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A family of the Poisson brackets compatible with the

Sklyanin bracket

A. V. Tsiganov

St.Petersburg State University, St.Petersburg, Russia
e–mail: tsiganov@mph.phys.spbu.ru

We introduce a family of compatible Poisson brackets on the space of 2×2 polynomial matrices,

which contains the Sklyanin bracket, and use it to derive a multi-Hamiltonian structure for a set

of integrable systems that includes XXX Heisenberg magnet, the open and periodic Toda lattices,

the discrete self-trapping model and the Goryachev-Chaplygin gyrostat.

1 Introduction.

The ingenious discovery of Magri [6, 7] that integrable Hamiltonian systems usually prove
to be bi-Hamiltonian, and vice versa, leads us to the following fundamental problem: given
a dynamical system which is Hamiltonian with respect to a Poisson bracket {., .}0, how
to find another Poisson bracket {., .}1 compatible with initial bracket and such that our
system is Hamiltonian with respect to both brackets. This, along with the related problem
of classification of compatible Poisson structures, is nowadays a subject of intense research,
see e.g. [6, 7, 2, 14] and references therein.

In this paper we study a class of finite-dimensional Liouville integrable systems described
by the representations of the quadratic r-matrix Poisson algebra, or the Sklyanin algebra:

{
1

T (λ),
2

T (µ)} = [r(λ− µ),
1

T (λ)
2

T (µ) ] , (1.1)

Here
1

T (λ) = T (λ)⊗ I ,
2

T (µ) = I⊗ T (µ) and r(λ− µ) is a classical r-matrix [8]-[11].
The main result of the present paper is a family of the Poisson brackets {., .}k, which

is compatible with the Sklyanin bracket (1.1), in the simplest case of the 4 × 4 rational
r-matrix

r(λ− µ) =
η

λ− µ
Π, Π =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 , η ∈ C , (1.2)

and 2× 2 matrix T (λ), which depends polynomially on the parameter λ

T (λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
(1.3)

=

(
αλn + A1λ

n−1 + . . .+ An βλn +B1λ
n−1 + . . .+Bn

γλn + C1λ
n−1 + . . .+ Cn δλn +D1λ

n−1 + . . .+Dn

)
.
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The leading coefficients α, β, γ, δ and 2n coefficients of the det T (λ)

d(λ) = det T (λ) = (αδ − βγ)λ2n +Q1λ
2n−1 + · · ·+Q2n . (1.4)

are Casimirs of the bracket (1.1). Therefore, we have a 4n-dimensional space of the coeffi-
cients Ai, Bi, Ci and Di with 2n Casimir operators Qi, leaving us with n degrees of freedom.

For so-called open lattices independent Poisson involutive integrals of motion Ho
i = Ai,

i = 1, . . . , n, are given by the coefficients of the entry A(λ):

A(λ) = αλn +Ho
1λ

n−1 + · · ·Ho
n, {Ho

i , H
o
j } = 0 . (1.5)

In generic case integrals of motion are given by the coefficients of the trT (λ):

trT (λ) = (α+ δ)λn +H1λ
n−1 + · · ·Hn, {Hi, Hj} = 0 . (1.6)

These integrals of motion define two Liouville integrable systems, which are our generic
models for the whole paper. Bi-hamiltonian description of these models gives rise to the
bi-hamiltonian description of the Goryachev-Chaplygin gyrostat [8], open and periodic Toda
lattice [9], inhomogeneous Heisenberg magnet [11] and the discrete self-trapping (DST) model
[5].

2 The compatible bracket

In this section, we describe the Poisson bracket compatible with the Sklyanin bracket. The
Poisson brackets {., .}0 and {., .}1 are compatible if every linear combination of them is still
a Poisson bracket. The corresponding compatible Poisson tensors P0 and P1 satisfy to the
following equations

[[P0, P0]] = [[P0, P1]] = [[P1, P1]] = 0, (2.1)

where [[., .]] is the Schouten bracket [2, 6, 7]. Remind that on a smooth finite-dimensional
manifold M the Schouten bracket of two bivectors X and Y is an antisymmetric contravari-
ant tensor of rank three and its components in local coordinates zm read

[[X, Y ]]ijk = −
dimM∑

m=1

(
Xmk ∂Y

ij

∂zm
+ Y mk ∂X

ij

∂zm
+ cycle(i, j, k)

)
.
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2.1 Open lattices

The Sklyanin bracket (1.1) amounts to having the following Poisson brackets between the
entries A(λ), B(λ), C(λ) and D(λ) of the matrix T (λ):

{A(λ), A(µ)}0 = {B(λ), B(µ)}0 = {C(λ), C(µ)}0 = {D(λ), D(µ)}0 = 0,

{B(λ), A(µ)}0 =
η

λ− µ

(
B(λ)A(µ)− B(µ)A(λ)

)
,

{C(λ), A(µ)}0 =
−η

λ− µ

(
C(λ)A(µ)− C(µ)A(λ)

)
,

{B(λ), C(µ)}0 =
η

λ− µ

(
D(λ)A(µ)−D(µ)A(λ)

)
.

