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Abstract. The Bose–Hubbard dimer Hamiltonian is a simple yet effective model for descri-
bing tunneling phenomena of Bose–Einstein condensates. One of the significant mathema-
tical properties of the model is that it can be exactly solved by Bethe ansatz methods. Here
we review the known exact solutions, highlighting the contributions of V.B. Kuznetsov to
this field. Two of the exact solutions arise in the context of the Quantum Inverse Scattering
Method, while the third solution uses a differential operator realisation of the su(2) Lie
algebra.
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1 Introduction

The experimental realisation of Bose–Einstein condensation using atomic alkali gases has pro-
vided the means to study macroscopic tunneling in systems with tunable interation parame-
ters [9]. From the theoretical perspective, the Bose–Hubbard dimer model (see equation (1)
below), also known as the discrete self-trapping dimer [4, 5, 6] or the canonical Josephson Hamil-

tonian [9], has been extremely useful in understanding this tunneling phenomena in the context
of a bosonic Josephson junction. Despite its apparent simplicity, the Hamiltonian captures the
essence of competing linear and non-linear interactions which lead to non-trivial dynamical be-
haviour and ground-state properties (e.g. [7, 12, 14, 15, 16]). In particular the model predicts
macroscopic self-trapping and the collapse and revival of Rabi oscillations, features which have
been directly observed experimentally in a single bosonic Josephson junction [1, 11].

The Bose–Hubard dimer Hamiltonian is given by

H =
k

8
(N1 −N2)

2 − µ

2
(N1 −N2)−

E
2
(b†

1
b2 + b†

2
b1), (1)

where b†
1
, b†

2
denote the single-particle creation operators for two bosonic modes and N1 = b†

1
b1,

N2 = b†
2
b2 are the corresponding boson number operators. The coupling k provides the strength

of the scattering interaction between bosons, µ is the external potential and E is the coupling
for the tunneling. The change E → −E corresponds to the unitary transformation b1 → b1,
b2 → −b2, while µ → −µ corresponds to b1 ↔ b2. The total boson number N = N1 + N2 is
conserved and consequently the model is integrable as it has only two degrees of freedom and
two conserved operators, viz. H and N . Mathematically the Hamiltonian is of interest because,
related to its integrability, it admits exact Bethe ansatz solutions. This property opens avenues
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to rigorously analyse the model. For example, the Bethe ansatz solution can be used to study
the ground-state crossover from a delocalised state to a “Schrödinger cat” state in the attractive
case [3], as well as facilitating the calculation of form factors [10].

The first Bethe ansatz solution of the Hamiltonian was given by Enol’skii et al. [4, 5] using
the machinery of the Quantum Inverse Scattering Method. A key ingredient in this approach
was the use of a bosonic realisation of the Yang–Baxter algbera, which was developed in the
work of Kuznetsov and Tsiganov [8]. For zero external potential an alternative application of
the Quantum Inverse Scattering Method, using the Gaudin algebra formulation, was given by
Enol’skii, Kuznetsov and Salerno [6]. We remark this method of solution for the model has also
been recently discussed in [13, 14]. In this approach a connection was made with confluent Heun
polynomials. It was also observed in their work [6] that this connection could be established
using an su(2) realisation of the Hamiltonian (see also [17]). This property provides a direct
route to a third Bethe ansatz solution using elementary properties of second-order ordinary
differential eigenvalue equations with polynomial solutions.

2 Exact Bethe ansatz solution I

In this section we review the Quantum Inverse Scattering Method and associated algebraic Bethe
ansatz. The notational conventions we adopt follow those of [10], which also contains the full
details for the following calculations. Then we will apply this approach to derive the exact Bethe
ansatz solution of (1), as was originally described in [4, 5].

