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1 Introduction

The Toda lattice (TL) and its supersymmetric extensions being one of the most important fam-
ilies in the theory of integrable systems were the subject of many studies for the last decades.
The remarkable property of the TL equations is that they are closely related to the famous
differential integrable hierarchies of the NLS and KdV types. Recently, the generalized N=4
supersymmetric TL hierarchy, which contains the N=2 and N=4 supersymmetric TL equations
as the result of appropriate reductions, was proposed [1]. Is is known that the N=2 super-
symmetric TL equation serves as the symmetry transformation of the N=2 supersymmetric
NLS hierarchy [2] while the N=4 supersymmetric TL equation is directly relevant to the N=4
supersymmetric KdV hierarchy [3, 4]. At the same time, the relevance of the generalized N=4
supersymmetric TL equation to the differential hierarchies has not been studied yet and the
present paper addresses this problem.

One of the methods for finding differential hierarchies starting with the lattice equations
is based on solving the appropriate symmetry equation [5, 6]. In this approach, a number
of know and new N=2 supersymmetric hierarchies of differential equations were reproduced
[2, 7, 8]. Another procedure by which one can extract differential hierarchy from the lattice
one associated with the one-matrix model was proposed in [9] where it was demonstrated that
the lattice hierarchy contains already the differential one with the first flow time t1 in the role
of space coordinate. In such an approach, all the flows of the lattice hierarchy can simply be
rewritten in the form of differential equations if one uses the first flow of the lattice hierarchy in
order to express all the lattice fields via the lattice fields defined in the same lattice node. In the
present paper, we apply this approach to the generalized N=4 supersymmetric TL hierarchy
and demonstrate that the generalized N=4 supersymmetric TL equation forms the discrete
symmetry of the N=4 supersymmetric KdV hierarchy.

The paper is organized as follows. In section 2, we recall the Lax-pair representation of
the generalized N=4 supersymmetric TL hierarchy and consider two different reductions of its
first flow which lead to the N=2 and N=4 supersymmetric TL equations. In section 3, we use
the first flow of the the generalized N=4 supersymmetric TL hierarchy in order to rewrite all
its flows in terms of fields defined in the same lattice node, which allows us to reproduce the
component form of the N=4 supersymmetric KdV hierarchy in some new basis as well as its
supersymmetric transformations and conservation laws. In section 4, we discuss two different
N=2 superfield representations of the generalized N=4 supersymmetric TL equation which are
useful when solving the (1,1)-GNLS and N=4 supersymmetric KdV hierarchy.

2 1D generalized fermionic Toda lattice hierarchy

In this section, we remind the Lax-pair formulation and the basic properties of the one-dimensi-
onal generalized N=4 supersymmetric TL hierarchy [1]. This hierarchy is generated by the
following equation:

∂kL = [(L+)
k, L], (1)
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for the infinite supermatrices

(L)i,j = δi,j−2 + γiδi,j−1 + ciδi,j + ρiδi,j+1 + diδi,j+2, i ∈ Z (2)

where ∂k ≡ ∂/∂tk , the subscript + denotes the upper (including diagonal) triangular part of
the matrix and the matrix entries ci, di (ρi, γi) are the bosonic (fermionic) lattice fields with
the Grassmann parity 0 (1) and the length dimensions [di] = −2, [ci] = −1, [ρi] = −3/2,
[γi] = −1/2; i is the lattice index. Note, the supermatrix L is bosonic and its Grassmann
parity is defined by the Grassmann parity of elements ci on the main diagonal.

The first two flows originated from the Lax-pair representation (1) have the following explicit
form:

∂1di = di(ci − ci−2), ∂1ci = di+2 − di + γiρi+1 + γi−1ρi,

∂1γi = ρi+2 − ρi, ∂1ρi = ρi(ci − ci−1) + di+1γi − diγi−2 (3)

and

∂2di = di(di+2 − di−2 + c2i − c2i−2 − ρi−2γi−3 + ρi−1γi−2 + ρiγi−1 − ρi+1γi),

∂2ci = di+2(ci + ci+2 + γiγi+1)− di(ci + ci−2 + γi−2γi−1)

−ρi(ρi−1 + γi−1(ci + ci−1))− ρi+1(ρi+2 + γi(ci + ci+1)),

∂2γi = ρi+2(ci+1 + ci+2)− ρi(ci + ci−1) + di+3γi+2 + (di+2 − di+1)γi − diγi−2,

∂2ρi = ρi(c
2
i − c2i−1 + di+2 − di−1 − ρi+1γi − ρi−1γi−2)