{B(λ), D(µ)}0 =
−η

λ− µ

(
B(λ)D(µ)− B(µ)D(λ)

)
,

{C(λ), D(µ)}0 =
η

λ− µ

(
C(λ)D(µ)− C(µ)D(λ)

)
,

{A(λ), D(µ)}0 =
η

λ− µ

(
C(λ)B(µ)− C(µ)B(λ)

)
,

(2.2)

In (1.1) matrix r(λ−µ) satisfies the Yang-Baxter equation, which ensures the Jacobi identity
for the brackets (2.2).

Proposition 1 The Sklyanin bracket (1.1),(2.2) is compatible with the following bracket
{., .}1:

{A(λ), A(µ)}1 = {B(λ), B(µ)}1 = {C(λ), C(µ)}1 = 0,

{B(λ), A(µ)}1 =
η

λ− µ

(
λB(λ)A(µ)− µB(µ)A(λ)

)
− η β

α
A(λ)A(µ),

{C(λ), A(µ)}1 =
−η

λ− µ

(
λC(λ)A(µ)− µC(µ)A(λ)

)
+

η γ

α
A(λ)A(µ),

{B(λ), C(µ)}1 =
η

λ− µ

(
λD(λ)A(µ)− µD(µ)A(λ)

)
− η δ

α
A(λ)A(µ),

{B(λ), D(µ)}1 =
−η λ

λ− µ

(
B(λ)D(µ)−B(µ)D(λ)

)
+ ηA(λ)

(
β

α
D(µ)− δ

α
B(µ)

)
,

{C(λ), D(µ)}1 =
η λ

λ− µ

(
C(λ)D(µ)− C(µ)D(λ)

)
− ηA(λ)

(
γ

α
D(µ)− δ

α
C(µ)

)
,

{A(λ), D(µ)}1 =
η λ

λ− µ

(
C(λ)B(µ)− C(µ)B(λ)

)
− ηA(λ)

(
γ

α
B(µ)− β

α
C(µ)

)
,

(2.3)
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and

{D(λ), D(µ)}1 =
η γ

α

(
D(λ)B(µ)−D(µ)B(λ)

)
− η β

α

(
D(λ)C(µ)−D(µ)C(λ)

)

+
η δ

α

(
B(λ)C(µ)−B(µ)C(λ)

)
. (2.4)

Proof : It is sufficient to check the statement on an open dense subset of the Sklyanin
algebra defined by the assumption that A(λ) and B(λ) are co-prime and all roots of A(λ)
are distinct.

This assumption allows us to construct a separation representation for the Sklyanin
algebra (1.1). In this special representation one has n pairs of Darboux variables, λi, µi,
i = 1, . . . , n, having the standard Poisson brackets,

{λi, λj}0 = {µi, µj}0 = 0, {λi, µj}0 = δij , (2.5)

with the λ-variables being n zeros of the polynomial A(λ) and the µ-variables being values
of the polynomial B(λ) at those zeros,

A(λi) = 0, µi = η−1 lnB(λi), i = 1, . . . , n. (2.6)

The interpolation data (2.6) plus n identities

B(λi)C(λi) = −d(λi)

allow us to construct the needed separation representation for the whole algebra:

A(λ) = α(λ− λ1)(λ− λ2) · · · (λ− λn),

B(λ) = A(λ)

(
β

α
+
∑n

i=1

eηµi

(λ− λi)A
′(λi)

)
,

C(λ) = A(λ)

(
γ

α
−
∑n

i=1

d(λi) e
−ηµi

(λ− λi)A
′(λi)

)
,

D(λ) =
d(λ) +B(λ)C(λ)

A(λ)
.

(2.7)

The coefficients of the determinant d(λ) (1.4) are Casimir elements for the both brackets
{., .}0 and {., .}1 and, therefore, we can easy calculate the bracket {., .}1 (2.3)–(2.4) in (λ, µ)-
variables

{λi, λj}1 = {µi, µj}1 = 0, {λi, µj}1 = λiδij , (2.8)

In order to complete the proof we have to check that brackets (2.8) is compatible with the
canonical brackets (2.5). The compatibility of the brackets (2.5),(2.8) implies the compati-
bility of the brackets (2.2),(2.3) and vice versa.

