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Colliding particles in highly turbulent flows
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Abstract

We discuss relative velocities and the collision rate of small particles suspended in a highly
turbulent fluid. In the limit where the viscous damping is very weak, we estimate the relative
velocities using the Kolmogorov cascade principle.

PACS numbers:
05.20.Dd Kinetic theory
45.50.Tn Collisions
47.27.-i Turbulent flows
47.57.E- Suspensions

Introduction. This paper considers collisions of small particles suspended in a highly turbu-
lent gas. The collisions of these particles can facilitate aggregation of the suspended particles.
This process may be relevant to the precipitation of rain from turbulent cumulus clouds [1], and
to the formation of planets by aggregation of dust particles suspended in the gas surrounding a
growing star [2].

The suspended particles are characterised by a dimensionless measure of the importance of
inertia, termed the Stokes number: St = 1/γτ , where τ is a correlation time of the flow and γ is
the damping rate of the suspended particles (both quantities are defined more precisely below).
In [3] we showed how the collision rate increases very rapidly when St exceeds a threshold value,
due to fold caustics making the velocity field of the suspended particles multi-valued. In [3],
which discussed initiation of rainfall from turbulent clouds, it was sufficient to use a single-scale
flow model of the turbulent motion (described by a correlation length η and correlation time τ)
because the Stokes number is never very large for particles suspended in terrestrial atmospheric
clouds. However, in astrophysical contexts it is necessary to consider flows with large values of
St, where the multi-scale aspect of turbulent flow [4] becomes important. (It is hard to study
cases where St is large in terrestrial contexts because heavy particles fall out of the fluid).

In the following we derive an expression for the collision rate in a highly turbulent flow with
large Stokes number. We employ the Kolmogorov cascade principle to deduce an expression for
the variance of the relative velocities of colliding particles, which in turn determines the collision
rate.

Formulation of the problem. We assume that the drag force on a particle is proportional to
the difference in velocity between the particle and the surrounding gas, so that the equation of
motion is

r̈ = γ[u(r, t)− ṙ] (1)
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where r is the position of the particle and u(x, t) is the fluid velocity field (until the particles
come into contact). This equation is familiar in the context of Stokes’s law for the drag on a
sphere, where the damping rate γ is proportional to the kinematic viscosity ν. In astrophysical
applications, the mean free path of the gas is typically very large compared to the size of the
particles [2], but equation (1) remains applicable [5]. In this ‘Epstein regime’ the damping rate
given by γ = c̄ρg/ρpa, where a is the radius, c̄ is the mean molecular speed of the gas and ρg,
ρp are the densities of the gas and the particles respectively [5].

In [3] we demonstrated that the rate of collision R for a single suspended particle may be
well approximated by

R = Rdiff +Radv + exp(−A/St)Rgas . (2)

Here Rdiff is a rate of collision due to Brownian diffusion (and therefore independent of the
intensity of the turbulence), Radv is the rate of collision due to the shearing effect of the flow,
described by Saffman and Turner [6] and Rgas is the collision rate predicted by a ‘gas-kinetic’
model, introduced by Abrahamson [7], in which the suspended particles move with velocities
which become uncorrelated with each other and with the gas flow. The exponential term de-
scribes the fraction of the coordinate space for which the velocity field is multi-valued and A
is a ‘universal’ dimensionless constant. The exponential dependence of the rate of caustic pro-
duction on St was noted in [8] and recent simulations of Navier-Stokes turbulence suggest that
A ≈ 2 [9]. The rate Rgas greatly exceeds Radv and Rdiff , but the gas-kinetic theory is only
applicable when the velocity field of the suspended particles is multi-valued. The mechanism for
the particle velocity field becoming multi-valued is the formation of fold caustics, described in
[3]. The formation of caustics can be modelled as a process of diffusion-driven escape from an
basin of attraction, similar to the Kramers model for a chemical reaction [8]. The exponential
term is therefore analogous to the Arrhenius term exp(−E/kT ) in the expression for the rate of
an activated chemical reaction. The abrupt increase of the collision rate as the Stokes number
exceeds a threshold value was first noted in numerical experiments by Sundaram and Collins
[10]. A theory proposed by Falkovich et al. [11] emphasised the significance of caustics, but
does not allow accurate quantitative comparisons with numerically calculated collision rates.

Accounting for the multi-scale nature of the flow will change the expression for the gas-kinetic
collision rate Rgas in (2) but will leave the others unchanged. For a gas with particle density n0,
this contribution to the rate of collision between particles of radius a is

Rgas = 4πa2n0〈∆v〉 (3)

where ∆v is the relative velocity of two suspended particles at the same position in space (and
angular brackets denote averages throughout). For collisions in a conventional fluid a ‘collision
efficiency’ factor is included to account for deflection of particles by the fluid trapped between
them (see, e.g. [6]), but in the Epstein regime this factor is not required. Suspended particles
exhibit a tendency to cluster when St ≈ 1 [12, 13] and in some circumstances the density n0

might have to be modified to take account of this effect [11].
Relative velocities in a multiscale flow. In the following η and τ are taken to be the dissipative

length and timescales of the flow. According to the Kolmogorov theory of turbulence, these
quantities are determined by the rate of dissipation per unit mass, E , and the kinematic viscosity
ν: we define

η =

(

ν3

E

)1/4

, τ =

(

ν

E

)1/2

. (4)

If the turbulent motion is driven by forces acting on a lengthscale L ≫ η, the velocity fluctuations
of the fluid have a power-law spectrum for wavenumbers between 1/L and 1/η [4].