−di(ρi−2 + γi−2(ci−1 + ci−2)) + di+1(ρi+2 + γi(ci + ci+1)). (4)

Using the Lax pair representation (1), it is easy to derive the general expression for bosonic
Hamiltonians, which are in involution, via the standard formula

Hk =
1

k
strLk ≡

1

k

∞
∑

i=−∞

(−1)i(Lk)ii (5)

with the Hamiltonian densities (−1)i(Lk)ii expected to satisfy the equation with respect to the
evolution time ts

∂s((−1)i(Lk)ii) = ℓs,k,i − ℓs,k,i−1 ≡ (∆ℓ)s,k,i, (6)

where ℓs,k,i are polynomials of the lattice fields {ci, di, γi, ρi}. In what follows we assume the
zero boundary conditions at infinity for the lattice fields

lim
i→±∞

{ci, di, γi, ρi} = 0 (7)

in order the equation for the lattice conservation laws

∂sHk =

∞
∑

i=−∞

(∆ℓ)s,k,i = lim
i→∞

ℓs,k,i − lim
i→−∞

ℓs,k,i = 0 (8)
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to be satisfied. Let us give here the explicit expressions for the first two lattice Hamiltonians
obtained via formula (5)

H1 =

∞
∑

i=−∞

(−1)ici, H2 =

∞
∑

i=−∞

(−1)i(
1

2
c2i + di + ρiγi−1), (9)

The remarkable feature of the first flow (3) is that it can be reduced to any of two 1D Toda lattice
equations with extended supersymmetry known up to recently. First, the N=4 supersymmetric
TL equation can be deduced by eliminating the field ci from system (3) and transition to the
new basis as follows:

di = gigi−1, ρi = giγ
−
i , γi = γ+

i+1. (10)

In this basis eq.(3) takes the following form

∂2 ln gi = gi+1gi+2 − gi(gi+1 − gi−1) + gi−1gi−2 + gi+1γ
+
i+1γ

−
i+1 − gi−1γ

+
i−1γ

−
i−1,

∂γ± = gi+1γ
∓
i+1 − gi−1γ

∓
i−1, (11)

that is a component form of the N=4 supersimmetric TL equation.
Second, the N=2 supersymetric TL equation comes from system (3) as a result of the

following reduction. Let us introduce a new basis in the space {di, ci, ρi, γi} which separates
odd and even lattice nodes

ai = c2i+1, bi = d2i+1, αi = γ2i−1, βi = ρ2i+1,

āi = c2i, b̄i = d2i, ᾱi = −γ2i, β̄i = ρ2i (12)

and rewrite first flow (3) as follows:

∂1bi = bi(ai − ai−1), ∂1ai = bi+1 − bi + βiᾱi + αi+1β̄i+1,

∂1b̄i = b̄i(āi − āi−1), ∂1āi = b̄i+1 − b̄i + βiᾱi + αiβ̄i,

∂1αi = βi − βi−1, ∂1βi = (ai − āi)βi − biαi + b̄i+1αi+1,

∂1ᾱi = β̄i − β̄i+1, ∂1β̄i = (āi − ai−1)β̄i − biᾱi + b̄iᾱi−1. (13)

Now one can easily check that imposing the reduction constraints

b̄i = 0, āi = −
βiβ̄i

bi
(14)

on eq.(13) turns it into the following system of equations:

∂bi = bi(ai − ai−1), ∂ai = bi+1 − bi + βiᾱi + αi+1β̄i+1,

∂βi = aiβi − biαi, ∂β̄i = −ai−1β̄i − biᾱi,

∂αi = βi − βi−1, ∂ᾱi = β̄i − β̄i+1. (15)

which is recognized as a component form of the the N=2 supersymetric TL equation.

3



We would like to emphasize that eqs.(11) and (15) are two different reductions of system
(3) (or (13)) which are not related to each other, i.e. N=2 supersymmetric TL equation (15)
cannot be obtained from N=4 supersymmetric TL equation (11) as a result of some reduction.
Keeping in mind that both N=4 and N=2 TL equations can be deduced from eq.(3) we call
eq.(3) the generalized N=4 supersymmetric TL equation.