The (λ, µ)-variables (2.6) are so-called special Darboux-Nijenhuis coordinates [6, 7, 2]
because

P0 =

(
0 I
−I 0

)
, P1 =

(
0 diag(λ1, . . . , λn)

−diag(λ1, . . . , λn) 0

)
,

4



and the corresponding recursion operator N takes the diagonal form

N = P1P
−1
0 =

n∑

i=1

λi

(
∂

∂λi

⊗ dλi +
∂

∂µi

⊗ dµi

)
. (2.9)

These Poisson tensors P0 and P1 satisfy to the equations (2.1) and the Nijenhuis torsion of
N vanishes as a consequence of the compatibility between P0 and P1.

Proposition 2 Brackets (2.5) and (2.8) between (λ, µ)-variables belong to a whole family
of compatible Poisson brackets {., .}k associated with the Poisson tensors

Pk = NkP0 =

(
0 diag(λk

1, . . . , λ
k
n)

−diag(λk
1, . . . , λ

k
n) 0

)
, k = 0, . . . , n.

In the matrix form, these brackets are equal to
{

1

T (λ),
2

T (µ)

}

k

= r
[k]
12 (λ, µ)

1

T (λ)
2

T (µ)−
1

T (λ)
2

T (µ) r
[k]
21 (λ, µ)

+
1

T (λ) s
[k]
12 (λ, µ)

2

T (µ)−
2

T (µ) s
[k]
21 (λ, µ)

1

T (λ) . (2.10)

Here

r
[k]
12 (λ, µ) =

η
λ−µ




1 0 0 0

0 1−λk+µk

2
µk 0

0 λk 1−λk+µk

2
0

0 ρ
[k]
C

−ρ
[k]
C

1


 , r

[k]
21 (λ, µ) =

η
λ−µ




1 0 0 0

0 1−λk+µk

2
λk ρ

[k]
B

0 µk 1−λk+µk

2
−ρ

[k]
B

0 0 0 1


 ,

s
[k]
12 (λ, µ) =

η
λ−µ




0 ρ
[k]
B

0 0

0 λk−µk

2
0 0

ρ
[k]
C

ρ
[k]
D

λk−µk

2
0

0 0 0 0


 , s

[k]
21 (λ, µ) = Πs

[k]
12 (λ, µ)Π.

(2.11)
and

ρ
[k]
X =

λkX(λ)

A(λ)
− µkX(µ)

A(µ)
, where X = B,C,D,

is a difference of two polynomials, which are quotients of polynomials in variables λ and µ

over a field.

Proof: At k = 0 one has ρ
[0]
B = 0, ρ

[0]
C = 0 and ρ

[0]
D = 0, so the bracket (2.10) coincides with

the Sklyanin bracket (1.1). At k = 1 we have

ρ
[1]
B =

β(λ− µ)

α
, ρ

[1]
C =

γ(λ− µ)

α
, ρ

[1]
D =

δ(λ− µ)

α

and bracket (2.10) coincides with the bracket (2.3).
At k > 1 one can easily check that k-th brackets (2.10) between polynomials A(λ), B(λ),

C(λ) and D(λ) (2.7) imply the brackets

{λi, λj}k = {µi, µj}k = 0, {λi, µj}k = λk
i δij. (2.12)
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and vice versa. This completes the proof.

To proceed further we need to recall that the normalized traces of the powers of N

Jm =
1

2m
traceNm =

n∑

i=1

λm
i , m = 1, . . . , n. (2.13)

are integrals of motion satisfying Lenard-Magri recurrent relations [6, 7]

P0dJ1 = 0, XJi = P0dJi = P1dJi−1, P1dJn = 0. (2.14)

By definition (2.7) polynomial

A(λ) = αλn + A1λ
n−1 + . . .+ An = α

n∏

i=1

(λ− λi)

is directly proportional to the minimal characteristic polynomial of N (2.9)

∆N (λ) = (det(N − λI))1/2 =

n∏

i=1

(λ− λi).

Since Hamiltonians Ho
i (1.5) are related with integrals of motion Jm (2.13) by the triangular

Newton formulas

αJ1 = Ho
1 , αJ2 = Ho

2 +
(Ho

1)
2

2
, αJ3 = Ho

3 +Ho
2H

o
1 +

(Ho
1)

3

3
, . . . .

