cases with any dimensionality and any neighborhood. Section 4 briefly discusses
queue length estimated by the Mean-Field Theory, with comparison to simula-
tion data. Finally, we summarize the works with emphasizing its significance to
analysis and design of distributed network architectures.

2 Model Definitions

Cellular Automaton is a mathematical model for physical systems containing
large amount of simple, identical and locally interacting units [8]. Any Cellu-
lar Automata could be defined with a 4-tuple of lattice space, neighborhood,
state set, and rule of state-transition [9]. The Cellular Automata models for
distributed packet-switched networks (briefly “the model” or “our model”, later
through the paper) are also defined as such.

2.1 Lattice

The model are defined on d-dimensional Euclidean lattice space. Originally the
lattice is boundless and extended to infinity. For digital simulation, however,
the lattice is often truncated in a certain d-dimensional hypercube, say L as its
width. Because a distributed network has no geometrical center, the truncated
lattice should be thought as periodical, i.e. the coordinate values with same
remainder modulo L are identical. Therefore the lattice of the model is denoted
with

Ld , Z
d ∩ [0, L)d (1)

And the bases of the lattice space are denoted with ei, i = 1, 2, ·, d.

2.2 Neighborhood and Metric

A neighborhood is a mapping from the lattice to its power set:

A : Ld 7→ P (Ld) (2)

For the purpose of routing packets among the sites in the model, metrics are de-
fined with the neighborhood as well. For example, von Neumann neighborhood
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and the periodic Taxicab metric 1 are defined by:

A(x) =

d
⋃

i=1

{x+ ei, x− ei}, ∀x ∈ Ld (3)

D(x,y) =

d
∑

i=1

L

2
−

∣

∣

∣

∣

|xi − yi| −
L

2

∣

∣

∣

∣

(4)

While Moore neighborhood and the periodic Moore metric is defined as
follows:

A(x) =

(

⋃

y1=−1,0,1

· · ·
⋃

yd=−1,0,1

{

x+
d
∑

i=1

yiei

})

\{x} (5)

D(x,y) = max
i

{

L

2
−

∣

∣

∣

∣

|xi − yi| −
L

2

∣

∣

∣

∣

}

(6)

Definitions in both (4) and (6) conforms to the lattice periodicity. The two
metrics are identical in 1-dimensional cases.

2.3 State and Transition

The state of a site is a first-in-first-out queue of packets, each of which contains
at least the information about its destination. Each site x’s queue length at time
k, denoted as q(x, k), is modified by both packet input and packet forwarding
processes.

At each discrete moment of time k, packet enters the network from outside
any site independently with an identical probability λ. The probability of more
than one input packets is o(λ). Thus, one can think there is a discrete-time
Poisson source at each site. Destination of a newly entering packet is randomly
selected among all possible sites with the same probability. A new packet is
queued at the site where it enters the network.

At each moment, a site serves the first packet in its queue, forwarding it
to one of its neighbors properly selected with the routing criteria. The service
time is a constant of unity. Two criteria are applied to route selection. First,
the next-hop should be selected from the neighbors, nearest to the destination
in the term of given metric. The nearest neighbor set of a site x to destination
z is

B(z;x) = {y ∈ A(x) : D(z,y) → min} (7)

Second, the next-hop should be selected from the neighbors with minimum
queue length within the neighbors nearest to destination.

C(z;x, k) = {y ∈ B(z;x) : q(y, k) → min} (8)

Finally, if the minimum-queue nearest-to-destination neighbor set C(z;x, k)
contains more than one coordinates, then anyone is selected as the next-hop,

1Or Manhattan metric.
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randomly with the same probability. If this one is current destination z, then
the packet is not queued anymore: it leaves the system.

Baran’s distributed network model contains various neighborhoods [6]. To
extend them into higher dimensionality, von Neumann and Moore neighbor-
hoods are definitely well defined while other neighborhoods might not. Fukś’
two-dimensional von Neumann Cellular Automata model allows non-periodical
property [3], but it’s less close to the case of distributed networks where all the
sites are identical in topology.

3 Mean-Field Theory

Any queueing system has a critical traffic as the upper bound of the input
traffic, so that the system converges into a stable state instead of going far from
stability. This critical traffic is just the service rate µ in a single queueing-service
system, while it is different for networks.

Ohira has shown that the critical traffic is related to the free delay of the
network [5] and Fukś has uncovered that, in two-dimensional von Neumann
Cellular Automata model, the sufficient and necessary condition for stability of
the model is λ < 1/τ̄0, or equivalently,

λc =
1

τ̄0
(9)

where τ̄0 is the average delay of a free packet without being queued anywhere.
These previous results are observed in simulations. Now we prove that the law of
(9) is an analytical result under certain assumptions and is available for whatever
dimensionality and neighborhoods rather than only for two-dimensional von
Neumann cases.