We begin with the su(2)-invariant R-matrix R(u) ∈ End(C2⊗C
2), depending on the spectral

parameter u ∈ C:

R(u) =













1 0 | 0 0
0 b(u) | c(u) 0
− − − −
0 c(u) | b(u) 0
0 0 | 0 1













, (2)

with b(u) = u/(u + η) and c(u) = η/(u + η). Above, η is an arbitrary parameter. It is easy to
check that R(u) satisfies the Yang–Baxter equation

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) (3)

on End(C2 ⊗ C
2 ⊗ C

2). Above Rjk(u) denotes the matrix acting non-trivially on the j-th and
k-th spaces and as the identity on the remaining space. Next we define the Yang–Baxter algebra
with monodromy matrix T (u),

T (u) =

(

A(u) B(u)
C(u) D(u)

)

(4)

subject to the constraint

R12(u− v)T1(u)T2(v) = T2(v)T1(u)R12(u− v). (5)

Given a representation π of the monodromy matrix, the transfer matrix is defined

t(u) = π(A(u) +D(u)) (6)

which satisfies [t(u), t(v)] = 0 for any choice of u and v as a result of (3). If there exists
a pseudovacuum state |χ〉 which satisfies

π(A(u)) |χ〉 = a(u) |χ〉 , π(B(u)) |χ〉 = 0,
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π(C(u)) |χ〉 6= 0, π(D(u)) |χ〉 = d(u) |χ〉

the transfer matrix has eigenvalues

Λ(u) = a(u)

M
∏

k=1

u− vk + η

u− vk
+ d(u)

M
∏

k=1

u− vk − η

u− vk
. (7)

Provided the Bethe ansatz equations

a(vk)

d(vk)
=

M
∏

j 6=k

vk − vj − η

vk − vj + η
, k = 1, . . . ,M (8)

are satisfied.
We may choose the following realization for the Yang–Baxter algebra, with arbitrary ω ∈ C,

π(T (u)) = Lb
1(u+ ω)Lb

2(u− ω) (9)

written in terms of the bosonic realisation of the Lax operator given by Kuznetsov and Tsiga-
nov [8]:

Lb
i (u) =

(

u+ ηNi bi
b†i η−1

)

, i = 1, 2. (10)

Since L(u) satisfies the relation

R12(u− v)Lb
i1(u)L

b
i2(v) = Lb

i2(v)L
b
i1(u)R12(u− v), i = 1, 2 (11)

it is easy to check that the relations of the Yang–Baxter algebra (5) are obeyed. Specifically,
the realisation of the generators of the Yang–Baxter algebra is

π(A(u)) = (u2 − ω2)I + ηuN + η2N1N2 − ηω(N1 −N2) + b†
2
b1,

π(B(u)) = (u+ ω + ηN1)b2 + η−1b1,

π(C(u)) = b†
1
(u− ω + ηN2) + η−1b†

2
,

π(D(u)) = b†
1
b2 + η−2I,

It is straightforward to verify the Hamiltonian (1) is related with the transfer matrix (6) through

H = −ρ

(

t(u)− 1

4
(t′(0))2 − ut′(0)− η−2 + ω2 − u2

)

,

where the following identification has been made for the coupling constants:

k

8
=

ρη2

4
,

µ

2
= −ρηω,

E
2
= ρ.

We can apply the algebraic Bethe ansatz method, using the Fock vacuum |0〉 as the pseudova-
cuum |χ〉, giving

a(u) = u2 − ω2, d(u) = η−2.

For this case the Bethe ansatz equations are

η2(v2k − ω2) =

M
∏

j 6=k

vk − vj − η

vk − vj + η
, k = 1, . . . ,M, (12)



4 J. Links and K.E. Hibberd

where M is the eigenvalue of the total number operator N . The energies of the Hamiltonian are

E = −ρ

(

η−2

M
∏

i=1

(

1 +
η

vi − u

)

− η2M2

4
− uηM − u2

− η−2 + ω2 + (u2 − ω2)

M
∏

i=1

(

1− η

vi − u

)

)

.

This last expression is independent of the spectral parameter u, which can be chosen arbitrarily.

3 Exact Bethe ansatz solution II

The second Bethe ansatz solution of (1) described by Enol’skii, Kuznetsov and Salerno [6] applies
only when µ = 0, i.e. for the Hamiltonian

H =
k

8
(N1 −N2)

2 − E
2
(b†

1
b2 + b†

2
b1). (13)

To obtain this solution, first we introduce new operators through a transformation

b1 =
1√
2
(a1 − ia2), b†

1
=

1√
2
(a†

1
+ ia†

2
),

b2 =
1√
2
(a1 + ia2), b†

2
=

1√
2
(a†

1
− ia†

2
)

such that the canonical commutation relations [aj , a
†
k] = δjkI etc. hold. Under the above trans-

formation the Hamiltonian (13) becomes

H =
k

8

(

1

2
(2n1 + I)(2n2 + I)− (a†

1
)2a22 − (a†

2
)2a21 −

1

2
I

)