As a consequence of the recursion relations (2.14), the Hamiltonians Ho
i , i = 1, . . . , n, satisfy

the Fröbenius recursion relations

N∗ dHo
i = dHo

i+1 − α−1Ai dH
o
1 , , (2.15)

where N∗ = P−1
0 P1 and Ho

n+1 = 0. Such as Ai = Ho
i a straightforward computation shows

that they are equivalent
N∗ dA(λ) = λ dA(λ) + A(λ)dA1 .

The special Darboux-Nijenhuis coordinates λi, µi are variables of separation of the action-
angle type [2], i.e. the corresponding separated equations are trivial

{Ho
i , λj} = {Ji, λj} = 0 , i, j = 1, . . . , n.

We can introduce another separated coordinates ui, vi, which are the so-called Sklyanin
variables defined by

B(ui) = 0, vi = −η−1 lnA(ui) , i = 1, . . . , n.
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The separation representation of the algebra in (u, v)-variables has the form

B(λ) = β(λ− u1)(λ− u2) · · · (λ− un),

A(λ) = B(λ)

(
α

β
+

n∑

i=1

e−ηvi

(λ− ui)B′(ui)

)
,

D(λ) = B(λ)

(
δ

β
+

n∑

i=1

d(ui) e
ηvi

(λ− ui)B′(ui)

)
,

C(λ) =
A(λ)D(λ)− d(λ)

B(λ)
.

Substituting matrix T (λ) (1.3) with these entries into the brackets {., .}k (2.10) at k = 0, 1
one gets that ui, vj coordinates are Darboux variables with respect to the Sklyanin bracket

{ui, uj}0 = {vi, vj}0 = 0, {ui, vj}0 = δij, (2.16)

whereas the second brackets look like

{ui, uj}1 = 0, {ui, vj}1 = uiδij −
β A(uj)

αB′(uj)
, {vi, vj} =

A′(ui)

B′(ui)
− A′(uj)

B′(uj)
.

The corresponding separated equations

{A(λ), uj}k = λk A(uj)
n−1∏

i 6=j

λ− ui

uj − ui

, j = 1, . . . , n. (2.17)

are linearized by the Abel transformation on the algebraic curve defined by e−ηvi = A(ui),
see [9, 3, 12] and references within.

The special Darboux-Nijenhuis coordinates are dual to the Sklyanin variables. Namely,
λi, µi are roots of polynomial A(λ) and values of polynomial B(λ) at λ = λi, while ui, vi are
roots of polynomial B(λ) and values of polynomial A(λ) at λ = ui.

2.2 Generic model

There are many other Poisson brackets compatible with the standard one (2.5). The main
property of the proposed above bracket {., .}1 (2.3)–(2.4) is that

{A(λ), A(µ)}0 = {A(λ), A(µ)}1 = 0 .

It ensures that integrals of motion Ho
i for the open lattices are in bi-involution

{
Ho

i , H
o
j

}
0
=
{
Ho

i , H
o
j

}
1
= 0.

In this subsection we are looking for bracket {., .}′1, which has to guarantee the similar
property for generic integrals of motion Hi (1.6) from trT (λ)

{Hi, Hj}0 = {Hi, Hj}′1 = 0, i, j = 1, . . . , n.

Remind that {., .}0 is the Sklyanin bracket (1.1), which already has the necessary property

{trT (λ), trT (µ)}0 = 0 .

The following propositions can be ascertained by means of direct calculations.
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Proposition 3 If α = δ and β = γ = 0 in T (λ) (1.3), then

{trT (λ), trT (µ)}1 = 0 . (2.18)

So, the desired bracket {., .}′1 may be obtained from the bracket {., .}1 (2.3)–(2.4) by using
special canonical transformations, which are generated by the suitable transformations of
the matrix T (λ).

Proposition 4 The Sklyanin bracket (1.1) is invariant with respect to transformation

T (λ) → V1 T (λ) V2, Vi =

(
αi βi

γi δi

)
, αi, βi, γi, δi ∈ R , (2.19)

where V1,2 are numerical matrices. If

β1γ2 + δ1δ2 = 0,

the bracket (2.3)–(2.4) after transformation (2.19) has the necessary property

{trT (λ), trT (µ)}′1 = 0 . (2.20)

We present an explicit form of the bracket {., .}′1 in the Section 4 devoted to the periodic
Toda lattice.

3 The Heisenberg magnet

Another important representation of the quadratic algebra with the generators Ai, Bi, Ci

and Di comes as a consequence of the co-multiplication property of the Sklyanin algebra
(1.1). Essentially, it means that the matrix T (λ) (1.3) can be factorized into a product of
elementary matrices, each containing only one degree of freedom. In this picture, our main
model turns out to be an n-site Heisenberg magnet, which is an integrable lattice of n sl(2)
spins with nearest neighbor interaction.