The N=4 supersymmetry of eq.(3) in the basis (12) is realized by the following transforma-
tions:

δǫbi = ǫ1(uiβ̄i + ūiβi)− ǫ2(uiβ̄i − ūiβi) + ǫ3bi(αi + ᾱi) + ǫ4bi(αi − ᾱi),

δǫb̄i = ǫ1(ui−1β̄i + ūiβi−1) + ǫ2(ui−1β̄i − ūiβi−1) + ǫ3b̄i(αi + ᾱi−1) + ǫ4b̄i(αi − ᾱi−1),

δǫai = ǫ1(ūi+1αi+1 − uiᾱi)− ǫ2(ūi+1αi+1 − uiᾱi) + ǫ3(βi − β̄i+1) + ǫ4(βi + β̄i+1),

δǫāi = ǫ1(ūiαi − uiᾱi)− ǫ2(ūiαi − uiᾱi) + ǫ3(βi − β̄i) + ǫ4(βi + β̄i),

δǫβi = ǫ1ui(āi − ai) + ǫ2ui(āi − ai) + ǫ3(bi − b̄i+1 − βiᾱi) + ǫ4(b̄i+1 − bi + βiᾱi),

δǫβ̄i = ǫ1ūi(ai−1 − āi)− ǫ2ūi(ai−1 − āi) + ǫ3(bi − b̄i − β̄iαi) + ǫ4(bi − b̄i − β̄iαi),

δǫαi = ǫ1(ui−1 − ui) + ǫ2(ui−1 − ui) + ǫ3(ai−1 − āi) + ǫ4(āi − ai−1),

δǫᾱi = ǫ1(ūi+1 − ūi) + ǫ2(ūi − ūi+1) + ǫ3(āi − ai) + ǫ4(āi − ai), (16)

where ǫk (k = 1, 2, 3, 4) are the corresponding fermionic infinitesimal parameters. Note that
transformations corresponding to the parameters ǫ1 and ǫ2 are nonlocal with respect to the
lattice indices and they are expressed via composite fields ui, ūi

ui ≡
∞
∏

k=0

bi−k

b̄i−k

, ūi ≡
∞
∏

k=0

b̄i−k

bi−k−1

(17)

which obey the following equations and N=4 supersymmetric transformations

∂1ui = ui(ai − āi), ∂1ūi = ūi(āi − ai−1),

δǫui = ǫ1βi − ǫ2βi + ǫ3uiᾱi − ǫ4uiᾱi,

δǫūi = ǫ1β̄i + ǫ2β̄i + ǫ3ūiαi + ǫ4ūiαi. (18)

It can be easily checked that the above transformations indeed realize N=4 supersymmetry,
i.e., that their commutators for any field qi ≡ {ai, āi, bi, b̄i, βi, β̄i, αi, ᾱi} give

[δǫ, δǫ̃]qi = 2

4
∑

k=1

(−1)k ǫ̃kǫk∂1qi. (19)

3 From the Toda lattice hierarchy to the differential one

In this section, we show that first flow (13) of the generalized N=4 supersymmetric TL hierarchy
underlies the N=4 supersymmetric hierarchy of differtial equations which is related to N=4
supersymmetric KdV hierarchy.
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Our goal is to construct the hierarchy of differential equations for which system (13) works
as the discrete symmetry mapping connecting its different solutions. With this aim one can
deduce the appropriate symmetry equation [5, 6] and try to solve it. However, in the case at
hand we deal with all the flows of the lattice hierarchy (1), which allows us to apply another
approach [9] and simply rewrite all the lattice flows via the lattice fields defined in the same
lattice node. Indeed, one can use first flow (13) in order to express all the lattice fields via the
lattice fields defined in the i-th lattice node as follows:

ai−1 = ai − (log bi)
′, βi+1 = βi + α′

i+1,
āi−1 = āi − (log b̄i)

′, β̄i−1 = β̄i + ᾱ′
i−1,

βi−1 = βi − α′
i, bi−1 = bi + αiβ̄i − ᾱi−1βi−1 − a′i−1,

β̄i+1 = β̄i − ᾱ′
i, ai+1 = ai + (log bi+1)

′,
b̄i+1 = ā′i + b̄i + ᾱiβi − αiβ̄i, āi+1 = āi + (log b̄i+1)

′,
αi+1 = (β ′

i + biαi − βi(ai − āi))/b̄i+1, ᾱi+1 = (b̄i+1ᾱi + β̄i+1(āi+1 − ai)− β̄ ′
i+1)/bi+1,

ᾱi−1 = (β̄ ′
i + biᾱi + β̄i(ai−1 − āi))/b̄i, αi−1 = (b̄iαi + βi−1(ai−1 − āi−1)− β ′

i−1)/bi−1,
bi+1 = bi − αi+1β̄i+1 + ᾱiβi + a′i, b̄i−1 = −ā′i−1 + b̄i − ᾱi−1βi−1 + αi−1β̄i−1,