In a multi-scale turbulent flow, when γτ ≪ 1 the motion of the suspended particles is
underdamped relative to the motion on the dissipative scale, but (unless γ is smaller than
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frequency scale of the largest eddies) it is overdamped relative to slower long-wavelength motions
in the fluid. The relative velocity of two nearby particles is a result of the different histories of
the particles. If we follow the particles far back in time to when they had a large separation, their
velocities were very different, but these velocity differences are damped out when the particles
approach each other. A stochastic model of this process was discussed in [14], which gave an
expression for the relative velocity of colliding particles in terms of the velocity and length scales
of the largest eddies. Here we show how to surmise the variance of the relative velocities by using
the Kolmogorov cascade principle. Our result is universally applicable, in that it is expressed in
terms of the rate of dissipation per unit mass, E , rather than in terms of the particular nature
of the driving process.

The motion of two suspended particles is determined by their damping rates γ1, γ2 and by
the properties of the velocity field. When the particles are underdamped relative to the smallest
dissipative scale, but overdamped relative to the ‘integral’ (driving) scale, we can apply the
Kolmogorov principle [4], that motion in the inertial range is independent of the mechanism of
dissipation (i.e. it is determined by the rate of dissipation E but it does not depend on ν). The
moments therefore depend only upon E and γ1 and γ2. For the second moment of the relative
velocity, dimensional consideration then imply

〈∆v2〉 ∝ E/γ (5)

where γ must be some weighted average of γ1 and γ2, given by a formula which is symmetric
under interchange of labels.

We can gain some information about the form of the weighted average γ̄ by considering the
relative velocities of particles with very different damping rates. In the case where one particle
is much more heavily damped, γ2/γ1 ≫ 1 say, the particles with damping rate γ2 may be treated
as if they are advected with the flow. Thus ∆v = |v|, where v = ṙ − u is the velocity of the
particle with damping rate γ1 relative to the surrounding fluid. From equation (1), this satisfies
v̇ = u̇− γ1v, which has the solution

v(t) =

∫ t

−∞

dt′ exp[γ1(t
′ − t)]u̇(t′)

=

∫ t

−∞

dt′ exp[γ1(t
′ − t)]

Du

Dt′
(t′) +

∫ t

−∞

dt′ exp[γ1(t
′ − t)](v ·∇)u(r(t′), t′) (6)

where Du/Dt = ∂u/∂t+ (u ·∇)u is the Lagrangian acceleration of the fluid, which fluctuates
on a timescale τ . If |v| ≫ η/τ , the integrand of the final term in (6) fluctuates on a timescale
η/|v| ≪ τ , because in this limit fluctuations of u(r(t′), t′) are determined by the rate of change
of its first argument. Under this condition on the typical size of the velocity v (which is verified
for γ1τ ≪ 1 below) the final integral in equation (6) may be neglected because its integrand
fluctuates very rapidly. In the limit as γ1τ → 0, the variance of the velocity of the particle
relative to the fluid approaches

〈v2〉 = I
2γ1

, I =

∫

∞

−∞

dt

〈

Du

Dt
(t) · Du

Dt
(0)

〉

. (7)

Noting that Eτ = (η/τ)2, we confirm that 〈v2〉 ≫ (η/τ)2 when γ1τ ≪ 1. The dimensional
arguments of Kolmogorov theory imply that I is a function of E and ν; observing that I has
the same dimensions as E and we conclude that I ∝ E . Kolmogorov’s 1941 theory of turbulence
suggests that we should write I = KE with K a universal constant, but in practice K may have
a weak dependence upon Reynolds number due to intermittency effects [4]. Thus we have

〈∆v2〉 = I
2γ1

=
KE
2γ1

(8)
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when γ2/γ1 ≫ 1. Equations (5) and (8) are consistent if we write

〈∆v2〉 =
I
√

γ21 + γ22

2γ1γ2
g(|ln(γ1/γ2)|) (9)

where g(x) is everywhere positive and approaches a finite limit as x → 0. Furthermore

lim
x→∞

g(x) = 1 (10)

for consistency with (8).
In the case where the values of γ are very different, we expect that the probability density

function of the relative velocity is a three-dimensional Gaussian (or Maxwell-Boltzmann) dis-
tribution, because the central-limit theorem is applicable to equation (6) in the limit St → ∞.
This implies that 〈∆v〉 =

√

8/3π
√

〈∆v2〉. In the case where the damping rates are comparable,
it would be of interest to evaluate the distribution function from a mechanistic model.

Conclusions. Equations (8), (2) and (3) give the collision rate for underdamped particles in a
highly turbulent flow, in terms of a measure of the turbulence intensity I = KE . The constant of
proportionality K could be evaluated by direct numerical simulation of turbulent Navier-Stokes
flow. The collision rate R is asymptotically proportional to

√
E as the turbulence intensity E is

increased, provided that the Stokes number of the suspended particles is very large. The results
will be of value in producing reliable estimates the rate of collision of dust particles in accretion
discs.
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