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Abstract

The energy evolution of a quantum chaotic system under the perturbation that harmonically

depends on time is studied for the case of large perturbation, in which the rate of transition

calculated from the Fermi golden rule (FGR) is about or exceeds the frequency of perturbation. For

this case the models of Hamiltonian with random non-correlated matrix elements demonstrate that

the energy evolution retains its diffusive character, but the rate of diffusion increases slower than

the square of the magnitude of perturbation, thus destroying the quantum-classical correspondence

for the energy diffusion and the energy absorption in the classical limit h̄ → 0. The numerical

calculation carried out for a model built from the first principles (the quantum analog of the

Pullen - Edmonds oscillator) demonstrates that the evolving energy distribution, apart from the

diffusive component, contains a ballistic one with the energy dispersion that is proportional to

the square of time. This component originates from the chains of matrix elements with correlated

signs and vanishes if the signs of matrix elements are randomized. The presence of the ballistic

component formally extends the applicability of the FGR to the non-perturbative domain and

restores the quantum-classical correspondence.

PACS numbers 05.45.-a

I. INTRODUCTION

The problem of susceptibility of chaotic

systems to perturbations has attracted much

attention in the last decade [1 - 9]. This

problem is fundamental, since it includes the

determination of the response of a mate-

rial system to an imposed external electro-

∗Electronic address: pve@shg.phys.msu.su

magnetic field, the setup that is typical for

many experiments. Due to the sensitivity of

classical phase trajectories or quantum en-

ergy spectra and stationary wavefunctions of

chaotic systems to small changes of their pa-

rameters, the problem is challengingly diffi-

cult. A consistent and noncontroversial pic-

ture covering (albeit qualitatively) all the es-

sential cases of the response hasn’t been yet
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drawn at present. From the point of view

of general theory, the problem is related to

the applicability of the concept of quantum-

classical correspondence to chaotic systems,

that is a long-standing question in its own

right [10, 11].

We shall study a one-particle system with

the Hamiltonian of the form Ĥ = Ĥ0 −
F x̂ cosωt, where Ĥ0 (p̂, r̂) is the Hamilto-

nian of the unperturbed system; p̂ and r̂ are

the operators of Cartesian components of the

momentum and of the position of the par-

ticle. The classical system with the Hamil-

tonian function H0 (p, r) will be assumed to

be strongly chaotic, that is, nearly ergodic

on the energy surfaces in a wide range of

the energy values, system with d ≥ 2 de-

grees of freedom. In the perturbation opera-

tor V̂ (t) = −F x̂ cosωt the active variable x̂

is one of the Cartesian coordinates of the par-

ticle, coupled to the external homogeneous

force field. The amplitude F in the following

will be referred to as the field. In the fol-

lowing we shall deal with the quasiclassical

case, when the Planck constant h̄ is small in

comparison of the action scale of the system

H0.

Under the influence of the perturbation

the energy value E(t) = H0(t) varies in a

quasirandom way. These variations can be

frequently described as a process of the en-

ergy diffusion [12, 13], when for the ensemble

with the microcanonical initial energy distri-

bution H0(0) = E the dispersion of the en-

ergy increases linearly with time, 〈∆E2 (t)〉 =
2Dt, where D (E, F, ω) is the energy diffusion

coefficient.

If the external field F is sufficiently small

in comparison with the appropriately aver-

aged values of the forces acting on a particle

in the unperturbed system, then in the clas-

sical model the energy diffusion coefficient D

can be expressed through the characteristics

of the unperturbed chaotic motion of the ac-

tive coordinate, namely

D =
π

2
ω2F 2Sx (E, ω) , (1)

where Sx(E, ω) is the power spectrum of

the active coordinate (the Fourier transform

of its autocorrelation function) for the mo-

tion on the surface with the constant energy

value E [9]. The same expression (1) in the

case of weak perturbation can be obtained in

the classical limit from the quantum model.

The evolution of the quantum system can be

treated as a sequence of one-photon transi-

tions between stationary states of the unper-

turbed system |n〉 → |k〉, accompanied with

the absorption or emission of the quanta h̄ω.