(20)

where we denote the t1-derivative by the sign ′. With the help of eq.(20) all the flows of the
lattice hierarchy (1) being rewritten in basis (12) can be expressed in the terms of the lattice
fields and their derivatives defined in the same lattice node. Thus, one can verify that second
flow (4) turns into the following system of differential equations:

∂2a = (a′ + a2 + 2(b− βᾱ))′,

∂2ā = (ā′ + ā2 + 2(b̄+ β̄α))′,

∂2b = −b′′ + 2(ab)′ + 2b(β̄α− βᾱ),

∂2b̄ = −b̄′′ + 2(āb̄)′ + 2(b̄β̄α+ (α′ − β)(β̄ ′ + bᾱ + β̄(a− ā− (log b)′))),

∂2β = β ′′ + 2(ā β + b α)′,

∂2β̄ = −β̄ ′′ + 2(ā β̄ − b ᾱ)′,

∂2α = −α′′ + 2(β ′ + āβ + α(b− b̄) + (α′ − β)(a− (log b)′)),

∂2ᾱ = ᾱ′′ − 2(β̄ ′ − aᾱ′ + ᾱ(b− b̄− ā′) + β̄(a− ā− αᾱ)), (21)

where we omit the lattice index i. Therefore, one can conclude that using substitutions (20)
one can rewrite all the flows of N=4 TL hierarchy (1) in the form of two-dimensional differential
equations, i.e., pass from the lattice hierarchy to the differential one. The composite lattice
fields (17) which are nonlocal with respect to lattice indices in this case become nonlocal with
respect to time coordinate t1 and take the following form:

ui = exp(∂−1(ai − āi)) := e∆, ūi = biexp(−∂−1(ai − āi)) := bie
−∆ (22)

The same procedure being applied to eq.(16) allows one to find the explicit expressions for the
N=4 supersimmetric transformations of the new differential hierarchy which read

δǫa = ǫ1((b α− a β + ā β + β ′)e−∆ − ᾱe∆) + ǫ2((a β − b α− ā β − β ′)e−∆ − ᾱe∆)
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+ǫ3(β − β̄ + ᾱ′) + ǫ4(β + β̄ − ᾱ′),

δǫā = ǫ1(b αe
−∆ − ᾱe∆) + ǫ2(−b αe−∆ − ᾱe∆) + ǫ3(β − β̄) + ǫ4(β + β̄),

δǫb = ǫ1(β̄ e∆ + b βe−∆) + ǫ2(β̄ e∆ − b βe−∆) + ǫ3b(α + ᾱ) + ǫ4b(α − ᾱ),

δǫb̄ = ǫ1(b̄ β̄ e∆/b+ b (β − α′)e−∆) + ǫ2(b̄ β̄ e∆/b− b (β − α′)e−∆)

+ǫ3(b̄ α+ b ᾱ + β̄(a− ā− (log b)′) + β̄ ′) + ǫ4(b̄ α− b ᾱ + β̄(ā− a+ (log b)′)− β̄ ′),

δǫα = (ǫ1 + ǫ2)(b̄/b− 1)e∆ + (ǫ3 − ǫ4)(a− ā− (log b)′),

δǫᾱ = (ǫ1 − ǫ2)(b̄− b− βᾱ+ β̄α+ ā′)e−∆ + (ǫ3 + ǫ4)(ā− a),

δǫβ = (ǫ1 + ǫ2)(ā− a)e∆ + (ǫ3 − ǫ4)(b− b̄− β̄α− ā′),

δǫβ̄ = (ǫ1 − ǫ2)(b(a− ā)− b′)e−∆ + (ǫ3 + ǫ4)(b− b̄− β̄α). (23)

Note that the nonlocality of the supersymmetric transformations corresponding to the param-
eters ǫ1 and ǫ2 originates from the nonlocality of the composite lattice fields (17).

The main property of integrable hierarchy is that it possesses an infinite number of conser-
vation laws. From eq.(21) one can find the first two conservation laws which have the following
simple form:

H1 =

∫

dxa, H̄1 =

∫

dxā. (24)

Now let us show how all bosonic conservation laws of the new N=4 supersymmetric differential
hierarchy can be produced from the lattice Hamiltonians (5). By construction the densities
(−1)i(Lk)ii are conserved which means

∂1

∫

dx(−1)i(Lk)ii =

∫

dx(ℓ1,k,i − ℓ1,k,i−1) = 0, (25)

where we rename t1 by x and take into consideration the boundary conditions (7) and eq.(6).
From (25) one can obtain the relation which connects the integrals defined in the neighboring
lattice nodes and using which one can write