In the lattice representation the matrix T (λ) (1.3) acquires the following form:

T (λ) = L1(λ− c1) L2(λ− c2) · · · Ln(λ− cn) , (3.1)

with

Lm(λ) =

(
λ− s

(m)
3 s

(m)
1 + is

(m)
2

s
(m)
1 − is

(m)
2 λ+ s

(m)
3

)
, m = 1, . . . , n. (3.2)

Here s
(m)
3 are dynamical variables, cm are arbitrary numbers and i =

√
−1 .

Substituting matrix (3.1) into the Sklyanin bracket (1.1) and brackets (2.3)-(2.4) at η = i
one gets canonical brackets on the direct sum of sl(2)

{
s
(m)
i , s

(m)
j

}
0
= εijk s

(m)
k , (3.3)
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and second compatible brackets
{
s
(m)
i , s

(m)
j

}

1
= εijk s

(m)
k

(
cm − s

(m)
3

)
,

{
s
(m)
i , s

(ℓ)
j

}

1
=
(
P

(mℓ)
1

)

ij
, m 6= ℓ,

where εijk is the totally skew-symmetric tensor and

P
(mℓ)
1 =




−i
(
s
(m)
3 s

(ℓ)
3 + s

(m)
2 s

(ℓ)
2

)
is

(m)
2 s

(ℓ)
1 − s

(m)
3 s

(ℓ)
3 is

(m)
3

(
s
(ℓ)
1 − is

(ℓ)
2

)

is
(m)
1 s

(ℓ)
2 + s

(m)
3 s

(ℓ)
3 −i

(
s
(m)
3 s

(ℓ)
3 + s

(m)
1 s

(ℓ)
1

)
−s

(m)
3

(
s
(ℓ)
1 − is

(ℓ)
2

)

−i
(
s
(m)
1 + is

(m)
2

)
s
(ℓ)
3

(
s
(m)
1 + is

(m)
2

)
s
(ℓ)
3 −i

(
s
(m)
1 + is

(m)
2

)(
s
(ℓ)
1 − is

(ℓ)
2

)




.

The corresponding Poisson tensors P0 and P1 are degenerate and, therefore, the Hamiltonians
Ho

i satisfy the Fröbenius recurrence relations (2.15) in the following form

P1dH
o
i = P0

(
dHo

i+1 − AidH
o
1

)
, i = 1, . . . , n, (3.4)

where Ho
n+1 = 0 and Ai = Ho

i are coefficients of the polynomial A(λ). The first integrals of
motion are

Ho
1 =

n∑

m=1

(cm − s
(m)
3 ) , Ho

2 =
∑

m>ℓ

(
s
(m)
1 − is

(m)
2

)(
s
(ℓ)
1 + is

(ℓ)
2

)
− 1

2

n∑

m=1

(cm − s
(m)
3 )2 +

(Ho
1)

2

2
.

Such as α = δ and β = γ = 0 we can use these brackets for the open and periodic lattices
simultaneously. It means that Hamiltonians Hi (1.6) from the trT (λ) satisfy the Fröbenius
equations (3.4) too.

4 The Toda lattices

The Toda lattices appear as a specialization of our basic model when the parameters are
fixed as follows:

β = γ = δ = 0 and det T (λ) = 1. (4.1)

We also put α = 1 and η = −1. In the lattice representation, the monodromy matrix T

(1.3) acquires the form

T (λ) = L1(λ) · · ·Ln−1(λ)Ln(λ) , Li =

(
λ− pi −eqi

e−qi 0

)
. (4.2)

Here pi, qi are dynamical variables.

4.1 Open lattice

Substituting matrix T (λ) (4.2) into the brackets {., .}k (2.10) at k = 0, 1 one gets that the
Poisson tensors P0 and P1 in (p, q) variables take the form

P0 =
n∑

i=1

∂

∂qi
∧ ∂

∂pi
, (4.3)

P1 =
n−1∑

i=1

eqi−qi+1
∂

∂pi+1

∧ ∂

∂pi
+

n∑

i=1

pi
∂

∂qi
∧ ∂

∂pi
+

n∑

i<j

∂

∂qj
∧ ∂

∂qi
.
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Namely this bi-hamiltonian structure of the open Toda lattice was obtained in [1].
For the open Toda lattice the Hamiltonians Ho

i from the A(λ) = λn+Ho
1λ

n−1+ . . .+Ho
n

satisfy the Fröbenius relations (2.15). The first integrals of motion are equal to