For small h̄ the energy spectrum of Ĥ0 is qua-

sicontinuous, thence the rates of transition

are given by the Fermi golden rule (FGR)

ẆF =
π

2h̄
F 2 |xnk|2 ρ (Ek) , (2)

where xnk is the matrix element of the ac-

tive coordinate, and ρ(Ek) is the density

of states near the final state of the tran-

sition. Although the matrix elements xnk
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in quantum chaotic systems fluctuate wildly

with the variation of k [10, 11], the averaged

squared quantity |xnk|2 in the limit h̄ → 0 is

smooth; it is proportional to the power spec-

trum Sx (E, ω) of the coordinate [14, 15],

|xnk|2 ≈
Sx (E, ω)

h̄ρ (E)
. (3)

From Eqs. (2) and (3) we have for the tran-

sition rate

ẆF =
π

2h̄2
F 2Sx (E, ω) . (4)

Then for the energy dispersion for small t we

have 〈∆E2〉 = 2DF t = 2 (h̄ω)2 ẆF t, that re-

turns us to the Eq. (1) for the energy dif-

fusion coefficient. It can be shown that the

same expression for D holds also for large t

[9]. The energy absorption in chaotic systems

comes as an epiphenomenon of the energy dif-

fusion [4]. With the account of the depen-

dence on the energy of the power spectrum

Sx (E, ω) and the density of states ρ (E) the

diffusion becomes biased, and the energy ab-

sorption rate Q is given by the formula [2, 4]

Q =
1

ρ

d

dE
(ρD) . (5)

Although for weak fields D does not de-

pend on the Planck constant h̄, the condi-

tion of the applicability of Eq. (2) does.

The FGR is, after all, only a formula of the

first order perturbation theory. It is based

on the assumption that the transition pro-

cess has a resonant character - that the width

∆ of the energy distribution of states pop-

ulated from the original one, given by the

Weisskopf - Wigner formula ∆ = h̄Ẇ [16],

is small in comparison with the quanta en-

ergy h̄ω. From Eq. (4) it is evident that in

the classical limit h̄ → 0 this condition will

be violated. In the following we shall use the

border value of the field Fb, defined by the

condition ẆF (Fb) = ω0, and refer to the do-

main F ≥ Fb as the range of the strong field.

By analogy with other models, for strong

fields one can expect a slow-down of the

growth of the energy diffusion coefficient D

and of the energy absorption rate Q. For

example, for a two-level system with relax-

ation the quadratic dependence the absorp-

tion rate Q ∝ F 2 for small field turns into

a field-independent value Q0 for strong one.

The border is determined by the condition

Ω2/Γ1Γ2 ∼ 1, where Ω is the Rabi frequency

and Γ1,Γ2 are longitudinal and transversal

relaxation rates correspondingly [17]. The

rate of transitions from discrete to continu-

ous energy spectrum (that are basically co-

variant with the energy absorption rate Q),

studied in the context of the theory of pho-

toionization, for sufficiently strong fields can

even decrease with the increase of F - the ef-

fect that is known as atom stabilization by

the strong field [18].

The slow-down of the energy diffusion in

strong harmonic fields for the model of quan-

tum chaotic systems with random uncorre-

lated matrix elements has been first demon-

strated by Cohen and Kottos [5]. A different

approach [19] has lead to qualitatively the
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same results. This slow-down destroys the

quantum-classical correspondence.

It has been demonstrated by Kottos and

Cohen [20] that for the first-principles model

that is constructed by the quantization of the

Hamiltonian of a classically chaotic system,

the response to a sudden change of the (oth-

erwise) stationary Hamiltonian measured by

the energy spreading restores its classical be-

haviour for sufficiently small values of h̄ in

contrast with the model with random inde-

pendent matrix elements.

The purpose of the present article is to

study this phenomenon for the harmonically

driven system.

II. NUMERICAL EXPERIMENT

The system chosen is the Pullen - Ed-

monds oscillator [21], that describes the two-

dimensional motion of a particle in the quar-

tic potential. The Hamiltonian of this system

is

H0 =
1

2m

(

p2x + p2y
)

+
mω2

0

2

(

x2 + y2 +
x2y2

λ2

)

.

(6)

In the following we use the particle mass m,

the frequency of small oscillations ω0, and the

nonlinearity length λ as unit scales, and write

all equations in dimensionless form.

The properties of chaotic motion of the

Pullen - Edmonds model are thoroughly stud-

ied [22, 23, 24]. With the increase of energy

the system becomes more chaotic both in ex-

tensive (that is characterized by the mea-

sure of the chaotic component µs(E) on the

surface of Poincare section) and in intensive

(that is measured by the magnitude of the

Lyapunov exponent σ(E)) aspects. For val-

ues of energy E > 2.1 the measure µs > 0.5,

and chaos dominates in the phase space; for

E > 5 the chaotic motion of the system is

approximately ergodic [22].