∫

dxℓ1,k,i =

∫

dxℓ1,k,i−1 =

∫

dx lim
i→−∞

ℓ1,k,i = 0, (26)

where the boundary conditions (7) are taken into consideration again. Thus, one can conclude
that ℓ1,k,i is the conserved density and

Hk+1 =

∫

dxℓ1,k,i (27)

are the conservation laws, ∂sHk = 0. In such a way, using eq.(20) in order to express all the
fields entering into the density ℓ1,k,i in the same lattice node we obtain from Hamiltonians (9)
the next two conservation laws of the differential N=4 supersymmetric hierarchy which read

H2 =

∫

dx(b− b̄− β̄α), H3 =

∫

dx(ba− b̄ā− bαᾱ− āβ̄α + ββ̄). (28)
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We have no independent formulation of the new differential hierarchy so far. All its flows,
the supersymmetry transformations as well as the conservation laws can be generated only with
the help of the substitutions (20) starting with the corresponding lattice counterparts. In order
to give an independent formulation of the new hierarchy, one can try to find its Hamiltonian
structure or construct its Lax-pair representation. But first of all, to understand what kind of
hierarchy we deal with, let us consider the bosonic limit of its second flow (21). It is the system
of two decoupled NLS equations

∂2a = (a′ + a2 + 2b)′,

∂2b = (−b′ + 2ab)′ (29)

and the same equations for the fields ā and b̄. The set of equations (29) forms the bosonic
limit of the second flow of the a=4, N=2 supersymmetric KdV hierarchy. Keeping in mind that
the new hierarchy possesses N=4 supersymmetry one can expect that it is closely related to
the N=4 KdV hierarchy. It turns out that such a relation indeed exists. After passing to the
new basis {u, v, r, s, ξ, ξ̄, η, η̄} in the space of fields {b, b̄, a, ā, α, ᾱ, β, β̄} defined by the following
transformations:

u = b− b̄− a′ + (log b)′′ + αβ̄, v = a− (log b)′, r = b e−∆,

s = −b̄ e∆/b, ξ̄ = −β̄, ξ = β − α′, η = αb e−∆,

η̄ = ((ā− a + (log b)′)β̄ − β̄ ′ − bᾱ) e∆/b (30)

one can rewrite the second flow (21) as follows:

∂2u = (−u′ + 2uv + 2r′s− 2ξξ̄ + 2ηη̄)′, ∂2ξ = (−ξ′ − 2sη + 2vξ)′,

∂2v = (v′ + v2 + 2u− 2rs)′, ∂2ξ̄ = (ξ̄′ − 2rη̄ + 2vξ̄)′,

∂2r = r′′ − 2ur + 2vr′ + 2ηξ̄, ∂2η = (η′ + 2rξ + 2vη)′,

∂2s = −s′′ + 2us+ 2(vs)′ − 2ξη̄, ∂2η̄ = (−η̄′ + 2sξ̄ + 2vη̄)′. (31)

The set of equations (31) represents the component form of the second flow of the a=4, N=4
supersymmetric KdV hierarchy [10, 11]. In [4], it was demonstrated that the a=4, N=4 super-
KdV hierarchy as well as the a=-2, N=4 super-KdV one can be reproduced as a result of
different reductions of the N=4 Toda-KdV hierarchy written in terms of two constrained N=4
superfields. The component form of the second flow of the a=-2, N=4 KdV hierarchy is 1

∂2ũ = (r̃′′ + ũ(r̃ + 3s̃)− ṽr̃′ − 3ξ̃˜̄η + ˜̄ξη̃)′,

∂2ṽ = s̃′′ − r̃′′ + 2ũ(r̃ − s̃) + ṽ(r̃ + s̃)′ + ṽ′(s̃+ 3r̃) + 2(ξ̃˜̄η + ˜̄ξη̃),

∂2s̃ = ũ′ + ṽ′′ − ũṽ − ṽṽ′ + s̃′(r̃ + 3s̃)− η̃˜̄η + ξ̃˜̄ξ,

∂2r̃ = ũ′ + ũṽ + r̃′(s̃+ 3r̃) + η̃˜̄η − ξ̃˜̄ξ,

∂2ξ̃ = (−η̃′ + ṽη̃ + ξ̃(r̃ + 3s̃))′, ∂2
˜̄ξ = ( ˜̄η′ + ṽ˜̄η + ˜̄ξ(s̃+ 3r̃))′,

∂2η̃ = (−ξ̃′ − ṽξ̃ + η̃(s̃+ 3r̃))′, ∂2˜̄η = (˜̄ξ′ − ṽ˜̄ξ + ˜̄η(r̃ + 3s̃))′, (32)

