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Renormalization group theory for the phase field crystal equation
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We derive a set of rotationally covariant amplitude equations for use in multiscale simulation of
the two dimensional phase field crystal (PFC) model by a variety of renormalization group (RG)
methods. We show that the presence of a conservation law introduces an ambiguity in operator
ordering in the RG procedure, which we show how to resolve. We compare our analysis with
standard multiple scales techniques, where identical results can be obtained with greater labor, by
going to sixth order in perturbation theory, and by assuming the correct scaling of space and time.
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I. INTRODUCTION

A fundamental theoretical and computational chal-
lenge in materials modeling is that of simultaneously cap-
turing dynamics occurring over a wide range of length
and time scales, under processing conditions. A clas-
sic example of such a multiscale problem is dendritic
growth, a phenomenon seen in the solidification of un-
dercooled melts, which involves the capillary length ∼
10−9m, the scale of the pattern ∼ 10−6m, and the diffu-
sion length ∼ 10−4m, which together span length scales
over five orders of magnitude, and heat/solute trans-
port through diffusion which occurs on time scales of
∼ 10−3s. Only recently, after considerable advances
in computing technology, and through the use of so-
phisticated computational techniques [1, 2, 3], has this
problem become tractable in three dimensions. Al-
though a number of computational approaches[4, 5] in-
cluding quasi-continuum methods[6, 7, 8, 9], the hetero-
geneous multiscale method[10, 11], multi-scale molecular
dynamics[12, 13, 14, 15], multigrid variants[16] and ex-
tensions of the phase field model[17] have been proposed,
they all appear to have significant limitations. Develop-
ing a “handshake” algorithm, to seamlessly integrate the
transition between scales, is a common problem. Also,
most models appear to be capable of handling only a
limited number of crystallographic orientations, with a
few isolated defects.

Elder et al. [18, 19] recently proposed a continuum,
non-linear partial differential equation, which they called
the phase field crystal (PFC) model, for realistically
describing materials processing phenomena in polycrys-
talline materials. The PFC equation describes the evo-
lution of the time averaged density field in the mate-
rial, subjected to the essential constraint of mass con-
servation. While averaging the density makes it possible
for the model to capture phenomena over diffusive time

scales (not possible with molecular dynamics), the spa-
tially periodic variations, with a wavelength on the order
of the inter-atomic spacing, allow it to incorporate lattice
defects such as vacancies. These rapid spatial variations,
however, are also the bane of the model, as they neces-
sitate the use of a uniformly fine computational mesh
whose grid spacing approaches the interatomic separa-
tion. Thus the PFC model is computationally expen-
sive for mesoscale problems (such as dendritic growth),
although still considerably better than a molecular dy-
namics calculation.

We have recently described a theoretical approach to
this difficulty [20, 21], presenting a heuristic renormal-
ization group (RG) [22] method to coarse-grain the PFC
equation and obtain equations of motion for the ampli-
tude and phase of the periodic density field. Using these
variables, it is possible to reconstruct the original field to
a certain order of approximation. The main advantage of
such a description is that the amplitude and phase of the
density field vary on length scales much larger in com-
parison to those of the field itself, which enables us to
use a coarser mesh to speed up calculations (see [20] for
details on accuracy and speedup). Furthermore, the rel-
ative uniformity of these variables permits solution of the
equations governing them on an adaptive grid which, we
anticipate, will further improve computational efficiency.
We emphasise that the RG procedure is more than a
naive coarse-graining in real space of the density, because
it uses the dynamics inherent in the underlying equation
to project out the long-wavelength, small-frequency be-
havior. The essential effect of this distinction is that
valuable aspects of the phase field crystal model, such as
its native inclusion of elasticity, are preserved. In [20, 21]
we verified explicitly, by numerical calculation, how the
RG equations are able to accomplish this, and thus are
suitable for dealing with polycrystalline systems.

The main purpose of the present article is to present
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full details of the systematic calculation to derive such
coarse-grained equations from the PFC equation. A sec-
ondary goal is to compare and contrast the variety of
techniques that are available to derive coarse-grained
equations of motion. A rather surprising finding of our
work was that when we followed naively the “cookbook
recipe” for each method, our results were not identical,
with the RG methods yielding a form of the amplitude
equation, slightly different from that derived by the clas-
sical method of multiple scales. The PFC equation obeys
a local conservation law, and while this by itself can lead
to a variety of interesting features[23], it also brings to the
fore an ambiguity with the usual implementation of the
renormalization procedure, something that is not unique
to conservation laws. This ambiguity is essentially an op-
erator ordering one, and can be remedied in a straight-
forward way. Once done, all methods yield the same am-
plitude equation, even though the technical details are
quite distinct in the different methods. As a pedagogi-
cal exercise, we present the analysis for the Van der Pol
oscillator in the Appendix, once again obtaining consis-
tent results from all methods when using the approach
described herein. Our main conclusion is that the renor-
malization group method is still considerably easier to
implement than competing approaches, and in particular
requires no knowledge of the scaling relationship between
space and time while achieving full rotational covariance
at lowest order in perturbation theory.

In the remainder of this Introduction, we review the
main conceptual developments leading up to the tech-
niques described in this paper. It is now relatively stan-
dard in non-linear pattern formation problems to use am-
plitude equations to uncover universal features of pat-
tern forming systems. The formalism, first introduced
by Newell, Whitehead, and Segel (NWS) [24, 25] to de-
scribe periodic patterns in Rayleigh-Bénard convection,
offers a way to extract the spatio-temporal envelope of
these patterns, which then allows one to predict the dy-
namics qualitatively with very little information about
microscopic details. Unfortunately however, the NWS
equation, as originally constructed, can only describe the
dynamics of patterns oriented along the same fixed direc-
tion, everywhere in space, whereas physical systems often
produce complex mosaics of patterns with no particular
orientational preference. Such mosaics arise in real sys-
tems which are invariant under rotations, and hence any
equation which is used to study them must also have
the crucial property of rotational covariance, something
that is lacking in the NWS equation. Equations with an
orientational bias can be very difficult to implement nu-
merically, especially on systems with arbitrarily oriented
patterns. Nevertheless, the NWS equation embodies the
important notion of coarse-graining, which has played
a significant role in shaping the modern day theory of
pattern formation [26], and also forms the basis of our
approach to multiscale modeling with the PFC equation.

Gunaratne et al. [27] first derived a rotationally co-
variant form of the NWS equation using the method

of multiple scales [28, 29, 30, 31], where they assumed
isotropic scaling of the spatial variables. They showed
that the spatial operator in the NWS equation could be
symmetrized, by systematically extending the calculation
to higher orders in the perturbation parameter ǫ, the re-
duced Rayleigh number. They explained that the finite
truncation of the perturbation series destroyed the rota-
tional symmetry of the operator, which could however
be recovered at a higher order. Another important con-
clusion of their work was that the qualitative behavior
of pattern formation remained unchanged if one ignored
higher order corrections, provided the equation itself was
rotationally covariant. A drawback of their calculation,
however, was (as with any application of the method of
multiple scales), the need to guess a priori , the correct
scaling of space-time variables. In addition, their cal-
culation required gradual accumulation of operators and
terms up to O(ǫ4), before a rotationally covariant equa-
tion emerged.