The matrix of the quantum Hamiltonian

operator of the model Eq. (6) has been cal-

culated in the basis of the unperturbed two-

dimensional isotropic harmonic oscillator for

the value h̄ = 0.05. Due to the symmetry

of the system the submatrices with different

parities of the quantum numbers nx and ny

can be diagonalized separately.

By expanding the wavefunction of the sys-

tem Ψ (r, t) in the basis of the eigenstates

{ϕm} of the system Ĥ0

Ψ (r, t) =
∑

m

am(t)ϕm (r) e−iωmt, (7)

we obtain for the amplitudes am the system

of equations

i
dak
dt

=
∑

k

Ωkm cosωt eiωkmtam, (8)

where the quantities Ωkn = h̄−1Fxkn are the

Rabi frequencies of transitions. This system

has been solved numerically for the 2352 am-

plitudes of the eigenstates with ”even-even”

and ”odd-even” parities of nx and ny that in-

clude all states of these classes with energies

in the band 10 ≤ E ≤ 12.

For the initial conditions in the runs with

different values of F and ω we have used
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the same normalized narrow wavepacket with

randomly chosen real amplitudes ak(0) with

the complexity (inverse participation ratio)

C =
(

∑

k

a4k (0)
)

−1

= 21, the mean initial en-

ergy 〈E〉 = E0 = 11.0 and the initial energy

dispersion ∆E2 (0) = 2.5× 10−3.

To expose the role of correlations of the

matrix elements xkn on the energy kinetics

we compare the properties of the ”natural”

system with its ”randomized” analog with

the matrix elements ymn = xmnAmn, where

Amn are the elements of a symmetric matrix

that take values 1 or -1 at random with equal

probabilities. This randomization, that has

been introduced in [20], destroys the correla-

tion of matrix elements. The tests has shown

that the results do not depend on the specific

choice of the matrix Amn within the limits of

an error of about 1%.

Figure 1 presents the typical dependence

on time of the energy dispersion for the nat-

ural (filled circles) and randomized (open cir-

cles) models. To extract the value of the en-

ergy diffusion coefficient, the numerical de-

pendence was fitted by the law of evolution of

the energy dispersion for the diffusion equa-

tion with the constant D on the interval

(−L, L) with impenetrable walls on the bor-

ders and the initial condition in the form of

the δ(0) peak. This dependence can be de-

scribed (with the local accuracy better than

3%) by the formula

Φ(a, b; t) = a (1− exp (−bt))× (9)

(1 + 0.633bt exp (−1.161bt))
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FIG. 1: The dependence of the energy disper-

sion ∆E2 on time t for the natural (filled cir-

cles) and randomized (open circles) models. The

energy dispersion is measured in the units of

(h̄ω0)
2. The field strength corresponds to the

Fermi point: F = Fb = 0.022; the perturbation

frequency ω = 1.00.

where a = L2/3 and b = 6D/L2. The best

fits of the formula Eq. (9) with the numerical

data are shown in the Fig. 1 by solid lines.

The initial moment t0 has been used as the

third fitting parameter.

For once, it is clearly seen that the ran-

domization suppresses the process of the en-

ergy diffusion. Secondly, for the natural

model one can see the presence of two differ-

ent regimes - a fast initial diffusion sharply

slows down at a crossover time tc ≃ 20. We

note that at this moment the energy disper-

sion ∆E2 (tc) = 32 (h̄ω0)
2 is much less than

the saturated value ∆E2
s = a = 133 (h̄ω0)

2,

that corresponds to the uniform probabil-

ity distribution throughout the band of the

states taken into account. To understand
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what happens at the crossover time we have

to study more closely the time development

of the probability distribution.

The overall form of the energy distribu-

tion for the natural model is rather accurately

approximated by the gaussian form that fol-

lows from the model of the energy diffusion

with the constant D. This agreement can be

seen in Fig. 2, where the logarithm of the

energy density distribution is shown against

the reduced energy shift ∆ε = (E −E0)/h̄ω0,

where E0 is the mean energy value of the ini-

tial wavepacket.
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FIG. 2: The logarithm of the energy density dis-

tribution for the time t = 17.3 for the parameters

F = 0.606Fb, ω = 1.00. The grassy line is the nu-

merical data, the solid line presents the best fit

of data with the parabola p(∆ε) = α− β(∆ε)2.