+
E
2
(n2 − n1) , (14)

where nj = a†jaj and N = n1 + n2.
The next step is to write (14) in terms of an su(2) realisation. The su(2) algebra has

generators {Sz, S±} with relations

[Sz, S±] = ±S±, [S+, S−] = 2Sz . (15)

It may be shown that

S+ = −1

2
(a†)2, S− =

1

2
a2, Sz =

1

4
(2N + I)

is an su(2) realisation preserving the commutation relations (15). It follows that we may write

H =
k

2

(

2Sz
1S

z
2 + S+

1
S−
2
+ S−

1
S+

2
− 1

8
I

)

+ E (Sz
2 − Sz

1) . (16)

To derive the Bethe ansatz solution for (16), one takes

g =

(

exp(ηα) 0
0 exp(−ηα)

)

,

with α ∈ C, and constructs the monodromy matrix

π(T (u)) = gLS
1 (u+ β)LS

2 (u− β),
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where β ∈ C and

LS
i (u) =

1

u

(

uI + ηSz
i ηS−

i

ηS+

i uI − ηSz
i

)

, i = 1, 2.

The elements of the monodromy matrix are found to be

π(A(u)) = exp(ηα)

{(

I +
η

u+ β
Sz
1

)(

I +
η

u− β
Sz
2

)

+
η2

u2 − β2
S−
1
S+

2

}

,

π(B(u)) = exp(ηα)

{

η

u+ β
S−
1

(

I − η

u− β
Sz
2

)

+
η

u− β
S−
2

(

I +
η

u+ β
Sz
1

)}

,

π(C(u)) = exp(−ηα)

{

η

u+ β
S+

1

(

I +
η

u− β
Sz
2

)

+
η

u− β
S+

2

(

I − η

u+ β
Sz
1

)}

,

π(D(u)) = exp(−ηα)

{(

I − η

u+ β
Sz
1

)(

I − η

u− β
Sz
2

)

+
η2

u2 − β2
S+

1
S−
2

}

from which we can construct the transfer matrix (6). For the Bethe ansatz solution, the pseudo-
vacuum state |χ〉 can be chosen to be the vacuum state |0〉, either of the one-particle states

a†
1
|0〉 or a†

2
|0〉, or the two particle state a†

1
a†
2
|0〉, since for all cases

π(B(u)) |χ〉 = 0

and

π(A(u)) |χ〉 = a(u) |χ〉 , π(D(u)) |χ〉 = d(u) |χ〉 .

In this manner the form of the Bethe ansatz solution depends on whether the total particle
number is even or odd. We find

a(u) = exp(ηα)

(

1 +
ηκ1
u+ β

)(

1 +
ηκ2
u− β

)

, (17)

d(u) = exp(−ηα)

(

1− ηκ1
u+ β

)(

1− ηκ2
u− β

)

, (18)

where κ1 = κ2 = 1/4 or κ1 = κ2 = 3/4 for the even case, and κ1 = 3/4, κ2 = 1/4 or κ1 = 1/4,
κ2 = 3/4 for the odd case. It can now be shown that τ1, τ2 defined by

τ1 = lim
η→0

lim
u→−β

(

u+ β

η2

)

t(u) = 2αSz
1 − 1

2β

(

2Sz
1S

z
2 + S+

1
S−
2
+ S−

1
S+

2

)

,

τ2 = lim
η→0

lim
u→β

(

u− β

η2

)

t(u) = 2αSz
2 +

1

2β

(

2Sz
1S

z
2 + S+

1
S−
2
+ S−

1
S+

2

)

are related to the Hamiltonian (16) and the total number operator through

H = τ2 − τ1 −
k

16
I, N =

2

E (τ1 + τ2)− I

with

β =
2

k
, α =

E
2
.

To make the Bethe ansatz solution of the model explicit it is a matter of substituting (17), (18)
into (8) and taking the limit η → 0 to obtain

α+
κ1

vk + β
+

κ2
vk − β

=

M
∑

j 6=k

1

vj − vk
, k = 1, . . . ,M. (19)
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Letting λj denote the eigenvalue of τj, it follows from (7) that

λ1 = lim
η→0

lim
u→−β

(

u+ β

η2

)

Λ(u) = 2κ1



α− κ2
2β

−
M
∑

j=1

1

vj + β



 ,

λ2 = lim
η→0

lim
u→β

(

u− β

η2

)

Λ(u) = 2κ2



α+
κ1
2β

−
M
∑

j=1

1

vj − β



 .