Ho
1 = −

n∑

i=1

pi, Ho
2 =

1

2

n∑

i=1

pi
2 +

n−1∑

i=1

eqi−qi+1 − 1

2

(
n∑

i=1

pi

)2

. (4.4)

The Sklyanin variables ui, vi are introduced as before:

B(ui) = 0, vi = −η−1 lnA(ui) , i = 1, . . . , n− 1, (4.5)

the only difference now is that this gives only n−1 instead of n separation pairs. The missing
pair of canonical variables is defined as follows:

vn = ln b1 = −qn, un = −a1 =

n∑

i=1

pi. (4.6)

The separation representation of the algebra in (u, v)-variables may be found in [9, 13]. It
is easy to prove [13] that (u, v)-variables are Darboux variables

ω = P−1
0 =

n∑

i=1

dui ∧ dvi,

and the only nonzero second Poisson brackets are

{uj, vi}1 = ui δij, {un, ui}1 = −e−vn A(ui)
B′(ui)

, {un, vi}1 = −e−vn A′(ui)
B′(ui)

,

{vn, vi}1 = −1, {un, vn}1 = −
n∑

i=1

ui.

Remark 1 From the factorization (4.2) of the monodromy matrix T (λ) one gets

Bn(λ) = −eqnAn−1(λ) ⇒ Bn(uj) = −eqnAn−1(λj) = 0.

This implies that for the (n−1)-particle chain special Darboux-Nijenhuis variables λj coincide
with the Sklyanin variables uj, i = 1, . . . , n− 1 for the n-particle chain.

4.2 Periodic lattice

For the Toda lattice α 6= δ and, therefore, in order to get new bracket {., .}′1 with the the
necessary property (2.20) we have to apply transformation (2.19) to the initial bracket {., .}1
(2.3)-(2.4). If we put

V1 =

(
1 −1
0 1

)
, and V2 =

(
1 0
1 1

)
,
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then one gets the following brackets between the entries of T (λ):

{A(λ), A(µ)}′1 = η
(
B(λ)C(µ)− B(µ)C(λ)

)
, {D(λ), D(µ)}′1 = 0,

{A(λ), D(µ)}′1 =
ηλ

λ− µ

(
C(λ)B(µ)− C(µ)B(λ)

)

{B(λ), B(µ)}′1 = η
(
B(λ)D(µ)−B(µ)D(λ)

)
,

{C(λ), C(µ)}′1 = η
(
C(λ)D(µ)− C(µ)D(λ)

)
,

{D(λ), B(µ)}′1 =
ηµ

λ− µ

(
B(λ)D(µ)− B(µ)D(λ)

)

{D(λ), C(µ)}′1 =
−ηµ

λ− µ

(
C(λ)D(µ)− C(µ)D(λ)

)

(4.7)

and

{A(λ), B(µ)}′1 =
−η
(
λA(µ)B(λ)−µA(λ)B(µ)

)

λ−µ
+ η
(
B(λ)D(µ) +

(
B(λ)− C(λ)

)
B(µ)

)
,

{A(λ), C(µ)}′1 =
η
(
λA(µ)C(λ)−µA(λ)C(µ)

λ−µ
− η
(
C(λ)D(µ) +

(
B(λ)− C(λ)

)
C(µ)

)
,

{B(λ), C(µ)}′1 =
η
(
λA(µ)D(λ)−µA(λ)D(µ)

)

λ−µ
− η
(
B(λ)D(µ)−D(λ)C(µ) +D(λ)D(µ)

)
.

(4.8)

According to proposition 4 these brackets have the necessary property (2.20).
Substituting matrix T (λ) (4.2) into the brackets (4.7)-(4.8) one gets that the Poisson

tensor P ′
1 in (p, q) variables takes the form

P ′
1 =

n−1∑

i=1

eqi−qi+1
∂

∂pi+1

∧ ∂

∂pi
+

n∑

i=1

pi
∂

∂qi
∧ ∂

∂pi
+

n∑

i<j

∂

∂qj
∧ ∂

∂qi

−
n∑

i=1

(
eq1

∂

∂qi
∧ ∂

∂p1
+ eqn

∂

∂qi
∧ ∂

∂pn

)
.

