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Abstract. Most of the work done in the past on the integrability structure of the Classical
Heisenberg Spin Chain (CHSC) has been devoted to studying the su(2) case, both at the
continuous and at the discrete level. In this paper we address the problem of constructing
integrable generalized “Spin Chains” models, where the relevant field variable is represented
by aN×N matrix whose eigenvalues are theN th roots of unity. To the best of our knowledge,
such an extension has never been systematically pursued. In this paper, at first we obtain
the continuous N × N generalization of the CHSC through the reduction technique for
Poisson–Nijenhuis manifolds, and exhibit some explicit, and hopefully interesting, examples
for 3× 3 and 4 × 4 matrices; then, we discuss the much more difficult discrete case, where
a few partial new results are derived and a conjecture is made for the general case.
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1 Introduction

The Heisenberg ferromagnet has been one of the first integrable models investigated and solved in
the framework of the Inverse Scattering Method, both at a classical [1, 2, 3] and at a quantum
level. In particular, at the quantum level, through the Quantum Inverse Scattering Method
[4, 5], the original Bethe solution [6] has been rediscovered and generalized, and the solu-
tion of the isotropic one-dimensional spin chain was just the starting example in a list of
a number of outstanding achievements obtained in this field in the 80’s and in the 90’s of
the last century. The scope of the present contribution is twofold. On one hand, in Sec-
tion 2 the geometric approach introduced in the field of infinite dimensional integrable sys-
tems by Magri and coll. [7, 9, 8] will be used to extend to N × N matrices the old results
on the SU(2) classical Heisenberg chain obtained about 20 years ago; accordingly, new hier-
archies of integrable evolution equations will be derived, and a few explicit examples will be
shown, which might have some relevance for studying classical analogs of the so-called Potts
model [10, 11, 12]. On the other hand, in Section 3 the intriguing issues concerning the
lattice version of the model [2, 13] will be reexamined, a few additional results in the 2 × 2
case will be given, and finally a conjecture concerning the general N × N case will be formu-
lated.

⋆This paper is a contribution to the Proceedings of the Workshop on Geometric Aspects of Integ-
rable Systems (July 17–19, 2006, University of Coimbra, Portugal). The full collection is available at
http://www.emis.de/journals/SIGMA/Coimbra2006.html
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2 The classical Heisenberg chain on the line for N × N matrices

Let us first recall the basic notions and results underlying the integrability of the classical
Heisenberg ferromagnet in the usual su(2) setting. As a starting point, we will adopt the
simplest point of view, where an integrable (matrix) system in 1 + 1 continuous dimensions is
regarded as the compatibility condition for two linear differential (matrix) systems, defining the
so called associated Lax pair:

ψx = λSψ, (2.1)

ψt = V ψ. (2.2)

In (2.1), (2.2) ψ, S, V are n × n matrix valued functions of the (x, t) coordinates, S is the
field variable appearing linearly in the so-called principal spectral problem, V has an additional
(rational) dependence on a complex parameter λ, denoted as the spectral parameter. It would be
natural to look at ψ as an element of a Lie group, and at S, V as elements of the associated Lie
algebra. More correctly, due to the extra dependence on λ, we should speak of “loop” Groups
and Algebras. However, in the sequel we will always assume S to belong to the open set of
the invertible elements of the unital associative algebra of the N ×N matrices with (generally)
distinct eigenvalues.

The compatibility condition of the above linear system (2.1), (2.2) reads:

St =
1

λ
Vx + [V, S] (2.3)

which is also known as the zero-curvature condition for the connection given by the one form:

α = λSdx− V dt.

Actually, in the very simple example under scrutiny, the compatibility condition (2.3) amounts
to the compatibility (i.e. vanishing of the Schouten bracket) of the two Poisson tensors:

PV = [V, S], QV = Vx

which then define the bi-Hamiltonian pair P, Q.

As is well known from [7, 9, 8], the Poisson tensors P, Q are linear operators from the
cotangent bundle T ∗M to the tangent bundle TM to our configuration manifold, which is just
an affine hyperplane to the linear space of matrix-valued C∞ functions of the real variable x
fulfilling homogeneous boundary conditions. The duality form between TM and T ∗M is the
usual trace form 〈φ, α〉 :=

∫

∞

−∞
Tr (φα)dx. As Q is invertible, we can introduce on TM the

tensor (Recursion operator):

N := PQ−1 ⇒ φ′(:= St′) =

[

S,

∫ x

φ(:= St)

]

(2.4)

that has zero Nijenhuis torsion (whence the name “Nijhenhuis tensor” [14]) and gives rise to
a hierarchy of commuting flows. Under the above conditions we will say that M is equipped
with a PN structure.

In order to construct a hierarchy of integrable evolution equations, we have to choose a sub-
manifold M ′ ⊂ M such that the Nijenhuis tensor has maximal rank on it. As shown in [8] we
can achieve this goal by going on restricting the action of N to smaller and smaller submani-
folds as far as the structure is preserved. In particular, it is always possible to restrict N on
a characteristic leaf of ImQ, and then again on a leaf of the distribution generated by ImN r,
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where r (assumed to be finite) is the Riesz index of N [15]. As in our case Q is invertible, the
only relevant restriction is on

ImN = ImP{φ : φ = [S, α] for some α}. (2.5)

It can be readily seen that ImN = ImN k, KerN = KerN k, ∀ k > 1. Hence r = 1 and then we
can restrict the PN structure on a characteristic leaf of the distribution (2.5):

TM ′ = {φ : TrSkφ = 0} (k = 0, . . . , N − 1)

yielding the symplectic leaves:

TrSk = dk. (2.6)

The hierarchy obtained by acting with N (2.4) on the starting symmetry [S,C], C being
an arbitrary constant matrix, (the so-called “rotational flow”) consists however of nonlocal
equations. As it was already shown in [8] for 2 × 2 matrices, the way to get local equations is
then to invert N , which is obviously possible thanks to the above restriction.