A more systematic approach emerged shortly after:
Chen et al. showed how to perform reductive pertur-
bation theory using RG methods[32], and obtained the
NWS equation for the Swift-Hohenberg equation[33] by
renormalizing the leading secular divergences at each or-
der. Graham[34] subsequently showed that, in fact, this
method gave the fully rotational covariant equations, if
all secular terms are renormalized and a careful choice
of operator splitting is used. Calculations involving the
RG typically produce elegant and accurate uniformly
valid approximations for ordinary differential equations
(ODEs), starting from simple perturbation series where
no knowledge of the scaling present in the system is
exercised[32]. For partial differential equations (PDEs),
the same approach is successful, but generates a tedious
number of perturbation terms at higher orders. This dif-
ficulty arises from the need to explicitly construct secular
solutions of the highest possible order, at every order in ǫ,
and from a practical standpoint equals (if not outweighs)
the advantage of requiring no prior insight into the prob-
lem. For this reason, calculations employing this method
for PDEs have rarely gone beyond O(ǫ). The key advan-
tage of the RG method, however, is that when carefully
performed, the calculation yields a rotationally covariant
amplitude equation at a much lower order in ǫ compared
to the method of multiple scales, as was shown by Gra-
ham [34].

Nozaki et al. [35, 36], have developed a more abstract
version of the perturbative RG for weakly non-linear
PDEs, called the “proto-RG” scheme. They argue that if
one is willing to sacrifice some of the purely mechanical
aspects of the conventional RG by taking cognizance of
the system’s properties, such as those exhibited by the
governing differential equation, one can obtain a rotation-
ally covariant amplitude equation to O(ǫ) without having
to construct any secular solutions. By computing mini-
mal particular solutions, usually obtained by a straight-
forward inspection, one can even obtainO(ǫ2) corrections
with only a little more algebra. They illustrated the rela-
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tive simplicity of this method by deriving the rotationally
covariant form of the NWS equation to O(ǫ2), as previ-
ously derived by Gunaratne et al. [27]. Shiwa [37] further
demonstrated the efficacy of this scheme by obtaining the
well-known Cross-Newell phase equation [38, 39], which
describes phase dynamics of patterns generated by the
Swift-Hohenberg equation. A drawback of this approach
is in the selection of the so called “proto-RG” operator,
which turns out to be non-unique in general. Nozaki et
al. show, however, that the operator is uniquely spec-
ified, provided we insist on the lowest order differential
operator possible.
As the reader will have no doubt realized from this

synopsis, several methods and variants exist for deriv-
ing envelope equations from order parameter equations
(OPEs) that produce predominantly periodic patterns.
Although one may argue that some of these methods are
essentially variants of perturbative RG theory for PDEs,
they are structurally very different. It is thus a very in-
structive exercise to compare the defining properties of
each of these methods in the context of a single micro-
scopic OPE. We present such a detailed study in this
paper using the PFC equation, which unlike the Swift-
Hohenberg model, has not been extensively studied.
The article is organized as follows. To set the context

for our work, we briefly introduce the PFC model in sec-
tion II. In section III we present a detailed derivation
of an amplitude equation from the PFC model using a
heuristic approach. In section IV, we use the proto-RG
method to derive the amplitude equation more systemat-
ically. We attempt to verify these calculations indepen-
dently in section V using the method of multiple scales.
A 1-D derivation via the conventional RG method is pre-
sented for completeness in section VI. We find that while
the proto-RG and RG results are consistent, they do not
agree with the other calculations, due to an operator or-
dering ambiguity not previously noticed. We remedy this
in VII, and conclude with some remarks in section VIII.

II. THE PHASE FIELD CRYSTAL EQUATION

The phase field crystal model proposes a sixth or-
der non-linear partial differential equation for describing
the space-time evolution of the time-averaged, conserved
density variable ψ(x, t), of a material. As has been shown
[18, 19], this equation has the potential to accurately
model a variety of key materials processing phenomena,
including heterogeneous nucleation and grain growth, liq-
uid phase epitaxial growth, ductile fracture mechanics,
dislocation mechanics [40], and plasticity. An important
feature which differentiates it from another popular con-
tinuum material model, the phase field model [17], is its
incorporation of elasticity in the free energy functional
through terms that guarantee gradients in the equilib-
rium density field, for certain values of the control pa-
rameters. Crucial to the construction of this free energy,
is the observation that elasticity is a natural property of

a system which is characterized by periodic fields. We
refer the reader to the exhaustive article by Elder and
Grant [19] for a detailed description of the model and its
applications.
From the point of view of pattern formation theory,

the PFC equation is the conserved analog of the simplest
form of the Swift-Hohenberg equation (with only the cu-
bic non-linearity), and is written as

∂tψ = ∇2
[{
(1 +∇2)2 − ǫ

}
ψ + ψ3

]
+ ζ. (1)

Here, ǫ is the scaled undercooling, a parameter akin to
the modified Rayleigh number, controlling the stability of
the uniform phase ψ̄ (liquid) to the appearance of either
a periodic striped phase or a periodic hexagonal phase
(both crystalline solids), and ζ is the conserved Gaussian
noise which accounts for thermal fluctuations in the sys-
tem. A phase-diagram illustrating the phase boundaries
and coexistence curves in ǫ − ψ̄ space is given in [19].
For present purposes we will concern ourselves only

with the uniform to hexagonal phase transition (but are
not in any way restricted to it), and will disregard ζ
in view of its relative unimportance in describing phase
transition kinetics. In a single mode approximation, a
hexagonal pattern is described by

ψ(x, t) =
3∑

j=1

Aj(t)e
ikj ·x + ψ̄ + c.c., (2)

where k1 = k0(−~i
√
3/2 − ~j/2), k2 = k0~j and k3 =

k0(~i
√
3/2 −~j/2) are the reciprocal lattice vectors, k0 is

the wavenumber of the pattern, ~i and ~j are unit vectors
in the x- and y-directions, Aj are the complex amplitude
functions, and c. c. denotes complex conjugate. We point
out that a striped pattern, with the stripes parallel to the
x axis, can be represented by the same equation above
with A1 = A3 = 0 and A2 6= 0. As shown in Fig. 1 how-
ever, the PFC equation describes the evolution of several
such hexagonally patterned crystals of arbitrary orienta-
tion, that collide to form grain boundaries. While the
pattern remains periodic within each crystal, there is a
break in the periodicity across the boundaries. Equation
(2) can be made to describe such a system by allowing
the Aj to be spatially varying, i. e. Aj(x, t). Our goal
is then to derive evolution equations for Aj(x, t), which
along with Eq. (2) can be used to reconstruct ψ(x, t)
in a one-mode approximation. Note that Aj(x, t) now
contains information about both the envelope function
(amplitude modulus), as well as the orientation (phase
angle) of each grain, but varies on a much larger length
scale.
In order to proceed with our analysis, which is essen-

tially perturbative, we identify ǫ as a small parameter,
in powers of which we shall expand ψ about the steady
state solution. We point out that the PFC model stip-
ulates no such restrictions on the value of ǫ, other than
ǫ ≥ 0, whereas it is natural to expect our treatment to
restrict the validity of the amplitude equations so derived
to small values of ǫ≪ 1.
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(a) t = 300

(b) t = 450

(c) t = 750

FIG. 1: Heterogeneous nucleation, crystal growth, and for-
mation of grain boundaries in a 2-D film from three randomly
oriented seeds, as simulated by the PFC model. The field
plotted is the density variable ψ(x, t). Note that the pattern
is periodic inside each grain.