For the periodic Toda lattice the Hamiltonians H1 and H2 from the trT (λ) = λn+H1λ
n−1+

. . .+H0 are equal to

H1 = Ho
1 = −

n∑

i=1

pi, H2 = Ho
2 + eqn−q1 =

1

2

n∑

i=1

pi
2 +

n∑

i=1

eqi−qi+1 − 1

2

(
n∑

i=1

pi

)2

, (4.9)

where qn+i = qi. These Hamiltonians Hi, i = 1, . . . , n, form the Fröbenius chain

N∗dHi = dHi+1 + cidH1, with Hn+1 = 0 . (4.10)
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Here N∗ = P−1
0 P ′

1 and ci are coefficients of the minimal characteristic polynomial of the
recursion operator

∆N (λ) =
(
det(N − λ I)

)1/2
= λn − (c1λ

n−1 + · · ·+ cn) , (4.11)

which can be defined directly via the entries of the matrix T (λ)

∆N(λ) = A(λ) +B(λ)− C(λ)−D(λ) . (4.12)

Remark 2 Transformations (2.19) of the matrix T (λ) give rise to canonical transformations
in the phase space. As sequence tensor P ′

1 (4.9) coincides with tensor P1 (4.3) after the
following canonical transformation

p1 → p1 + e−q1 , pn → pn + eqn ,

which identifies coefficients ci with integrals of motion for the open Toda lattice ci = −Ho
i .

5 Integrable DST model

The integrable case of the DST (discrete self-trapping) model with n degrees of freedom was
studied in [5]. It appears as a specialization of our basic model when several parameters
vanish:

β = γ = δ = 0 and Qj = 0, j = 1, . . . , n− 1. (5.1)

We also put α = 1 and η = −1. In the lattice representation, the matrix T (λ) (1.3) acquires
the form

T (λ) = L1(λ− c1) L2(λ− c2) · · · Ln(λ− cn), with Li(λ) =

(
λ− qipi bqi
−pi b

)
. (5.2)

Here pi, qi are dynamical variables, whereas b and ci are numbers entering into the Casimir
function (1.4)

d(λ) = det T (λ) = bn(λ− c1)(λ− c2) · · · (λ− cn).

Substituting matrix T (λ) (5.2) into the Sklyanin bracket (1.1) and into the brackets (4.7)-
(4.8) one gets canonical brackets

{pi, qj}0 = δij, {qi, qj}0 = {pi, pj}0 = 0, i, j = 1, . . . , n .

and quadratic brackets

{qi, qj}1 = −QiQj , {qi, pj}1 = QiPj − ci δij , i > j

{pi, pj}1 = −PiPj , {pi, qj}1 = qipj − b δi+1j ,

where Q1 = q1 + 1, Pn = pn + b and Qi = qi, Pi = pi for other values of index i.
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As above the Hamiltonians Hi, i = 1, . . . , n, from the trT (λ) = λn +H1λ
n−1 + . . .+Hn

satisfy the Fröbenius relations (4.10). The two first Hamiltonians of the system are

H1 = −
n∑

i=1

(qipi − ci), (5.3)

H2 =
∑

i>j

(qipi − ci)(qjpj − cj)− b

n∑

i=1

qipi+1, pn+1 ≡ p1.

The Sklyanin variables (ui, vi), i = 1, . . . , n, are introduced by the same formulae as for the
Toda lattice, cf. (4.5) and (4.6).

6 The Goryachev-Chaplygin gyrostat

Let us consider the matrix T (λ) introduced in [4]

T (λ) =

(
λ2 − 2λJ3 − J2

1 − J2
2 (x1 + ix2)λ− x3(J1 + iJ2)

(x1 − ix2)λ− x3(J1 − iJ2) −x2
3

)
. (6.1)

Substituting matrix (6.1) into the Sklyanin bracket (1.1) and brackets (2.3)-(2.4) at η = 2i
one gets canonical Poisson tensor on the dual space of Euclidean algebra e(3)

P0 =




0 0 0 0 x3 −x2

∗ 0 0 −x3 0 x1

∗ ∗ 0 x2 −x1 0
∗ ∗ ∗ 0 J3 −J2

∗ ∗ ∗ ∗ 0 J1

∗ ∗ ∗ ∗ ∗ 0




(6.2)

and the following quadratic tensor

P1 =




0 −x2
3 x3x2 −x2J1 −x2J2 x3J2 − 2x2J3

∗ 0 −x3x1 x1J1 x1J2 2x1J3 − x3J1

∗ ∗ 0 0 0 −x1J2 + x2J1

∗ ∗ ∗ 0 −J2
1 − J2

2 −J3J2

∗ ∗ ∗ ∗ 0 J1J3

∗ ∗ ∗ ∗ ∗ 0




. (6.3)

These tensors satisfy equations (2.1) at any values of the Casimir functions

C1 = x2
1 + x2

2 + x2
3, C2 = x1J1 + x2J2 + x3J3 .