Although the agreement seems to be very

good, one must keep in mind that the ver-

tical scale of the graph is logarithmic. By

subtraction of the parabolic fit from the nu-

merical distribution we come to the picture

of deviations that is shown in the Fig. 3.
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FIG. 3: The deviation of the logarithm of the

energy density distribution from the best fitted

parabola ∆w as a function of the dimensionless

energy deviation ∆ε for the same parameters as

in Fig.2. The black stars note the maxima of the

ballistic bumps (see the text)

.

The peak at ∆ε = 0 corresponds to the

part of the initial packet that is not depleted

yet by the energy spreading. Two bumps are

clearly seen in the picture: their maxima are

located at ∆ε ≃ ±12. The calculations show

that these bumps propagate outwards with

a constant speed, that is ballistically. The

crossover time corresponds to the moment

when these bumps reach the borders of the

treated band of states. Therefore, only the

part of the graph that precedes the tc cor-

responds to the properties of the model; the

second part is just an artifact of the calcula-

tion scheme. To estimate the diffusion coef-

ficient we fitted the dependence of the initial

state by the two-parameter formula

φ (D, τ ; t) =
2Dt2

τ + t
, (10)

6



where the time shift τ accounts for the dura-

tion of the initial stage, where the law of the

dispersion growth is always quadratic. The

best fitted function φ is plotted in Fig. 1 by

the dashed line.

The ballistic spreading of the energy

distribution in the time domain t >>

2π/ω is well known for the model of a

one-dimensional resonantly excited harmonic

oscillator with the Hamiltonian Ĥ (t) =

(p̂2 + x̂2)/2 − F x̂ cos t . In the quasiclas-

sical domain (for large quantum numbers

n ≫ 1) the matrix elements of the co-

ordinate can be taken constant, xnm =

X (δn,n−1 + δn,n+1), where δij is the Kroneker

delta - symbol. With this assumption in the

rotating wave approximation for the initial

condition ak (0) = δkn the probabilities wk to

find the system in the state |k > are given by

the well-known formula

wk = |ak(t)|2 = J2
n−k (Ωt) , (11)

where Jn(z) are the Bessel functions of the

first kind and Ω = FX/2h̄ is the value of the

Rabi frequency. Equation (11) yields for the

energy dispersion

∆E2 (t) =
1

2
(h̄ω0Ωt)

2 . (12)

However, the randomization of signs of ma-

trix elements does not influence the energy

kinetics in this model.

The influence of randomization can be ex-

plained by the toy ”double ladder” model.

This system has the doubly degenerate

equidistant energy spectrum En = h̄ω0 [n/2]

where [, ] denotes the integer part of the num-

ber. The matrix elements of the coordinate

connect each state |n > to all four states

|m > with the energy differences En −Em =

±h̄ω0:

xnm = X (δn,n−2 + δn,n−1 + δn,n+2 + δn,n+3)

(13)

for even n and

xnm = X (δn,n−3 + δn,n−2 + δn,n+1 + δn,n+2)

(14)

for odd n. In this model for the resonant

perturbation V̂ (t) = −F x̂ cosω0t the energy

spreading is ballistic, ∆E2 (t) ∝ t2, whereas

the randomization of signs leads to the lo-

calization of the quasienergy states, and the

energy dispersion growth saturates.

One can suppose that the ballistic compo-

nent in the quantum chaotic model is carried

through the subset of states that are similar

to the ”double ladder” model. The degree

of correlation of the matrix elements can be

estimated from the construction

Tn =
∑

m,l,k

xnmxmlxlkxkn, (15)

that describes the sum of contributions of

all possible four consequent transitions that

start and end on the same state |n >. The

correlation index ν can be defined as the ratio

of the average value of T for the randomized

system to that of the natural system. For the

”double ladder” model we have

ν =

〈

TR
n

〉

〈TN
n 〉 =

7

12
= 0.583. (16)
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The relatively large value of this number is

explained by the large contribution of sym-

metric contours with m = k, that are invari-

ant under the randomization. For the Pullen

- Edmonds model the value of the correlation

index ν = 0.72 is rather close to that of the

”double ladder” model; that makes the anal-

ogy plausible.

It must be stressed that the combined ef-

fect of the bulk diffusion spreading and the

overlaying ballistic bumps propagation pro-

duces the linear growth of the energy disper-

sion (see Fig.1) that will be referred to as the

effective diffusion.