III. HEURISTIC RG CALCULATION

We now present a derivation of the amplitude equation
from Eq. (1) using linear stability analysis and a short-
cut motivated by experience. An idea along these lines
was previously implemented by Bestehorn and Haken
[41] to derive an OPE (similar to the Swift-Hohenberg
equation) for modeling traveling waves and pulses in
two-dimensional systems, but not for deriving amplitude
equations.
We pose Eq. (1) in a more convenient form by scaling

ψ by
√
ǫ, and calling this new variable ψ. In this manner,

Eq. (1) becomes

∂tψ = ∇2(1 +∇2)2ψ + ǫ∇2(ψ3 − ψ). (3)

Let us now consider the stability of the uniform phase
solution ψ̄ to the formation of the hexagonal pattern by

adding to it a small perturbation ψ̃, so that ψ = ψ̄ + ψ̃.
Substituting in Eq. (3) and linearizing about ψ̄ we obtain

∂tψ̃ = ∇2
[
ǫ(3ψ̄2 − 1) + (1 +∇2)2

]
ψ̃ (4)

If ψ̃ is a hexagonal instability in the form given by the
spatially dependent part of Eq. (2), then using Aj(t) =
A0j exp(ωjt), where A0j are complex constants, and sub-
stituting in Eq. (4), we obtain the discrete dispersion
relation

ωj = −|kj |2
[
ǫ(3ψ̄2 − 1) +

(
1− |kj |2

)2]
, (5)

after applying orthogonality conditions. Here ωj predicts
the growth or decay rate of a hexagonal instability in the
spatially uniform system. Note that for real values of ψ̄,
ωj is always real. Thus, a necessary condition for the
instability to grow, i. e. for ωj to take on positive values,
is 3ψ̄2 − 1 < 0, or equivalently 3ψ̄2 − ǫ < 0 in original
variables. The most dangerous wave-number is the locus
|kj | = k0 = 1.
We now consider spatial modulations in the amplitude

about this preferred wave-number, i. e.

Aj(t) 7−→ ARj(x, t) = A0je
ωj(Q)teiQ·x, (6)

where Q = Qx
~i+Qy

~j is a perturbation vector, and ARj

is the renormalized amplitude, whose implication will be
clarified in a following paragraph. Consistent with Eq.
(5), we can now write the exponent controlling growth
rate along each lattice vector as

ωj(Q) = |Q+kj |2
[
ǫ(1− 3ψ̄2)−

(
1− |Q+ kj |2

)2]
. (7)

We now replace the Fourier space variables in the above
equation by their real space counterparts so that,

ωj ≡ ∂t , Qx ≡ −i∂x , Qy ≡ −i∂y , (8)

thus obtaining,

|Q+ kj |2 ≡ 1−∇2 − 2ikj · ∇ = 1− Lkj
. (9)
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Combining Eqs. (7) and (9), the space-time amplitude
variations along each lattice vector is given by the sixth
order linear partial differential equation

∂tARj + (1− Lkj
)L2

kj
ARj + ǫ(1− 3ψ̄2)Lkj

ARj

= ǫ(1− 3ψ̄2)ARj . (10)

We also need nonlinear terms, which play a vital role in
pattern dynamics near onset of the instability, to com-
plement the above set of equations. There are a cou-
ple of different ways to obtain these terms. One can
directly look for the nonlinear part in the normal form
equations [42] for the dynamics of Aj in a hexagonal ba-
sis [27, 43, 44]. These equations have been widely used
to study the dynamics and stability of exactly periodic
rolls and hexagonal patterns originating from the static
conducting state in Rayleigh-Bénard convection. Alter-
natively, one can derive these terms to a particular order
in ǫ through a renormalization group (or multiple scales)
analysis of the governing differential equation. Here, we
choose the latter approach, starting from Eq. (3), but
only going far enough in the RG analysis to identify the
correct form of the terms.
We start with a perturbation series in ǫ

ψ = ψ0 + ǫψ1 + ǫ2ψ2 + ǫ3ψ3 + . . . (11)

where ψ0 is a steady state solution and ψj( 6=0) are the
higher order corrections. As we are interested in ampli-
tude variations in the hexagonal pattern, we pick ψ0 to
be the steady hexagonal solution, i. e. Eq. (2) with Aj(t)
replaced by Aj(t → ∞). Substituting in Eq. (3), we
obtain the following equation at O(ǫ):
[
∂t −∇2(1 +∇2)2

]
ψ1 = (∂t − LP)ψ1 = ∇2(ψ3

0 − ψ0),
(12)

where

∇2(ψ3
0 − ψ0) = (1− 3ψ̄2)

3∑

j=1

Aje
ikj ·x

−3A1

(
|A1|2 + 2|A2|2 + 2|A3|2

)
eik1·x

−3A2

(
2|A1|2 + |A2|2 + 2|A3|2

)
eik2·x

−3A3

(
2|A1|2 + 2|A2|2 + |A3|2

)
eik3·x

−6A∗
2A

∗
3ψ̄e

ik1·x − 6A∗
1A

∗
3ψ̄e

ik2·x

−6A∗
1A

∗
2ψ̄e

ik3·x + other terms + c.c. (13)

The superscript ‘*’ denotes complex conjugation. To this
order, the “other terms” are functions of complex expo-
nentials that do not lie in the null space of the linear dif-
ferential operator in Eq. (12), i. e. they are non-resonant
terms. Therefore, they do not contribute to unbounded
growth in ψ1. The terms listed in Eq. (13) are, how-
ever, resonant with the operator, and their coefficients
need to be renormalized in order to bound the solution
obtained by truncating the perturbation series at O(ǫ).
The renormalization procedure allows the amplitude Aj ,
previously constant, to now have space-time variations

that absorb secular divergences. We assert that the non-
linear terms in the amplitude equation to O(ǫ) must be
the renormalized coefficients of the exponential terms in
resonance with the differential operator. For example,
the terms complementing the space-time operator along
basis vector k1 must be

ǫ(1− 3ψ̄2)AR1 − 3ǫAR1

(
|AR1|2 + 2|AR2|2 + 2|AR3|2

)

− 6ǫA∗
R2A

∗
R3ψ̄, (14)

where the ARj are the renormalized amplitude functions
(no longer constants). Note that these terms are com-
pletely identical to those predicted by normal form the-
ory for a hexagonal basis [27, 44]. Combining Eqs. (10)
and (14) we write the amplitude equation as

∂tA1 = −(1− Lk1
)L2

k1
A1 − ǫ(1− 3ψ̄2)Lk1

A1

+ǫ(1− 3ψ̄2)A1 − 3ǫA1(|A1|2 + 2|A2|2 + 2|A3|2)
−6ǫA∗

2A
∗
3ψ̄, (15)

for lattice vector k1, and permutations thereof for k2 and
k3, where we have replaced the variables ARj by Aj .
We observe that the leading term in Eq. (14) is consis-

tent with the right hand side of Eq. (10), thereby provid-
ing a natural overlapping link about which to match the
linear stability and perturbation results. In a more ab-
stract sense, we draw a parallel between this method and
the technique of matched asymptotic expansions in sin-
gular perturbation theory, where inner and outer asymp-
totic solutions are matched over a common region of va-
lidity in the solution space, to obtain a globally valid
solution. This completes our derivation of the amplitude
equation via a heuristic or “quick and dirty” approach.
For future reference, we will call Eq. (15), the QDRG
(quick and dirty RG) equation, and the method used
to obtain it as the QDRG (or heuristic) method. As we
have already demonstrated the remarkable accuracy with
which the QDRG equation mimics the PFC equation in a
previous article [20], we will refrain from presenting any
new evidence to that effect here.
To summarize the procedure, we first conducted a lin-

ear stability analysis of the scaled PFC equation about
the uniform state to obtain a linear differential operator
controlling the space-time evolution of the complex am-
plitude Aj of the hexagonal pattern. We superimposed
on this dispersion relation periodic modulations of the
amplitude, and from the dispersion relation in terms of
these latter modulations, identified the gradient terms in
the amplitude equation. We then carried out the first
step in a conventional RG analysis to obtain the form of
the nonlinear terms that should accompany this differ-
ential operator, and combining the two results, we wrote
down the amplitude equation for the hexagonal pattern.
In this respect, our approach lacks the full mathemati-
cal rigor of a conventional RG reduction or a multiple
scales derivation, which gives it a somewhat “dirty” ap-
pearance. However, we made no assumptions about the
scaling of the space-time variables in the system, nor did
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we have to construct any secular solutions so far. We
will comment on extending this method systematically
to higher orders in ǫ in the following section.