3.1 Approximation to Open Jackson Network

The model defined in the previous section has the property of open queueing
networks, i.e. all packets enter the system from outside and finally leave at
the destination. This inspires utilizing ever-known conclusions in open Jackson
network.

Open Jackson network is of Markovian queueing network, i.e. packet arrival
is a Poisson process and the service time of each site conforms to exponential
distribution. The Jackson theorem presents the condition of stability as well as
the queue length distribution in stable state [10, 11]. In the Jackson theorem, a
parameter σ(x), called as “site traffic”, is defined as the traffic observed at site
x in the system and we have the traffic equilibrium equations

σ(x) = λ(x) +
∑

y

σ(y)ryx, ∀x (10)

where ryx is the forwarding probability from site y to x and
∑

x

ryx = 1− ry,∞, ∀y (11)
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Figure 1: Queue length field of a sample with d = 2, L = 40, λ = 0.08, k = 1000,
von Neumann neighborhood, and periodic taxicab metric. Queue lengths are so
close to each other among all the sites that assuming they have an identical σ
is reasonable.

where ry,∞ represents the probability of leaving.
Our model, however, contains sites over a lattice space, each of which is a

discrete-time M/D/1 queueing system. Unfortunately, to the best knowledge of
the authors, there are hardly few approaches of queueing networks consisting of
M/D/1 systems. Then the constant service time is replaced by a exponential
distribution with the mean value of 1/µ = 1 . Furthermore, we ignore the
details in route selection and approximate it with a simple, time-invariant, and
destination-free probability, ryx,

Thus, the model is approximated with a continuous-time open Jackson net-
work over the lattice space, where input traffic is an identical Poisson process
at each site with parameter λ(x) = λ, and each site serves the traffic with
parameter µ = 1.

3.2 Mean-Field Theory for Critical Traffic

Observing samples of queue growth processes in the model (Figure 1), one can
easily summarized that site traffic σ(x) seems to be a constant without difference
referring to the coordinates. This implies that a Mean-Field Theory can be
developed in order to get the critical traffic law of the open Jackson network
derived from the model.

Mean-Field Theory is an approximate technique widely used in statistical
physics, which treats the order-parameter as spatially constant [12]. For our
model, the Mean-Field approximation aims at an identical parameter σ such
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that
σ(x) = σ, ∀x ∈ Ld (12)

Three heuristic conditions, called as Mean-Field Theory assumptions, sup-
port this approximation.

1. Isotropy Lattice space, either infinite or periodic, is isotropic in geome-
try. Therefore, it is reasonable to assume that, at any moment, any site
forwards the first packet with a same probability to its neighbors. That is

ryx = ry

=
1

|A(y)|
(1− ry,∞) , ∀x ∈ A(y), ∀y ∈ Ld (13)

2. Homogeneity Further, it is assumed that the forwarding probability are
not different among all the sites. In addition to the formula (13) and the
fact |A(y)| ≡ A, ∀y ∈ Ld, we have

ry = r =
1

A
(1− r∞)

ry,∞ = r∞, ∀y ∈ Ld (14)

3. Spatial and temporal ergodicity It is assumed that the queue length
process q(x, k) is spatially ergodic, i.e.

E{q(x, k)} = lim
L→∞

1

|Ld|

∑

x∈Ld

q(x, k), a.s. (15)

And furthermore, it is also temporally ergodic as long as the stable state
q(x) , limk→∞ q(x, k) is achieved. Later on, we denote q̄ for either the
ensemble, or temporal, or spatial average (in the stable state if it exists)
of queue length processes on sites over the lattice.

From (13) and (14), note that λ(x) are identical to λ, the traffic equations
(10) is simplified to

σ(x) = λ+

[

1

A
(1− r∞)

]

∑

y

σ(y), ∀x ∈ Ld (16)

For linear equations (16) are symmetric to permutations of {σ(x)}, and the
number of equations are equal to the number of unknown variables, it is definite
that they have a unique solution set which is satisfying (12).

Then equation (16) are reduced to a single equation referring to σ:

σ = λ+ (1 − r∞)σ (17)

and finally it is solved that

σ =
λ

r∞
(18)
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The value of r∞ has not yet determined. We’d like to present the Mean-Field
version of Jackson Theorem first and then derive r∞ by applying the well-known
Little’s Law to the mean value of packet lifetime.