1 Equation (32) corresponds to the second flow of the a=-2, b=-6, N=4 super-KdV hierarchy, according to
the notation of [11]; the system (31) corresponds to the second flow of the a=4, b=0, N=4 super-KdV hierarchy.
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One can easily verify that the component forms of the N=4 supersymmetric a=-2 and a=4
KdV hierarchies are related to each other by the following simple relation:

ũ = u+ s′ + v′/2 + r′/4, ṽ = −2s− r/2, r̃ = v/2− s+ r/4, s̃ = v/2 + s− r/4,

ξ̃ = ξ − η/2, ˜̄ξ = ξ̄/2− η̄, η̃ = η/2 + ξ, ˜̄η = η̄ + ξ̄/2. (33)

Thus, one can conclude that the differential hierarchy deduced from the generalized N=4
supersymmetric TL hierarchy (1) with the help of substitutions (20) is the component form of
the N=4 super-KdV hierarchy. To finish this section, we note that transformations (30) are
invertible

a = v + (log(u+ v′ − rs− ξ̄η/r))′, b = u+ v′ − rs− ξ̄η/r,

ā = v + (log r)′, b̄ = −rs, β = ξ + (η/r)′, β̄ = −ξ̄,

α = η/r, ᾱ =
ξ̄′ − ξ̄(log r)′ − rη̄

u+ v′ − rs− ξ̄η/r
, (34)

and relations (34) being substituted into eq.(13) give the discrete symmetry mapping connecting
different solutions of the a=4, N=4 super-KdV hierarchy.

4 From the differential hierarchy to the lattice one

In the previous section, we demonstrated how differential N=4 supersymmetric KdV hierarchy
can be recovered from the generalized N=4 supersymmetric TL hierarchy (1). In this section,
we resolve the inverse problem, i.e., show how TL hierarchy (1) can be reproduced from the
differential one.

First of all, let us introduce the (1,1)-Generalized Nonlinear Schrödinger ((1,1)-GNLS) hi-
erarchy [12]. All its flows can be deduced from the Lax-pair representation

∂kL = [(Lk)≥1, L] (35)

for the Lax operator

L = ∂ − 1/2(FaF a + FaD∂−1[DF a]), (36)

where Fa(X) and F a(X) are chiral and antichiral N=2 superfields

DFa(X) = 0, D F a(X) = 0, (37)

respectively, which are bosonic for a = 1 and fermionic for a = 2; X = (x, θ, θ̄) is a coordinate
of N=2 superspace and D,D are the N=2 supersymmetric fermionic covariant derivatives

D =
∂

∂θ
−

1

2
θ̄
∂

∂x
, D =

∂

∂θ̄
−

1

2
θ
∂

∂x
, {D,D} = −

∂

∂x
, D2 = D

2
= 0 (38)
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In (35) the subscript ≥ 1 means the sum of purely derivative terms of the operator Lk(k > 0)
and for k = 2 eq.(35) gives

∂2Fa = Fa
′′ +D(FbF bDFa),

∂2F a = −F a
′′ +D(FbF bDF̄a), (39)

where summation over repeated indices is understood. The set of equations (39) forms the
(1,1)-GNLS equation which is related to the a=4, N=4 supersymmetric KdV hierarchy. In [13],
it was demonstrated that the passing to the new basis

J = −
1

2

2
∑

k=1

FkF k −
DF

′

2

DF 2

, F = −
1

2
F1DF 2, F = −DD

(

F 1

DF 2

)

(40)

establishes the relationship between these hierarchies. It is easy to show that the new superfields
J ,F ,F satisfy, as a consequence of eq.(39), the following set of equations:

∂2J = ([D,D]J + J 2 − 2FF)′,

∂2F = F ′′ − 2DD(JF), ∂2F = −F
′′
− 2DD(JF), (41)

which is recognized as the second flow of the a=4, N=4 supersymmetric KdV hierarchy [11].
Let us note that the N=2 superfield form of the seconf flow (41) is related to its component
form (31) as follows:

u = 1/2([D,D]J − J ′)
∣

∣

∣
, v = J

∣

∣

∣
, ξ = DJ

∣

∣

∣
, ξ̄ = DJ

∣

∣

∣
,

r = F
∣

∣

∣
, s = F

∣

∣

∣
, η̄ = DF

∣

∣

∣
, η = DF

∣

∣

∣
, (42)

where | means the (θ, θ̄) → 0 limit. For completeness, we give here the N=2 superfield form of
the second flow of the a=-2, N=4 super-KdV equation (32)