IV. PROTO-RENORMALIZATION GROUP

DERIVATION

With the proto-RG method, our starting point is
Eq. (3) with the perturbation series Eq. (11). Thus, to
O(ǫ) we obtain Eq. (12), whereas to O(ǫ2) we get

(∂t − LP)ψ2 = ∇2(3ψ2
0ψ1 − ψ1). (16)

The structure of Eq. (12) allows us to infer that its sim-
plest particular solution will take the form

ψ1 =

3∑

j=1

P1j(x, t)e
ikj ·x +

3∑

j=1

Q1je
2ikj ·x

+
3∑

j=1

R1je
3ikj ·x +

3∑

j=1

S1je
isj ·x

+

2∑

j=1

T1je
itj ·x +

2∑

j=1

U1je
iuj ·x

+

2∑

j=1

V1je
ivj ·x + c. c., (17)

where

s1 = −~i
√
3

2
−~j 3

2
, s2 =~i

√
3

2
−~j 3

2
, s3 = s2 − s1

t1 = −~i 3
√
3

2
−~j 1

2
, t2 =~i

3
√
3

2
−~j 1

2

u1 = −~i
√
3

2
−~j 5

2
,u2 =~i

√
3

2
−~j 5

2

v1 = −~i
√
3−~j 2,v2 =~i

√
3−~j 2, (18)

are non-resonant modes generated by the cubic term.
Note that we have explicitly denoted the space-time de-
pendence of the secular coefficients P1j(x, t), which are
polynomials in x, y and t, whereas by inspection, the
other coefficients Q1j , R1j , S1j , T1j, U1j and V1j can be
complex constants. Specifically, P11 satisfies

(∂t − LP)P11e
ik1·x = (1− 3ψ̄2)A1e

ik1·x

−3A1

(
|A1|2 + 2|A2|2 + 2|A3|2

)
eik1·x

−6A∗
2A

∗
3ψ̄e

ik1·x

⇒
(
∂t + (1− Lk1

)L2
k1

)
P11 = (1 − 3ψ̄2)A1

−3A1

(
|A1|2 + 2|A2|2 + 2|A3|2

)
− 6A∗

2A
∗
3ψ̄

≡ Lk1
P11, (19)

where Lkj
is the “proto-RG” operator for lattice vector

kj . From the above equation it is quite obvious that
P11 cannot be constant for any non-trivial solutions, and
likewise for P12 and P13.
As P1j are secular, we now renormalize [32] ψ about

arbitrary regularization points X and T , as in the con-
ventional RG method, to get

ψ = ψ̄ +

3∑

j=1

ARj(X, T )e
ikj ·x

+ǫ

3∑

j=1

(P1j(x, t)− P1j(X, T )) e
ikj ·x

+ . . .+ c.c. (20)

where ARj is now the renormalized amplitude that ab-
sorbs secular divergences. Since ψ must be independent
of these regularization points, we have

LX,T

k1
ψ = 0

⇒ LX,T
k1

AR1(X, T ) = ǫLX,T
k1

P11(X, T ) + ǫ2LX,T
k1

P21(X, T )

+ǫ3LX,T

k1
P31(X, T ) + . . . (21)

after applying orthogonality conditions. This is the gen-
eral form of the proto-RG equation for weakly nonlinear

oscillators [36]. LX,T

k1
is the proto-RG operator Lk1

in

Eq. (19), with variables x and t replaced by X and T
respectively. Changing back from (X, T ) → (x, t) and
ARj → Aj , and using Eqs. (19) and (21), we can write
the amplitude equation along lattice vector k1 to O(ǫ)
explicitly as

∂tA1 = −(1− Lk1
)L2

k1
A1 + ǫ(1− 3ψ̄2)A1 − 3ǫA1(|A1|2

+2|A2|2 + 2|A3|2)− 6ǫA∗
2A

∗
3ψ̄, (22)

with appropriate permutations for A2 and A3. Note
that in using Eq. (19), we have replaced Aj by their
renormalized counterparts ARj as is consistent with the
proto-RG procedure, before reverting to the former nota-
tion for amplitude. Upon comparing the two amplitude
equations obtained so far, Eqs. (15) and (22), we note
that the QDRG derived equation carries the extra term
ǫ(1 − 3ψ̄2)Lk1

A1. Evidently, the QDRG and the proto-
RG methods produce different amplitude equations when
applied to the PFC equation, the extent of this difference
controlled by the parameter ǫ(1− 3ψ̄2).
As mentioned earlier, the principal advantage of using

the proto-RG method is the relative ease with which one
can progress to higher order calculations. Let us now
extend this calculation to O(ǫ2). We need ψ1 in order
to evaluate the right hand side of Eq. (16), which means
that we additionally need to evaluate Q1j, R1j , S1j , T1j ,
U1j and V1j . The constant values of these terms can be
determined by inspection. For example, by analogy with
P11, we see that Q11 must satisfy

(∂t − LP)Q11e
2ik1·x = −12

(
A2

1ψ̄ + 2A1A
∗
2A

∗
3

)
e2ik1·x
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⇒
(
∂t + (4− L2k1

)(L2k1
− 3)2

)
Q11 =

−12
(
A2

1ψ̄ + 2A1A
∗
2A

∗
3

)
. (23)

Unlike Eq. (19) however, we see that Eq. (23) permits a
constant solution for Q11, which in turn is determined to
be

Q11 = −1

3

(
A2

1ψ̄ + 2A1A
∗
2A

∗
3

)
. (24)

Similarly, constant solutions for the other coefficients are

Q12 = −1

3

(
A2

2ψ̄ + 2A∗
1A2A

∗
3

)

Q13 = −1

3

(
A2

3ψ̄ + 2A∗
1A

∗
2A3

)

R1j = −
A3

j

64

S11 = −3

4

(
A2

1A3 + 2A1ψ̄A
∗
2 +A∗

2
2A∗

3

)

S12 = −3

4

(
A1A

2
3 + 2A∗

2ψ̄A3 +A∗
2
2A∗

1

)

S13 = −3

4

(
A2A

2
3 + 2A∗

1ψ̄A3 +A∗
1
2A∗

2

)

T11 = −A
2
1A

∗
3

12

T12 = −A
2
3A

∗
1

12

U11 = −A1A
∗
2
2

12

U12 = −A3A
∗
2
2

12

V11 = −A
2
1A

∗
2

12

V12 = −A
2
3A

∗
2

12
. (25)

We know that the particular solution to Eq. (16) has the
form

ψ2 =

3∑

j=1

P2j(x, t)e
ikj ·x + . . .+ c. c. (26)

where we have shown only the resonant part of the so-
lution. The terms on the right hand side of Eq. (16),
resonant with lattice vector k1, evaluate to

Φ = [
(
1− 3ψ̄2 − 6(|A1|2 + |A2|2 + |A3|2)

)
(1− Lk1

)P11

−3A2
1 (1− Lk1

)P ∗
11 − 6A1A2 (1− Lk1

)P ∗
12

−6A1A3 (1− Lk1
)P ∗

13 − 6ψ̄A∗
3 (1− Lk1

)P ∗
12

−6ψ̄A∗
2 (1− Lk1

)P ∗
13 − 6A1A

∗
2 (1− Lk1

)P12

−6A1A
∗
3 (1− Lk1

)P13 − 6A2ψ̄S11 − 3A2
2U11

−6A3A
∗
1T11 − 6A2A

∗
1V11 − 6A∗

1A
∗
3S11 − 3A∗

3
2S12

−3A∗
2
2S∗

12 − 6A3ψ̄S
∗
13 − 6A∗

1A
∗
2S

∗
13 − 3A2

3T
∗
12

−6A2A
∗
3Q

∗
12 − 6A3A

∗
2Q

∗
13 − 3A∗

1
2R11

−6A2A3Q11 − 6ψ̄A∗
1Q11]e

ik1·x. (27)