With help of the assumptions above, and the Jackson Theorem, we have

Theorem 1 Under the assumptions of Mean-Field Thoery, the queueing net-

work of the model converges to stable state if and only if

ρ ,
σ

µ
=

λ

r∞
< 1 (19)

And in the stable state, queue length on each site, q(x), conforms to an identical

geometric distribution:

P (q(x) = n) = (1− ρ)ρn, ∀n ≥ 0, ∀x ∈ Ld (20)

And the mathematical expectation of stable queue length is:

q̄ =
ρ

1− ρ
, ∀x ∈ Ld (21)

Now from the Little’s Law of arbitrary queueing system, it holds in the stable
state that

q̄ = λτ̄ (22)

where τ̄ is the mathematical expectation of packet lifetime in stable state.
When all the sites have identical queue length, lifetime of a packet is independent
upon the path that it pass through, and is equal to the free delay τ̄0 plus the
total time of being queued. Note that the packet must be queued τ̄0 times, and
apply the third assumption to regard queue length of each site on a packet path
is constant and equal to the average q̄, then we have

τ̄ = τ̄0 + τ̄0q̄ (23)

Apply (23) to (22), we obtain an equation

q̄ = λ(τ̄0 + τ̄0q̄)

and q̄ =
λτ̄0

1− λτ̄0
(24)

Recall the formulae (19), (21) in the Theorem 1 and compare them to the
equation (24), we have the following corollary, which represents the law of critical
traffic as a function of the free delay in the model2.

2The third assumption plays an important role here. Note that in formula (21), q̄ is, in
fact, the ensemble average; while in Little’s Law (24), q̄ is actually a time average. Without
the ergodicity assumption, the two formula could not be combined.
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Corollary 2 In the Mean-Field Theory of the model, the packet’s leaving prob-

ability and the site traffic are respectively

r∞ =
1

τ̄0
(25)

and σ = λτ̄0 (26)

And the stability condition is equivalent to

λ <
1

τ̄0
(27)

or equally to say the critical input traffic is λc =
1
τ̄0
.

The corollary, esp. the formula (26), shows that the free delay of a network
does significantly impact on the critical traffic. Actually, delay amplifyings input
traffic to site traffic linearly; or equivalently to say, free delay in a network
decrease the service capability of the sites.

It is emphasized that, in the Mean-Field Theory demonstrated above, there
is not any requirement to lattice dimensionality, nor its neighborhood type. The
analytical result of Theorem 1 and its Corollary is universally available, provided
the Mean-Field Theory assumptions are conforming to physical properties of the
model.

3.3 Simulation Samples

As the upper bound of input traffic for existence of stable state, the critical
behavior in an instance of the model may be demonstrated by its queue length
processes or the total number of packets in the entire system, say Q(k) ,
∑

x
q(x, k). When the running time k is large enough, the model is thought

of being stable if the total number Q(k) is almost unchanged as k goes larger.
If the input traffic exceeds the critical point, then Q(k) will increase steadily to
infinity. These phenomena are shown in Figure 2, where several sample cases
with variety of parameters or topology characteristics are provided. Figure 2(c)
is similar to the case that [3] has provided. However, we have extended the
results on critical traffic to far more general environments.

4 Queue Length Estimation

As any other Mean-Field approaches for statistical-physical systems, the Mean-
Field Theory presented here can not be treated as an accurate quantitative
result, though it almost accurately predicts the critical behavior of the model.

4.1 Queue Length of Stable State

Theorem 1 has given the mean value for the queue length on any site in the
stable state, if it exists. However, the result overestimates it a little.
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(a) d = 1, L = 100, τ̄0 = 25, λc = 0.04
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(b) d = 1, L = 200, τ̄0 = 50, λc = 0.02
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(c) von Neumann lattice, d = 2, L =
40, τ̄0 = 20, λc = 0.05
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(d) Moore lattice, d = 2, L = 30, τ̄0 =
1801
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≃ 10.0, λc = 0.10

Figure 2: Simulation samples to show the critical behavior. With whatever
dimensionality and whatever neighborhood, the model’s critical traffic λc is
almost equal to 1/τ̄0.

The overestimation may originated from approximating the model to an
open Jackson network. Each site in the model is defined as an M/D/1 queueing
system, while it becomes to M/M/1 in the Jackson network. It has been proved
that, for Markovian routing schemes, an M/D/1 queueing network has less
average queueing delay (or, equivalently, less queue length) in stable state than
its M/M/1 counterpart [13].