We define the repression coefficient

R(F, ω) as the ratio of the effective energy

diffusion coefficient to its value DF that fol-

lows from the FGR:

R (F, ω) =
D (F, ω)

2 (h̄ω)2 ẆF

. (17)

The dependence of the R on the field strength

is shown in Figs. 4 and 5 for two different

values of the perturbation frequency.

For the natural model R remains approxi-

mately constant with the value close to unity,

whereas for the randomized model the energy

diffusion slows down in qualitative agreement

with the conclusions of [5, 19].

III. ENERGY DIFFUSION IN THE

CLASSICAL MODEL

The classical expression for the diffusion

coefficient Eq. (1) is derived in the limit of
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FIG. 4: The dependence of the repression coef-

ficient R on the logarithm of the field strength

Λ = ln(F/Fb) for the frequency of perturbation

ω = 1.00.
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FIG. 5: The dependence of the repression coef-

ficient R on the logarithm of the field strength

Λ = ln(F/Fb) for the frequency of perturbation

ω = 1.62.

the infinitesimal perturbation, when one can

neglect the influence of the perturbation on

the law of motion of the active coordinate

x(t). Let’s study the formation of this coeffi-

cient. We represent the external field in the

form F sinωt and denote by tn = 2πn/ω the

moments of time at which the external field
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take zero values. The variation of the energy

for one field period between these moments

is exactly proportional to the field strength,

∆En = F

tn+1
∫

tn

ẋ (t) sinωt dt = F∆n. (18)

The quantities ∆n we shall call the reduced

variations of the energy. In the accepted ap-

proximation they do not depend on the field

strength.

The following calculations were carried

out for the Pullen - Edmonds oscillator on

the energy surface E = 11.0 and for the per-

turbation frequency ω = 1.00.
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FIG. 6: The dependence of the autocorrela-

tor of the reduced energy increments B∆ (k) =

〈∆n∆n+k〉 on the time shift k measured in pe-

riods of the perturbation on the energy sur-

face E = 11.0 for the perturbation frequency

ω = 1.00.

The values of the reduced energy incre-

ments ∆n on the neighbouring time intervals

are correlated. Figure 6 presents the form of

the autocorrelation function of the reduced

energy increments. One can see that for the

values of the time shift k >∼ 5 the correlations

become rather small.

The quantity

dK =
ω

4πK

(

K−1
∑

i=0

∆n+i

)2

(19)

will be called the K-th approximant of the

reduced diffusion coefficient. This is a pro-

portionality coefficient between the diffusion

coefficient and the square of the field ampli-

tude, calculated from the interval of time of

K consequent periods of the field. The pos-

itive correlation of ∆k for small k produces

the initial monotonous growth of the dk that

rather rapidly comes to a saturation.
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FIG. 7: The dependence of the approximants of

the reduced diffusion coefficient dn on the du-

ration of the time interval measured in periods

of the perturbation for the Pullen - Edmonds

model Eq. (6) on the energy surface E = 11.0

for the perturbation frequency ω = 1.00.

From the graph in Fig. (7) it is seen that

already d8 takes the value that within the

1.5% error margin is undistinguishable from

the asymptotic limit. However, this average
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quantity is formed by the contributions that

differ by several orders of magnitude. The

graph in Fig. 8 shows the distribution of the

quantities d8 in the log-log scale. The dis-

tribution is taken from averaging over four

ensembles of 105 points each.
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FIG. 8: The distribution of the values of partial

contributions to the approximant d8 from differ-

ent points on the trajectory of the Pullen - Ed-

monds model on the energy surface E = 11.0 for

the perturbation frequency ω = 1.00. The thin

lines show the approximate forms of the distri-

bution given by the formulas in the text. The

black star marks the maximal partial contribu-

tion d+ that comes from the resonant trajectory,

the white star marks the position of the average

value < d8 >.

The dominating part of this distribution

is accurately fitted by the dependence lnw =

f(d) = −1.771−1.057 lnd−0.095 (ln d)2 that

is shown by the thin solid line. For the largest

values of d8 another approximation is valid,

lnw = g(d) = 19.268 − 6.386 lnd. This

dependence is shown in Fig.8 with the thin

dashed line. In the domain of validity of the

approximation f(d) the slope of the curve is

less than unity: the distribution is of the Zipf

- Pareto type, in which the dominating con-

tribution to the average comes from the rare

large terms. In our case the 20% of the largest

terms come with 82% contribution to the av-

erage. These large contributions come from

the bits of the trajectories in which the point

oscillates almost along the direction of the

perturbing force nearly synchronously with

the perturbation. Theoretically the maxi-

mal value of d8 originates from the motion

with the law x(t) =
√
2E sin(t) and equals to

d+ = 4πE/ω = 138.23.