Thus P21 satisfies

Lk1
P21 = Φ. (28)

The non-constant terms in Φ (terms containing P1j) are
now ignored [35, 36] while the remaining terms are de-
termined from their constant solutions, Eqs. (24) and
(25). Thus, using Eq. (21) we can write the amplitude
equation along lattice vector k1 to O(ǫ2) as

∂tA1 = −(1− Lk1
)L2

k1
A1 + ǫ(1− 3ψ̄2)A1 − 3ǫA1(|A1|2

+2|A2|2 + 2|A3|2)− 6ǫA∗
2A

∗
3ψ̄ + 11ǫ2ψ̄A2

1A2A3

+ǫ2ψ̄2A1(2|A1|2 + 9|A2|2 + 9|A3|2)
+11ǫ2ψ̄(2|A1|2 + |A2|2 + |A3|2)A∗

2A
∗
3

+
27

2
ǫ2A∗

1A
∗
2
2A∗

3
2 + 5ǫ2A1|A1|2

(
|A2|2 + |A3|2

)

+12ǫ2A1|A2|2|A3|2 +
3

64
ǫ2A1|A1|4

+
5

2
ǫ2A1|A2|4 +

5

2
ǫ2A1|A3|4, (29)

with cyclic permutations for lattice vectors k2 and k3.
We can in principle extend the QDRG method also

to higher orders by performing the same steps above,
until the point where we identify the resonant terms on
the right hand side of Eq. (16), i.e. Φ. Combining this
result with Eqs. (10) and (14) we can then obtain the
amplitude equation Eq.(29), but with an extra term ǫ(1−
3ψ̄2)Lk1

A1.
In summary, both the proto-RG and the QDRG can be

calculated including terms of O(ǫ2), and the results dif-
fer by a small but non-zero term. Which, if any, of these
calculations is correct? And what is the origin of the
discrepancy between the two methods? Is the QDRG re-
sult not to be trusted, being derived heuristically? Faced
with two seemingly incompatible, although very similar
results, it is natural to attempt an independent test of
the analysis, which we did using the standard method of
multiple scales. This calculation is presented below, but
owing to technical complications arising from the inter-
ference of modes and the need to go to sixth order of
perturbation theory, we found it only feasible to perform
the calculation for the case of one dimension. Neverthe-
less, we will see that, in fact, the QDRG result, Eq. (15),
is more correct. The small discrepancy between this re-
sult and the proto-RG result is finally resolved in Section
VII.

V. MULTIPLE SCALES DERIVATION

We now re-derive the amplitude equation using the
traditional method of multiple scales. As the primary
purpose of this derivation is to verify the previous cal-
culations via an independent method, we stick to a one
dimensional analysis here that considerably simplifies the
algebra. For convenience we use δ2 = ǫ, and write Eq. (3)
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in 1-D as
[
∂t − ∂2x

(
1 + ∂2x

)2]
ψ = δ2∂2x(ψ

3 − ψ). (30)

The basic premise of the multiple scales analysis is that
while the pattern itself varies on the scale of its wave-
length (2π/k0), its amplitude varies on much larger
length and time scales. It is then appropriate to intro-
duce slowly varying arguments

X = δx , T = δ2t (31)

for the envelope function A(X,T ). This scaling was pre-
viously applied by Gunaratne et al. [27] to the Swift-
Hohenberg equation with success (based on the form of
the discrete dispersion relation), and as the PFC equation
is essentially a conserved analog of the Swift-Hohenberg
equation we anticipate that the same scaling holds here.
Derivatives scale as follows

∂x → ∂x + δ∂X

∂2x → ∂2x + 2δ∂X∂x + δ2∂2X
∂t → δ2∂T , (32)

whereas the operator

∂2x
(
1 + ∂2x

)2 →
6∑

j=0

δjLj (33)

such that

L0 = ∂2x
(
1 + ∂2x

)2

L1 = 4∂X∂
3
x

(
1 + ∂2x

)
+ 2∂X∂x

(
1 + ∂2x

)2

L2 = 4∂2X∂
4
x + 10∂2X∂

2
x

(
1 + ∂2x

)
+ ∂2X

(
1 + ∂2x

)2

L3 = 12∂3X∂
3
x + 8∂3X∂x

(
1 + ∂2x

)

L4 = 13∂4X∂
2
x + 2∂4X

(
1 + ∂2x

)

L5 = 6∂5X∂x

L6 = ∂6X . (34)

We now expand ψ in a perturbation series in δ to get

ψ = ψ0 + δψ1 + δ2ψ2 + δ3ψ3 + . . . . (35)

Using Eq. (32) and the above series, the δ expansion of
the nonlinear term in Eq. (30) can be written as

∂2x(ψ
3 − ψ) = ∂2x(ψ

3
0 − ψ0)

+δ[∂2x(3ψ
2
0ψ1 − ψ1) + 2∂X∂x(ψ

3
0 − ψ0)]

+δ2[∂2x(3ψ0ψ
2
1 + 3ψ2

0ψ2 − ψ2)

+2∂X∂x(3ψ
2
0ψ1 − ψ1) + ∂2X(ψ3

0 − ψ0)]

+δ3[∂2x(ψ
2
1 + 6ψ0ψ1ψ2 + 3ψ2

0ψ3 − ψ3)

+2∂X∂x(3ψ0ψ
2
1 + 3ψ2

0ψ2 − ψ2)

+∂2X(3ψ2
0ψ1 − ψ1)] + δ4[∂2x(3ψ

2
1ψ2

+3ψ0ψ
2
2 + 6ψ0ψ1ψ3 + 3ψ2

0ψ4 − ψ4)

+2∂X∂x(ψ
2
1 + 6ψ0ψ1ψ2 + 3ψ2

0ψ3 − ψ3)

+∂2X(3ψ0ψ
2
1 + 3ψ2

0ψ2 − ψ2)]

+O(δ5). (36)

Substituting Eq. (35) in Eq. (30), and using the scaled
operators in Eqs. (32-34), we can write equations satisfied
by the ψm at each O(δm). At O(1) we obtain,

L0ψ0 = 0

⇒ ψ0 = ψ̄ +A01(X,T )e
ix + c.c. (37)

whereAmn is the complex amplitude of mode n atO(δm).
At O(δ) we get

L0ψ1 + L1ψ0 = 0

⇒ ψ1 = A11(X,T )e
ix + c.c. (38)

where (and henceforth) we neglect the constant term in
view of its inclusion in Eq. (37). At the next order we
have

L0ψ2 = ∂Tψ0 − L1ψ1 − L2ψ0 − ∂2x(ψ
3
0 − ψ0). (39)

For ψ2(x, t) to remain bounded we have to guarantee that
the right hand side of Eq. (39) does not have a projection
in the null space of L0, which yields a solvability condi-
tion [30, 31] (also known as the Fredholm alternative).
Applying the alternative imposes the following condition
on the amplitude at O(δ2):

∂TA01 = 4∂2XA01 + (1− 3ψ̄2)A01 − 3A01|A01|2. (40)

Thus,

ψ2 = A21e
ix +A22e

2ix +A23e
3ix + c.c. (41)

where A22 = A2
01ψ̄/3, and A23 = A3

01/64.
At subsequent orders, the following equations are ob-

tained for ψm:

O(δ3) : L0ψ3 = ∂Tψ1 − L1ψ2 − L2ψ1 − L3ψ0

−[∂2x(3ψ
2
0ψ1 − ψ1) + 2∂X∂x(ψ

3
0 − ψ0)]

O(δ4) : L0ψ4 = ∂Tψ2 − L1ψ3 − L2ψ2 − L3ψ1 − L4ψ0

−[∂2x(3ψ0ψ
2
1 + 3ψ2

0ψ2 − ψ2)

+2∂X∂x(3ψ
2
0ψ1 − ψ1) + ∂2X(ψ3

0 − ψ0)]

O(δ5) : L0ψ5 = ∂Tψ3 − L1ψ4 − L2ψ3 − L3ψ2 − L4ψ1

−L5ψ0 − [∂2x(ψ
2
1 + 6ψ0ψ1ψ2 + 3ψ2

0ψ3

−ψ3) + 2∂X∂x(3ψ0ψ
2
1 + 3ψ2

0ψ2 − ψ2)

+∂2X(3ψ2
0ψ1 − ψ1)]

O(δ6) : L0ψ6 = ∂Tψ4 − L1ψ5 − L2ψ4 − L3ψ3 − L4ψ2

−L5ψ1 − L6ψ0 − [∂2x(3ψ
2
1ψ2 + 3ψ0ψ

2
2

+6ψ0ψ1ψ3 + 3ψ2
0ψ4 − ψ4) + 2∂X∂x(ψ

2
1

+6ψ0ψ1ψ2 + 3ψ2
0ψ3 − ψ3) + ∂2X(3ψ0ψ

2
1

+3ψ2
0ψ2 − ψ2)], (42)

and successive applications of the Fredholm alternative
yield the following amplitude equations at those respec-
tive orders,

∂TA11 = −12i∂3XA01 + 4∂2XA11 − (1− 3ψ̄2)2i∂XA01

+(1− 3ψ̄2)A11 − 6A11|A01|2 − 3A2
01A

∗
11



9

+6i∂X(A2
01A

∗
01)

∂TA21 = −13∂4XA01 − 12i∂3XA11 + 4∂2XA21

−(1− 3ψ̄2)(2i∂XA11 + ∂2XA01)

+(1− 3ψ̄2)A21 − 3A2
11A

∗
01 − 6|A01|2A21

−6ψ̄A22A
∗
01 − 3A23A

∗
01

2 − 6A01|A11|2
−3A2

01A
∗
21 + 6i∂X(A2

01A
∗
11 + 2|A01|2A11)

+3∂2X(A2
01A

∗
01)

∂TA31 = 6i∂5XA01 − 13∂4XA11 − 12i∂3XA21 + 4∂2XA31

−(1− 3ψ̄2)(2i∂XA21 + ∂2XA11)

+(1− 3ψ̄2)A31 − 6A11A21A
∗
01 − 6|A01|2A31

−6A01A21A
∗
11 − 6A23A

∗
01A

∗
11 − 6A01A11A

∗
21

−3A2
01A

∗
31 − 6ψ̄A32A

∗
01 − 3A33A

∗
01

2

−6ψ̄A22A
∗
11 + 6i∂X(2A01|A11|2 + 2|A01|2A21

+A∗
01A

2
11 +A2

01A
∗
21) + 3∂2X(A2

01A
∗
11

+2|A01|2A∗
21) + h.o.t.

∂TA41 = ∂6XA01 + 6i∂5XA11 − 13∂4XA21 − 12i∂3XA31

+4∂2XA41 − (1− 3ψ̄2)(2i∂XA31 + ∂2XA21)

+(1− 3ψ̄2)A41 − 3A2
21A

∗
01 − 6A11A31A

∗
01

−6A01A41A
∗
01 − 6A11A21A

∗
11 − 6A01A31A

∗
11

−3A2
11A

∗
21 − 6A01|A21|2 − 6A01A11A

∗
31

−3A2
01A

∗
41 − 6ψ̄A42A

∗
01 − 3A43A

∗
01

2

−6ψ̄A32A
∗
11 − 6A33A

∗
01A

∗
11 − 3A23A

∗
11

2

−6ψ̄A33A
∗
22 − 6A01|A23|2 + 6i∂X(2A11A21A

∗
01

+2|A01|2A31 +A11|A11|2 + 2A01A21A
∗
11

+2A01A11A
∗
21 +A2

01A
∗
31) + 3∂2X(2A01|A11|2

+A∗
01A

2
11 + 2|A01|2A21 +A2

01A
∗
21) + h.o.t. (43)

Here, “h.o.t.” refers to higher order terms that are func-
tions of A01 and its derivatives. The amplitude function
for the pattern (eix) can be written as

A(X,T ) = A01(X,T ) + δA11(X,T ) + δ2A21(X,T ) + . . . .
(44)

Using Eqs. (40), (43), and (44), and scaling back to orig-
inal variables, i.e. X → δ−1x and T → δ−2t, the ampli-
tude equation to O(δ4) can be written as

∂tA = 4∂2xA− 12i∂3xA− 13∂4xA+ 6i∂5xA+ ∂6xA

−δ2(1− 3ψ̄2)
(
2i∂x + ∂2x

)
A+ δ2[(1− 3ψ̄2)A

−3A|A|2 + 3
(
2i∂x + ∂2x

)
(A|A|2)]− δ4(

3

64
A|A|4

+2ψ̄2A|A|2) +O(δ6) (45)

or more compactly, after replacing δ2 → ǫ, to O(ǫ2)

∂tA = − (1− L1D)L1D
2A− ǫ(1− 3ψ̄2)L1DA

+ǫ(1− 3ψ̄2)A− 3ǫA|A|2 + 3ǫL1D(A|A|2)

−ǫ2( 3

64
A|A|4 + 2ψ̄2A|A|2) +O(ǫ3), (46)

where L1D ≡ (2i∂x + ∂2x).

Let us now compare Eq. (46) with the one dimensional
equivalents of the O(ǫ) amplitude equations that we have
previously derived for hexagonal patterns, i.e. Eqs. (15)
and (22). Without re-deriving, the one dimensional
equivalents are readily obtained by setting

A2 = A3 = 0 and Lk2
= L1D (47)

in those equations. We observe that Eq. (46) (also trun-
cated to O(ǫ)) contains at least one term which is not
present in either of the equations previously derived.
We note that the QDRG result of Eq. (15) is closer

to the multiple scales result compared to the proto-RG
result (and the RG result in section VI), in that it fails to
capture only the nonlinear derivative term at O(ǫ), which
is actually a higher order correction to 3A|A|2. This is
clearly because the spatial operator in the QDRGmethod
is an outcome of a linear stability analysis, whereas one
would have to perform a nonlinear stability analysis to
obtain nonlinear spatial derivative terms. The clear ad-
vantage of the QDRG calculation however is that it was
done with significantly less effort, and in a rotationally-
covariant manner; perturbation theory to O(ǫ) was all
that was required. The multiple scales analysis, on the
other hand, required a sixth order perturbation theory
treatment, and in order to simplify the algebra, we only
worked in one dimension. In higher dimensions, the in-
terference between the modes would have created a huge
increase in the complexity at each successively higher or-
der in perturbation theory. The QDRG calculation is
only heuristic, but as we will show below, can be justi-
fied from a full calculation, albeit with a minor technical
modification of the previously-published recipe, to take
into account the special feature of the conservation law
in the PFC model.
We conclude therefore that although the QDRG re-

sult of Eq. (15) and the multiple scales method to O(ǫ)
still do not yield consistent results, the QDRG method is
still an improvement over the proto-RG method. In or-
der to track down the source of the discrepancy, we next
attempted a full RG calculation without any shortcuts,
i.e. systematically calculating explicitly and renormaliz-
ing all the divergent terms to O(ǫ).