4.2 Fluid approximation of the Mean-Field Theory

On the other hand, when the value of input traffic exceeds the critical point, it
is presented in the simulations that queue length of a site approximately grows
as a linear function to both time and input traffic. To get this phenomenon
explained, we combine the assumptions of the Mean-Field Theory and (25)
with the Fluid approximation in queueing theory [14].
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Figure 3: Comparison simulation to Mean-Field Theory on a one-dimensional
sample with L = 200, k = 1000, for stable state queue length. The Mean-Field
Fluid approximation overestimates the average queue length.

The Fluid approximation, based on the law of large numbers, replaces discon-
tinuous stochastic arrival and departure processes with continuous deterministic
versions. Let α(x, t) and δ(x, t) represents, respectively, the two continuous pro-
cesses for packet arrival and departure happening at site x ∈ Ld in our model.
Then for the queue length approximation q(x, t), we have

q(x, t) = α(x, t) − δ(x, t), ∀x ∈ Ld (28)

Arrivals are resulted by both traffic input and forwarding events, and the
departure rate is constant µ = 1. Therefore, we have the Fluid version of (10).

α(x, t) = α(x, 0) +

∫ t

0

λdy +
∑

y∈A(x)

ryxδ(y, t), (29)

δ(x, t) = δ(x, 0) +

∫ t

0

dy = δ(x, 0) + t, ∀x ∈ Ld (30)

With (25), i.e. ryx = (1− 1/τ̄0)/A, another corollary is obtained.

Corollary 3 In the Mean-Field Theory of the model, approximated with Fluid

model, queue length at any site is growing linearly if the input traffic exceeds the

critical value, and the growth rate is

dq

dt
= λ−

1

τ̄0
= λ− λc, ∀x ∈ L, t → ∞ (31)
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The result is compared to simulation in a way with either time fixed and
input traffic variant or vise-versa (Figure 4). The comparison focuses on the
growth rate. It is reasonable that the Mean-Field Fluid approximation a little
underestimates the rate of queue growth because Fluid approaches replace the
stochastic processes with deterministic (D/D/1) systems. The larger the input
traffic is, the more the rate of queue growth estimated with Mean-Field Fluid
approach is close to the simulation.

5 Summary

The work is a part of research efforts on distributed network architectures. The
property of being distributed makes a network much more reliable but a little less
efficient than a hierarchical decentralized architecture, such as today’s Internet.
However, in some circumstances, the network is so dynamically organized (such
as ad hoc network) that reliability is far important rather than the efficiency,
even it is not possible to build any centralized control or any hierarchy. In some
other circumstances such as metropolitan-area-networks, because the speed of
physical links has greatly increased than the age of early Internet, distributed
architecture may perform better in both reliability and efficiency.

This paper develops a modelling method for studying distributed network
behaviors. The introduced Cellular Automata model can be applied not only
to analyzing but also to designing architectures, where a topology like regular
lattices is able to be implemented. It promotes the previous works of simulation
to an approximated analytical result, where the law of critical traffic is proved
under a certain set of Mean-Field assumptions. Being advantageous to finite
simulations, the analytical result refines the conditions of the law of critical
traffic. Under these conditions, i.e. isotropy, homogeneity and ergodicity, the
critical traffic is determined by the free delay of the network. Therefore, one
may improve the critical behavior of a network by improving the free delay of
its topology equivalently.

On the other hand, the Mean-Field Theory is not able to accurately estimate
some quantities such as average queue length in the model. Generally speaking,
the farther the input traffic is away from the the critical point, the better the
Mean-Field theory estimates queue length behavior, no matter what kind of
state the model is in, stable or far from stability. In practice, quality control
protocol may predict the queueing tendency under either definitely heavy or
definitely light input and do actions in response.

It is true that, once the assumptions are far from reality, the Mean-Field
Theory will be broken. For example, when some sites in the model cease work-
ing, packets must bypass these sites and therefore the isotropy of the model is
destroyed. Since the critical behavior depends upon the maximum site traffic,
it could be easily derived from (10) and has been demonstrated in simulations
that in such a case the critical input traffic is significantly less than that of
the Mean-Field Theory, and improving free delay is still important because it
upper-bounds the maximum-possible critical traffic.
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Figure 4: Comparison the simulation results to Mean-Field Fluid approxima-
tion on one-dimensional samples with L = 200, for queue length growth far from
stability. The Mean-Field Fluid approximation is near to but a little underesti-
mates the queue growth rate.
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Quantitatively analyzing non-isotropic, non-homogeneous and non-ergodic
models, which are more close to real systems, are of the successive work after
this paper. Like studying any new statistical-physical systems, one should get
deep into the local details of reaction, where the fluctuations are ignored by the
Mean-Field Theory.
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