∂2J̃ = (
˜
F

′
− F̃ ′ + J̃ (F̃ + F̃))′ − 2DD(J̃ F̃)− 2DD(J̃ F̃),

∂2F̃ = DD(J̃ ′ + 1/2J̃ 2 − F̃F̃ − 3/2F̃2),

∂2F̃ = DD(−J̃ ′ + 1/2J̃ 2 − F̃F̃ − 3/2F̃2), (43)

where the component content of the superfields is defined in the same way as in eq.(42).
The precise analysis shows that in addition to relation (40) these exists at least one more

relation

J = −
1

2

2
∑

k=1

FkF k +
DF ′

2

DF2

+

(

F2DF1

F1DF2

)′

, F = −D

(

F2

F1

)

,

F = D

(

1

DF2

(

D

(

−F ′
1 +

1

4
F 2
1F 1 +

F ′
1F2DF1

F1DF2

)

+
1

2
F2F 2DF1

))

(44)
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which connects the (1, 1)-GNLS and a=4, N=4 super-KdV hierarchies. Supplying the supefields
Fa, F a in eqs. (40) and (44) with the lattice index i and i − 1, respectively, and equating the
corresponding superfields J ,F ,F beloning to relations (40) and (44), we obtain the mapping

1

2

2
∑

k=1

(Fk,i−1F k,i−1 − Fk,iF k,i) =

(

log(DF2,i−1DF 2,i) +
F2,i−1DF1,i−1

F1,i−1DF2,i−1

)′

,

DD

(

F 1,i

DF 2,i

)

= D

(

F2,i−1

F1,i−1

)

,

D

(

1

DF2,i−1

(

D

(

F ′
1,i−1 −

1

4
F 2
1,i−1F 1,i−1 −

F ′
1,i−1F2,i−1DF1,i−1

F1,−1DF2,i−1

)

−
1

2
F2,i−1F 2,i−1DF1,i−1

))

=
1

2
F1,iDF 2,i , (45)

that acts like the discrete symmetry transformation of the (1,1)-GNLS hierarchy and has sig-
nificant importance in our consideration. Namely, one can demonstrate that all the flows of the
generalized N=4 supersymmetric TL hierarchy (1) can be recovered from the corresponding
flows of the (1,1)-GNLS hierarchy with the help of the mapping (45).

Let us introduce the components of the N=2 superfields entering into eq.(45) as follows:

gi = F1,i

∣

∣

∣
, ḡi = F 1,i

∣

∣

∣
, fi = DF2,i

∣

∣

∣
, f̄i = DF 2,i

∣

∣

∣
,

χi = F2,i

∣

∣

∣
, χ̄i = F 2,i

∣

∣

∣
, ζi = DF1,i

∣

∣

∣
, ζ̄i = DF 1,i

∣

∣

∣
, (46)

where the fields gi, ḡi, fi, f̄i (χi, χ̄i, ζ, ζ̄i) are bosonic (fermionic) ones, and define the following
relations connecting these component fields with the fields of the generalized N=4 supersym-
metric TL hierarchy in basis (12):

ai = −
1

2
(giḡi + χiχ̄i) +

(

log fi −
ζiχi

gifi

)′

, bi =
1

2
(
f̄iζiχi

gi
− fif̄i),

āi = −
1

2
(giḡi + χiχ̄i) + (log gi)

′, b̄i =
1

2
(
giζ̄iχ̄

′
i

f̄i
+ giḡ

′
i),

βi =
1

2
(fiχ̄i + ḡiζi)−

(

ζi
gi

)′

, β̄i =
1

2
(f̄iχi − giζ̄i),

αi =
χ̄′
i

f̄i
−

ζi
gi
, ᾱi =

1

fi
(χ′

i − χi(log gi)
′ +

ζiχiχ
′
i

gifi
). (47)

Now it is a matter of straightforward calculations to verify that the component form of the
mapping (45) being rewritten in basis (47) is equivalent to the generalized N=4 supersymmetric
TL equation (13). Therefore, eq.(45) represents the N=2 superfild form of this equation.
Moreover, one can verify that fields {ai, āi, bi, b̄i, χi, χ̄i, ζi, ζ̄i} defined by eq.(47) satisfy, as a
consequence of eqs.(39) and (46), the equations of the second flow (21) of the N=4 super-
KdV hierarchy. Eliminating further the x-derivatives from eq.(21) with the help of eq.(13) one
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obtains the second flow (4) of the generalized N=4 supersymmetric TL hierarchy in the basis
(12). It is clear that the same procedure allows one to reproduce any flow of the generalized
N=4 supersymmetric TL hierarchy (1) from the corresponding flow of the (1,1)-GNLS hierarchy.
Thus, we can reproduce the generalized N=4 supersymmetric TL hierarchy starting with (1,1)-
GNLS hierarchy and mapping (45).