VI. RENORMALIZATION GROUP

DERIVATION

In this section, we present a derivation of the amplitude
equation using the conventional RG method, in one di-
mension for pedagogical simplicity (just as done for the
method of multiple scales). The calculation is compli-
cated because of the need to obtain explicit formulae for
the secular divergences[32, 34], but this is possible at the
order to which we worked.
Starting from Eq. (30) (with δ2 replaced by ǫ) and a

naive perturbation series in ǫ as in Eq. (11) the zeroth
and first order solutions can be written as

ψ0 = ψ̄ +Aeix + c.c.
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ψ1 = P1(x, t)e
ix +Q1e

2ix +R1e
3ix + c.c. (48)

The difficulty in the conventional RG method comes from
the need to explicitly determine the form of the secular
coefficient P1. While this is a routine task for ODEs, it is
far from trivial for PDEs. A further complication is that
the solution for P1 must be the highest order polynomial
that satisfies the PDE, to be able to eliminate all secular
divergences. It turns out that this is critical to obtaining
the rotationally covariant operator at a lower order in ǫ.
Using the method of undetermined coefficients we find
such a solution to be

P1(x, t) = ǫ(1− 3ψ̄2 − 3|A|2)A
6∑

j=1

CjP1j(x, t), (49)

where

P11 = t

P12 = − 1

720
(−89280t2 + 7680t3 + 4320ixt− 34560ixt2

−4680x2t+ 2880x2t2 − 1440ix3t+ 120x4t+ x6)

P13 =
i

720
(−5760it2 − 1560xt+ 960xt2 − 720ix2t

+80x3t+ x5)

P14 =
1

312
(192t2 − 288ixt+ 48xt2 + x4)

P15 = − i

72
(24xt+ x3)

P16 = −x
2

8
, (50)

and the constants Cj satisfy
∑6

j=1 Cj = 1.

The RG method proceeds as follows: (1) dummy vari-
ables X and T are introduced, (2) the divergent terms in
P1j of the form xmtn are split to read xmtn = (xmtn −
XmT n) +XmT n, (3) the constant amplitude A is rede-
fined using an ǫ expansion A = AR(X,T )(1+

∑
j=1 ǫ

jZj),
where AR is now the renormalized amplitude, and Zj are
the renormalization constants which are chosen order by
order in ǫ to absorb the XmT n terms, and (4) since the
solution ψ is independent of X and T , all derivatives of
ψ with respect X , T , or a combination thereof must be
zero. This last condition yields the following RG equa-
tions at O(ǫ),

∂AR

∂T
= C1ǫ(1− 3ψ̄2 − 3|A|2)A

−∂
6AR

∂X6
= C2ǫ(1− 3ψ̄2 − 3|A|2)A

−6i
∂5AR

∂X5
= C3ǫ(1− 3ψ̄2 − 3|A|2)A

13
∂4AR

∂X4
= C4ǫ(1− 3ψ̄2 − 3|A|2)A

12i
∂3AR

∂X3
= C5ǫ(1− 3ψ̄2 − 3|A|2)A

−4
∂2AR

∂X2
= C6ǫ(1− 3ψ̄2 − 3|A|2)A. (51)

Further, using
∑6

j=1 Cj = 1 and replacing AR → A,
X → x, and T → t, the above equations can be combined
to read

∂tA+ (1− L1D)L1D
2A = ǫ(1− 3ψ̄2)A− 3ǫA|A|2, (52)

which is also the 1-D proto-RG equation.
We close this section with some interesting observa-

tions. (i) The equations in (51) do not form a unique set
of solvability conditions. Other equations are possible,
e.g.

− 1

16

∂4AR

∂X2∂T 2
= C2ǫ(1− 3ψ̄2 − 3|A|2)A

−3i

8

∂3AR

∂X∂T 2
= C3ǫ(1− 3ψ̄2 − 3|A|2)A
... (53)

The choice of Eqn. (51) is motivated by the observation
that it yields a rotationally covariant amplitude equation,
and other physical considerations such as the microscopic
equation being only first order in time. (ii) The list of
possible terms P1j does not include the leading polyno-
mial term Bx, where B is an arbitrary constant, as this
term is annihilated by the kernel of the PDE. Thus no
constraint is available to fix B. It turns out that unless
this term is also renormalized, all secular divergences are
not removed. This may explain the absence of certain
terms in Eq. (52) that however show up in the multiple
scales analysis. To be certain, the calculation needs to
be carried out to higher orders; but we do not attempt
this here.

VII. OPERATOR ORDERING AMBIGUITY

AND ITS RESOLUTION IN THE RG METHOD

In this section, we resolve the discrepancy between the
answers generated by the QDRG method, the RG meth-
ods, and the method of multiple scales. Curiously, no
such discrepancy was observed in the treatment of the
Swift-Hohenberg equation, a non-conservative OPE, by
RG methods [32, 34, 36] and multiple scales techniques
[27]. In fact, it can also be readily ascertained that the
QDRG method will produce the same result as the other
methods for this equation, which we leave as a simple ex-
ercise for the reader. Why then does a discrepancy arise
in the PFC equation? Clearly, the role played by the ex-
tra Laplacian, a consequence of the conservation law in
this case, must be non-trivial!
Note that this Laplacian operator carries over to the

right hand side of both Eq. (12), the O(ǫ) equation for
the RG methods, and Eq. (39), the O(ǫ) equation for
multiple scales. However also note that, in the method of
multiple scales, in addition to the non-linear terms, this
operator is also subjected to an ǫ expansion. There is no
provision in any of the RG methods to allow the same to
happen to the Laplacian. In other words, the operator



11

may very well have not existed on the right hand side
at O(ǫ), and we would have obtained exactly the same
result as before!
A clue to the subtlety is to look at the way in which

the secular terms are renormalized. The naive way, as
followed here, would be to evaluate the right hand side
first, look for secular terms later, and then renormalize
these divergent coefficients. However, this will not elimi-
nate secular terms generated by the differential operator.
In order to eliminate all secular terms, the amplitude
must be renormalized before differentiation, for the sim-
ple reason that renormalization and differentiation are
non-commutable operations. In other words, there is an
operator ordering ambiguity in the implementation of the
renormalization group method, exposed in this problem
by the conservation law. Performing the calculation with
the operations of renormalization and differentiation re-
versed is equivalent to performing an ǫ expansion in the
differential operator.
We find that by following this procedure, additional

terms in the coefficients of the resonant modes are auto-
matically generated. Specifically, when we evaluate the
right hand side of Eq. (12) after assuming the amplitudes
of ψ0 to have a space-time dependence, the renormalized
coefficients of the resonant exp(ik1 ·x) forcing term work
out to be

ǫ[(1− 3ψ̄2)A1 − 3A1

(
|A1|2 + 2|A2|2 + 2|A3|2

)

−6A∗
2A

∗
3ψ̄ − (1− 3ψ̄2)Lk1

A1

+6
(
|A1|2 + |A2|2 + |A3|2

)
Lk1

A1 + 6A∗
1|∇A1|2

+3A2
1Lk1

A∗
1 + 6A1A

∗
2Lk1

A2 + 6A1A2Lk1
A∗

2

+6A1A
∗
3Lk1

A3 + 6A1A3Lk1
A∗

3 + 6ψ̄A∗
3Lk1

A∗
2

+6ψ̄A∗
2Lk1

A∗
3 + 12ψ̄∇A∗

2 · ∇A∗
3

+12A1 (∇A1 · ∇A∗
1 +∇A2 · ∇A∗

2 +∇A3 · ∇A∗
3)

+12A2∇A1 · ∇A∗
2 + 12A∗

2∇A1 · ∇A2

+12A3∇A1 · ∇A∗
3 + 12A∗

3∇A1 · ∇A3], (54)

which when specialized for the 1-D case becomes

ǫ[(1− 3ψ̄2)A− 3A|A|2 − (1 − 3ψ̄2)L1DA

+6|A|2L1DA+ 3A2L1DA
∗ + 6A∗

(
∂A

∂x

)2

+12A
∂A

∂x

∂A∗

∂x
]

= ǫ[(1− 3ψ̄2)A− 3A|A|2 − (1 − 3ψ̄2)L1DA

+3L1D(A|A|2)]. (55)

We note that the above terms are identical to the O(ǫ)
terms on the right hand side of Eq. (46). Therefore the
correct amplitude equation to O(ǫ) should contain all
the terms in Eq. (54). In order to illustrate the gener-
ality of this approach, we apply this idea again in the
appendix to the Van der Pol oscillator, another equation
for which the previously reported implementation of the
RG method, and the method of multiple scales produce
different answers.