In this resonant case the energy increment

grows linearly in time - that is, ballistically.

Thus we can indicate a classical coun-

terpart to the quantum dynamics of energy

growth. The quantum ballistic bumps are

analogous to the nearly resonant bits of the

classical trajectories with the quasiballistic

energy increase.

IV. CONCLUSION

By the numerical studies of the evolution

of the energy distribution in a harmonic ex-

ternal field in a system constructed by the

quantization of a classically chaotic Hamil-

tonian system, thus retaining all correlations

of the matrix elements, we have found that

the effective rate of the energy diffusion pre-

serve its quadratical dependence on the field
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strength on the domain of the strong field,

where the transition rate is comparable to the

perturbation frequency. In other words, the

Fermi golden rule appears to be valid far be-

yond the limits of the domain in which its

applicability can be justified. This circum-

stance restores the quantum - classical cor-

respondence for the energy diffusion and the

energy absorption rate in the limit h̄ → 0.

We have to admit that our studies are lim-

ited to a specific model, studied for two val-

ues of the perturbation frequency. However

the revealed mechanism of the ballistic com-

ponent of the energy distribution that prop-

agates through the chains of matrix elements

with the correlated signs can be admitted as a

universal, especially with the account of the

important contribution of the quasiballistic

parts of the trajectories to the energy diffu-

sion in the classical model. The more rigor-

ous proof of the universality demands further

studies.

Acknowledgements

The authors acknowledge the support by

the ”Russian Scientific Schools” program

(grant # NSh - 4464.2006.2).

References

[1] N. Brenner and Sh. Fishman, Phys. Rev.

Lett. 77, 3763 (1996).

[2] P.V. Elyutin and J. Shan, Phys. Rev. Lett.

77, 5043 (1996).

[3] Sh. Mukamel, V. Khidekel, and V.

Chernyak, Phys. Rev. E 53, R1 (1996).

[4] D. Cohen, Phys. Rev. Lett. 82, 4951 (1999).

[5] D. Cohen and T. Kottos, Phys. Rev. Lett.

85, 4839 (2000).

[6] A. Iomin, Phys. Rev.E 62, 442 (2000).

[7] K. Morawetz, Phys. Rev. E 61, 2555 (2000).

[8] Ch.H. Reick, Phys. Rev. E 66, 036103

(2002).

[9] P.V. Elyutin, Phys. Rev. E 69, 036207

(2004).

[10] B. Eckhardt, Phys. Reports 163, 205

(1988).

[11] P.V. Elyutin, Usp. Fiz. Nauk 155, 397

(1988) [Sov. Phys. Usp. 31, 597 (1988)].

[12] S. Linkwitz and H. Grabert, Phys. Rev. B-I

44, 11888 (1991).

[13] C. Jarzynski, Phys. Rev. E 48, 4340 (1993).

[14] M. Feingold and A. Peres, Phys. Rev. A 34,

591 (1986).

[15] M. Wilkinson J. Phys. A: Math. Gen. 20,

2415 (1987)

[16] V. Weisskopf and E. Wigner, Zs. Phys. 63,

54 (1930).

[17] L. Allen and J.H. Eberly.Optical Resonance

and Two-Level Atoms (NY, JohnWiley and

Sons, 1975).

[18] N.B. Delone and V.P. Krainov, Usp. Fiz.

Nauk 165, 1295 (1995) [Phys. Usp. 38, 1247

(1995)].

11



[19] P.V. Elyutin, JETP 102, 182 (2006)

[ZhETF 129, 207 (2006)].

[20] T. Kottos and D.Cohen, Phys. Rev. E 64,

065202(R) (2001).

[21] R.A. Pullen and A.R. Edmonds, J. Phys. A

14, L477 (1981).

[22] H.-D. Meyer, J. Chem. Phys. 84, 3147

(1986).

[23] P.A. Vorobyev and G.M. Zaslavsky, Sov.

Phys. JETP 65, 877 (1987) [ZhETF 92,

1564 (1987)].

[24] P.V. Elyutin and V.G. Korolev, Mosc.

Univ. Phys. Bull. 44, 106 (1989) [Vestn.

Mosk. Univ. 3 Fiz. Astron. 30, 87 (1989)].

12


