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The method of solving of nonlinear Schrödinger equation is considered. Some examples of its 
applications are demonstrated. 
 

Nonlinear Schrödinger equation (NLSE) 

( ) φφφφ
⋅+

∂
∂

−=
∂
∂ F

xt
i 2

2

                                                                   (1) 

arising in different physical context: in plasma’s physics, in nonlinear optics and others [1]. Here 
),( txφφ = . 

The solution can be represented in the form 
( )ipztizytx +⋅⋅= δφ exp)(),( .                                                            (2) 

Here δ  is the real parameter, , Vtxz −=
2
Vp = . Than from (1) 
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where δ−=
4
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VE . The last equation we can solve by the quadratures method [2]-[3]. But we pro-

pose other method of solving (3). It look like method of solving of stationary Schrödinger equation [4]. 
We consider two equations 
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We impose such condition on solutions of (4)  
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Here A  is some constant (or else we get discordant correlations). If we express function  through  
and  we get relationship between  and : 
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Also 

2=d ,                                                                                         (7) 
and coefficients A ,  can be arbitrary. b

So if conditions (6)-(7) are carried out then both equations (4) are jointed with (5). 
 
We shall demonstrate the method in two examples. 
(1) The first is the next equation 
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Partial solutions of this equation are known. It is 
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From (6) . We set  and find 1−=a 0=b
)cos()sin( 21 xAxAy += .                                                               (10) 

It follows 
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If 1−=A  and  we derive from (11) the first of (9). If 01 =A 1=A  and 02 =A  we derive from (11) the 
second of (9). 
 



(2) The second is the next equation 
3
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We derive it from (1) where 
                                                               ( ) 2φφ −=F . 

Under transformation zz ⋅→ 2  from (12) we derive 
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If  and  equation (13) describe the black solitons [5]. 21 AA = 00 <E
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