Note that in a similar approach the N=2 supersymmetric TL hierarchy was constructed
in [14]. The N=2 supersymmetric TL hierarchy can be recovered from the generalized N=4
supersymmetric TL hierarchy as a result of the reduction with the reduction constraints (14).
The set of equations (15) is exactly the first flow of this N=2 supersymmetric TL hierarchy.
The N=4 supersymmetric differential hierarchy in the basis (12) can also be reduced to the
N=2 supersymmetric one by imposing the following reduction constraints:

b̄ = 0, ā = −
ββ̄

b
, α =

1

b
(aβ − β ′), ᾱ =

1

b
(β̄(log b)′ − aβ̄ − β̄ ′). (48)

In this case, its second flow (21) takes the following form(see eq.(50) in [14])

∂2b = (−b′′ + 2ba)′ + 2b(
ββ̄

b
)′, ∂2β̄ = (β̄ ′ + 2(aβ̄ − β̄(log b)′))′,

∂2a = (a′ + a2 + 2(b+ β(
β̄

b
)′ + a

ββ̄

b
))′, ∂2β = (−β ′ + 2aβ)′, (49)

which is related to the second flow of the a=4, N=2 super-KdV hierarchy [15].
The discrete symmetry (45) can equivalently be rewritten in terms of the N=2 superfields

entering into the N=4 super-KdV hierarchy. It reads2

Fi+1F i+1 = Φi +DDJi − (logFi)
′′ +

1

Φi

(DJi +

(

DFi

Fi

)′

)(DJ ′
i −DJi(logFi)

′ −FiDFi),

FiF i+1 = Φi, Ji+1 = Ji + (log Φi)
′, Φi ≡ DDJi + FiF i +

DJiDFi

Fi

. (50)

The discrete symmetries (45) and (50) are useful when constructing the solutions of the N=4
supersymmetric KdV and (1,1)-GNLS hierarchies. For example, if the set {Ji,Fi,F i} is a
solution of the N=4 super-KdV hierarchy, then the set {Ji+1,Fi+1,F i+1} is a solution of this
hierarchy as well. Let us note that eqs. (45) and (50) set aside boundary conditions. Therefore,
via eqs. (30) and (42) one can obtain a solution of the N=4 super-KdV hierarchy in terms of
solutions of the generalized N=4 supersymmetric TL hierarchy for different boundary conditions
including periodic ones [1, 16].

5 Conclusion

In this paper, we demonstrated that the generalized N=4 supersymmetric TL hierarchy contains
the N=4 supersymmetric KdV one. We used the first flow of the generalized N=4 supersym-
metric TL hierarchy in order to express all the lattice fields in terms of the fields defined in the

2In [4], the N=4 superfield form of the Darboux-Backlund symmetries of the N=4 super-KdV-Toda hierarchy,
which are related to eqs. (45) and (50), was presented.
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same lattice node and rewrote all its flows in the form of differential equations. In such a way,
we reproduced the component form of the N=4 KdV hierarchy as well as its supersymmetric
transformations and conservation laws. Finally, we obtained two different N=2 superfield forms
of the generalized N=4 supersymmetric TL equation which are helpful when solving the N=4
super-KdV and (1,1)-GNLS hierarchies.

In conclusion, we would like to note that the one-dimensional generalized N=4 supersym-
metric TL hierarchy is a particular case of a wide class of hierarchies [17] defined by the Lax
operators

(L)i,j =
2n
∑

k=−2

uk,iδi,j+k, u−2,i = 1, n > 0. (51)

These hierarchies possess the N=2 supersymmetry and it would be interesting to investigate
which N=2 supersymmetric differential hierarchies can be reproduced from them in our ap-
proach.

Another problem of special interest is to consider the Lax operator (2) with bosonic and
fermionic fields replaced by square k × k matrices with bosonic and fermionic entries, respes-
tively. In our approach, such a Lax operator gives rise to the matrix hierarchy which is N=4
supersymmetric and under reduction constraints, when all the off-diagonal fields are equal to
zero, splits into k independent N=4 super-KdV hierarchies. One can expect that such matrix
hierarchy can throw light on the longstanding problem of constructing the N=4 super-KdV hi-
erarchy (if any) with the N=4 O(4) (”large”) superconformal algebra as the second Hamiltonian
structure.

Acknowledgments. The author is grateful to A.Sorin for clarifying remarks.
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