We wish to point out that the assumption of a con-
stant amplitude in the ψ0 solution makes it possible for
the coefficients of the non-resonant terms in ψ1 to assume
constant values, a fact that is favorably used in extend-
ing the proto-RG calculation to the next order. However,
with our modification to the proto-RG procedure, it is
clear that for the PFC equation at least, non-resonant
coefficients cannot have constant values. Thus comput-
ing higher order corrections to the amplitude equations,
will require explicit construction of particular solutions,
which may limit progress beyond O(ǫ) by purely analyt-
ical methods.

VIII. CONCLUSION

We have presented a detailed illustration of various
perturbative techniques to derive amplitude equations
from order parameter equations that produce periodic
patterns. Amplitude equations serve as powerful analyt-
ical tools with which to investigate pattern stability and
defect interactions, as well as accurate coarse-grained de-
scriptions of pattern forming systems, and this calls for
practical and reliable mathematical methods for deriving
them.
Although our benchmark for accuracy is the widely-

accepted method of multiple scales, it is critical to note
that this method is not failsafe, because it requires a pri-

ori identification of the way in which space and time scale
with the small parameter ǫ. There are many instances
where surprising scales emerge that would not easily be
identified a priori (e.g. see the analysis of the Mathieu
equation in [32]).
The method of multiple scales typically involves a very

lengthy calculation before a rotationally covariant oper-
ator ensues, and involves computation of various higher
order terms which ultimately do not improve the over-
all result significantly. In the example presented here, a
sixth order calculation was required to get the lowest or-
der amplitude equation. The reader should bear in mind
that the fairly involved calculation shown in this article
was only one dimensional.
On the other hand, the practicality of RG based meth-

ods, where the amplitude equation was obtained very
quickly at O(ǫ) itself, is self-evident. No guesswork was
required to determine the scaling of the variables and
all calculations started with naive perturbation expan-
sions in ǫ. In particular, our so called “quick and dirty”
(QDRG) method and the proto-RG method are attrac-
tive techniques, because there is virtually no need to
construct explicit solutions. Both methods use only in-
formation available from the differential equation and in
that sense, are very general ways of building a controlled
coarse-grained approximation to the order parameter
equation being studied. Furthermore, the QDRGmethod
gives the correct result quickly, apart from a small non-
linear rotationally covariant gradient term which is not
captured by the linear stability argument.
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At O(ǫ), we have shown that the QDRG method pro-
duces a more accurate amplitude equation compared to
the proto-RG method, by capturing certain extra terms
that are revealed in the multiple scales analysis. How-
ever, with our corrected order of operators in the way in
which the RG is implemented, we find that all methods
converge identically at this order.
In conclusion, we have presented a detailed calculation

of the coarse-graining of the phase field crystal equation,
for small ǫ. Elsewhere [20, 21], we have demonstrated the
utility of the coarse-grained equation in performing large-
scale simulations of materials processing phenomena in
two dimensions. Further developments of these tech-
niques are underway, implementing adaptive mesh refine-
ment to solve the amplitude equations obtained here in
two and three dimensions, and going beyond the single
mode approximation which has formed the basis of our
work and that of Elder and collaborators. We hope to
report on these developments at a future date.
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APPENDIX: VAN DER POL OSCILLATOR

In this appendix, we explore the commuting of dif-
ferentiation and renormalization with a simple ordinary
differential equation example: the Van der Pol oscillator.
Note that this yet another case in which a differential op-
erator is multiplied by a small parameter (see right hand
side of Eq.(A.1)).
The autonomous ODE is given by

y′′ + y = ǫ(1− y2)y′, (A.1)

where ′ denotes differentiation with respect to the vari-
able t. As there is a derivative on the right hand side of
this equation we anticipate that the proto-RG amplitude
equation will fail to capture certain terms that turn out
in the multiple scales analysis.
It is known that the scaling τ = ǫt works for this prob-

lem [30]. Hence,

y′ → (∂t + ǫ∂τ )y

y′′ → (∂2t + 2ǫ∂τ∂t + ǫ2∂2τ )y, (A.2)

where the subscripts denote partial differentiation. Ex-
panding y in a perturbation series

y = y0 + ǫy1 + ǫ2y2 + . . . (A.3)

we obtain

O(1) : (∂2t + 1)y0 = 0

O(ǫ) : (∂2t + 1)y1 = −2∂τ∂ty0 + (1− y20)∂ty0

O(ǫ2) : (∂2t + 1)y2 = −2∂τ∂ty1 + (1− y20)∂ty1 − ∂2τy0

−2y0y1∂ty0 + (1 − y20)∂τy0. (A.4)

From this we find

y0 = A01(τ)e
it + c.c.

y1 = A11(τ)e
it + A13(τ)e

3it + c.c. (A.5)

Application of the Fredholm alternative at O(ǫ) and
O(ǫ2) yields the following amplitude equations

2i∂τA01 = iA01

(
1− |A01|2

)

∂2τA01 + 2i∂τA11 = i
(
A11 − 2A11|A01|2 −A2

01A
∗
11

)

+∂τ
(
A01 −A01|A01|2

)

+
A01|A01|4

8
(A.6)

which can be combined after scaling back to original vari-
ables to get

∂2tA+ 2i∂tA = ǫ
[
iA(1− |A|2) + ∂tA(1 − |A|2)

]
+O(ǫ2).

(A.7)
Nozaki and Oono [36] on the other hand have obtained

the following equation using the proto-RG method

∂2tA+ 2i∂tA = ǫiA(1− |A|2) +O(ǫ2). (A.8)

Note that the missing term ∂tA(1−|A|2) can be captured
by differentiating the lower order result, i. e.

2i∂tA = ǫiA(1− |A|2) (A.9)

but this does not seem a very general approach. In par-
ticular, it is not obvious how this can be extended to
PDEs.
The O(ǫ) equation using the proto-RG method reads

y′′1 + y1 = (1 − y20)y
′
0, (A.10)

where

y0 = Aeit + c.c.

y1 = P (t)eit +Qe3it + c.c. (A.11)

where A can be a constant while P cannot. Thus, the
proto-RG operator turns out to be

L = ∂2t + 2i∂t, (A.12)

and the proto-RG equation reads

LA = ǫLP +O(ǫ2), (A.13)

where A is now the renormalized amplitude. When eval-
uating LP however, we allow for the possibility that A,
which appears on the right hand side of the equation can
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also be a function of t, or equivalently renormalize A on
the right hand side before differentiating y0, which gives
us

LP = ǫ
[
iA(1− |A|2) + ∂tA(1 − |A|2)

]
. (A.14)

Therefore the true amplitude equation should read (using

Eq. A.13)

LA = ǫ
[
iA(1− |A|2) + ∂tA(1− |A|2)

]
+O(ǫ2), (A.15)

which is identical to the multiple scales result of
Eq. (A.7).
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