The eigenvalues of the Hamiltonian are given by

E = E(κ2 − κ1) +
kN2

8
+

kE
2

M
∑

j=1

vj ,

where those of the number operator are

N = 2M + 2(κ1 + κ2)− 1.

It is apparent that the Bethe ansatz equations (12) with ω = 0, which are in multiplicative
form, take on a different form to those given by (19) which are additive. Moreover, the Bethe
ansatz equations (12) are associated with a single reference state whereas (19) are dependent on
the choice of reference state. In this latter case there are four forms of the Bethe ansatz equations
associated with the choices of κ1, κ2 which can take values 1/4 or 3/4. In the following it will
be shown how a unified system of Bethe ansatz equations can be derived in the additive form.
This approach does not use the Quantum Inverse Scattering Method.

4 Exact Bethe ansatz solution III

We again follow the work of Enol’skii, Kuznetsov and Salerno [6] (see also [17]) and start with
the Jordan-Schwinger realisation of the su(2) algebra (15):

S+ = b†
1
b2, S− = b†

2
b1, Sz =

1

2
(N1 −N2)

which is (N + 1)-dimensional when the constraint of fixed particle number N = N1 + N2 is
imposed. In terms of this realisation the Hamiltonian (1) may be written as

H =
k

2
(Sz)2 − µSz − E

2

(

S+ + S−
)

. (20)

The same (N + 1)-dimensional representation of su(2) is given by the mapping to differential
operators

Sz = u
d

du
− N

2
, S+ = Nu− u2

d

du
, S− =

d

du

acting on the (N + 1)-dimensional space of polynomials with basis {1, u, u2, . . . , uN}. We can
then equivalently represent (20) as the second-order differential operator

H =
k

2

(

u2
d2

du2
+ (1−N)u

d

du
+

N2

4

)

− µ

(

u
d

du
− N

2

)

− E
2

(

Nu+ (1− u2)
d

du

)

=
ku2

2

d2

du2
+

1

2

(

(k(1 −N)− 2µ)u+ E(u2 − 1)
) d

du
+

kN2

8
+

µN

2
− ENu

2
. (21)
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Figure 1. Energy levels E versus coupling k of the Hamiltonian (1) for N = 10, µ = 0, and E = 1.

Solving for the spectrum of the Hamiltonian (1) is then equivalent to solving the eigenvalue
equation

HQ(u) = EQ(u), (22)

where H is given by (21) and Q(u) is a polynomial function of u of order N .
From this point, it is little effort to obtain a third Bethe ansatz solution for the Hamilto-

nian (1) (cf. [3]). First express Q(u) in terms of its roots {vj}:

Q(u) =

N
∏

j=1

(u− vj).

Evaluating (22) at u = vl for each l leads to the set of Bethe ansatz equations

Ev2l + (k(1 −N)− 2µ)vl − E
kv2l

=

N
∑

j 6=l

2

vj − vl
, l = 1, . . . , N. (23)

Writing the asymptotic expansion Q(u) ∼ uN − uN−1
N
∑

j=1

vj and by considering the terms of

order N in (22), the energy eigenvalues are found to be

E =
kN2

8
− µN

2
+

E
2

N
∑

j=1

vj . (24)

In the above manner a single form of additive Bethe ansatz equations (23) is obtained. As far as
we are aware, the mapping of the solution (23), (24) to (12), (2) remains an unsolved problem.

Fig. 1 shows the energy levels for the model with µ = 0 and N = 10, obtained from the
solution (23), (24). Even for such low particle number it is clearly seen the ground state be-
comes quasi-degenerate in the attractive regime. This property underlies the validity of using
spontaneous symmetry breaking based on a mean-field approximation, as discussed in [2], to
distinguish the quantum phases of the Bose–Hubbard dimer Hamiltonian (1). Alternatively,
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associated with the Bethe ansatz solution (23), (24) there is a mapping of the spectrum of the
Hamiltonian into the low energy spectrum of a one-dimensional Schrödinger equation. This
facilitates a different approach for determining quantum phases of the Hamiltonian where the
crossover is identified with a bifurcation of the Schrödinger equation potential [3].
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