However, in the proposed method coefficients of det T = −C1λ2 + x3 C2 λ have to be the
Casimir functions and, therefore, we have to put C2 = 0. As sequence, we have {A(λ), A(µ)}1 =
0 at C2 = 0 only.
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Remark 3 Solving equations P0dH
o
2 = (P1 + αP0)H

o
1 at arbitrary values of C1,2 one gets

Ho
1 = J3, Ho

2 = J2
1 + J2

2 + 2J2
3 + αJ3 .

Here Ho
2 is a kinetic part of the Hamiltonian for the Kowalevski gyrostat, which may be

studied by using 2 × 2 Lax matrix L(λ) = K+T (λ)K−T
−1(−λ) [4]. The tensor P1 (6.3)

differs from the Poisson tensor for the Kowalevski gyrostat, which appears from the linear
r-matrix algebra [14].

The 2× 2 Lax matrix for the Goryachev-Chaplygin gyrostat looks like [8]

T̃ (λ) =

(
e

q
2 0

0 e−
q
2

)(
λ+ 2J3 + p a

a 0

)
T (λ)

(
e−

q
2 0

0 e
q
2

)
. (6.4)

Here p, q are additional dynamical variables, a is an arbitrary number and T (λ) is given by
(6.1).

Substituting this matrix into the Sklyanin bracket (1.1) and into the brackets (4.7)-(4.8)
one gets the compatible Poisson tensors on the extended phase space e∗(3)⋉ (p, q)

P̃0 ≡
(

P0 W0

W T
0 G0

)
=




P0

0
...

∗ 0 2i
∗ 0




(6.5)

and

P̃1 ≡
(

P1 W1

W T
1 G1

)
=




P1

−2x3J2 + 2px2 + 8x2J3 −2x2

2x3J1 − 2px1 − 8x1J3 2x1

2x1J2 − 2x2J1 0
2J2(p+ 3J3) −2J2 + ix3e

q

−2ax3 − 2pJ1 − 6J1J2 2J1 − x3e
q

2ax2 −i(x1 + ix2)e
q

∗ 0 2i
(
(x1 − ix2)e

q − 2J3 − p− aeq
)

∗ 0




,

(6.6)
which satisfy equations (2.1) at C2 = 0 only. Here P0 and P1 are given by (6.2) and (6.3).

The Hamiltonians Hi from the trT̃ (λ) = λ3 +H1λ+ λ2H2 +H3 are

H1 = p,

H2 = −
(
J2
1 + J2

2 + 4J2
3 + 2pJ3 − 2ax1

)
,

H3 = −(2J3 + p)(J2
1 + J2

2 )− 2ax3J1 .

The obtained tensors P̃0 and P̃1 are degenerate and, therefore, the HamiltoniansHi reproduce
the Fröbenius chain in the following form

P̃1dHi = P̃0 (dHi+1 + cidH1) , i = 1, 2, 3, (6.7)

14



where H4 = 0 and ci are coefficients of the polynomial ∆N (λ) = A(λ)+B(λ)−C(λ)−D(λ)
(4.11)-(4.12).

At p = ρ and q = 0 matrices G0 (6.5) and G1 (6.6) are (generically) non-degenerate. So,

the Dirac procedure can reduce pencil P̃0 + λP̃1 to a new Poisson pencil P̃D
0 + λP̃D

1 on e∗(3)
defined by

P̃D
k = Pk +

(
Wk G

−1
k W T

k

)
p=ρ, q=0

, k = 0, 1.

Here P0 = P̃D
0 is canonical Poisson tensor (6.2) and P1 is given by (6.3). This reduction

procedure preserves equations (6.7) for the reduced integrals of motion.

7 Conclusion

We present a family of compatible Poisson brackets (2.10), that includes the Sklyanin bracket,
and prove that the Sklyanin variables are dual to the special Darboux-Nijenhuis coordinates
associated with these brackets. The application of the r-matrix formalism is extremely useful
here resulting in drastic reduction of the calculations for a whole set of integrable systems.

The construction can be generalized to other r-matrix algebras. Remind, if one substi-
tutes T (λ) = 1 + εL(λ) + O(ε2), r = ε r into (1.1) and let ε → 0 one gets a linear bracket.
Then if T (λ) satisfy the Sklyanin bracket (1.1), then the matrix T (λ) = T (λ)K−T

−1(−λ)
obeys to the reflection equation algebra [10]. The corresponding compatible brackets for the
open generalized Toda lattices was considered in [15].

Moreover, the whole construction can immediately be transferred to the quantum case
because r-matrices in (2.10) became dynamical matrices at k > 1 only.

We would like to thank I.V. Komarov and V.I. Inozemtsev for useful and interesting
discussions. The research was partially supported by the RFBR grant 06-01-00140.
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