In the following, for the sake of simplicity, we will simply denote by N (−1) the inversion of
the restriction of N on (2.6).

The most important case, and the best studied one, is when S ∈ su(2), namely it is a 2 × 2
Hermitean traceless matrix:

S = ~S · σ̂, ~S · ~S = 1, σ̂ = (σ1, σ2, σ3).

Finding N−1 is a rather easy task. Indeed, from

φ′ =

[

S,

∫ x

φ

]

one gets

φ =
1

4
[S, φ′]x + (c0I + c1S)x,

where the second term in the above formula comes from Ker [S, ·]. Whence, imposing φ to be
tangent to the symplectic leaves (2.6), we derive:

c0 = 0, c1 = −
1

8

∫ x

tr [S, Sx]φ

so that:

φ := N (−1)φ′ =
1

4
[S, φ′]x −

1

8
S

∫ x

tr [S, Sx]φ. (2.7)

From (2.7) one gets a local hierarchy [8], whose first members are:

φ0 = 0, φ−1 = Sx, φ−2 = [S, Sxx], . . . .

In particular the HSC Hamiltonian flow is φ−2 = [S, Sxx], namely:

St = [S, Sxx] = [S,∇H] ⇒ H =
1

2

∫ +∞

−∞

Tr (Sx)
2. (2.8)

The novel result contained in this section is the explicit form of N (−1), and of the associated
local evolution equations and Hamiltonian functionals for N × N matrices s.t. SN = I, which
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we have denoted as HSC at the N th roots of unity. The derivation is quite simple. Indeed, from
the very definition of the Nijhenhuis tensor (2.4) one easily gets:

φ =
1

2N

∂

∂x

(

N−1
∑

l=1

l
[

Slφ′SN−l−1 − SN−l−1φ′Sl
]

+

N−1
∑

l=0

clS
l

)

.

The conditions:

TrSkφ = 0

that ensure φ to be tangent to (2.6), allow to determine ck through quadratures, up to constant
integration factors:

(ck)x = −
2

N
Tr

N−1
∑

l=1

lSn−l−1φ′Sl(SN−k)x.

For a given N , the hierarchy of evolution equations splits into N − 1 sub-hierarchies, with
starting symmetries (Sk)x (k = 1, . . . , N − 1). In the following, we provide the explicit form of
the first members of the hierarchy for N = 3 and N = 4.

Example 1. N = 3. There are two families of local flows, with starting points:

φ
(1)
1 = Sx, φ

(2)
1 = (Sx)

2

whence the first few members of simpler family read:

φ
(1)
2 = [S2, Sx]x, φ

(1)
3 = [S2, [S2, Sx]x]x, . . . .

The Hamiltonian H
(1)
2 reads (up to constant factors):

H
(1)
2 =

∫ +∞

−∞

TrS(Sx)
2.

Example 2. N = 4. There are three families of local flows, with starting points:

φ
(1)
1 = Sx, φ

(2)
1 = (Sx)

2, φ
(3)
1 = (Sx)

3

whence the next flow in the simplest family reads:

φ
(1)
2 = 3[S3, Sx]x + [S, SSxS]x,

while the associated Hamiltonian functional H
(1)
2 is given by:

H
(1)
2 =

∫ +∞

−∞

Tr
(

(Sx)
2 − 1

8(SSx)
2
)

.

Remark 1. The flow (2.8) is obviously consistent with the restriction SN = I ∀N . However, it
belongs to the integrable hierarchies only for N = 2. In fact, the Lie derivative of the Nijenhuis
tensor (2.4) in the direction of ψ := [S, Sxx] on an arbitrary vector φ can be calculated from the
formula:

Lψ(Nφ) = (Lψ(N )(φ) +NLψφ

whence, with the proper replacements:

(Lψ(N )(φ) = 3[S, [φ, Sx]]. (2.9)

From (2.9) we readily see that the Lie derivative of the Nijenhuis tensor in the direction (2.8)

vanishes only for the subhierarchies starting with φ
(1)
1 = Sx. Hence, for N larger than 2, the

flow (2.8), though being Hamiltonian and possessing infinitely many conserved quantities (and
commuting symmetries) is certainly not completely integrable.
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3 The discrete case: some results and a conjecture

In contrast with the continuous case, we cannot give any new result for arbitrary N×N matrices.
However, before focussing on the well known 2 × 2 case, we will write down the compatibility
scheme and recall the abstract PN structure in the differential-difference setting, as it has been
elucidated in the past by various authors [13, 17, 18]. The two relevant linear problems read:

ψm+1 = (I + λSm)ψm,

ψm,t = Vm(λ)ψm. (3.1)

In (3.1) ψ, S, V are N × N matrices, depending on a discrete variable m ∈ Z, on a contin-
uous variable t ∈ R and on a complex parameter λ. It has been shown [13, 17, 18] that the
compatibility of the above linear problems yields the PN structure:

φ := Pα = [S, α],

φ′ := Nφ =
1

2
[S,(Rφ)] +

1

2
{Sφ}, (3.2)

where:

R =
E + 1

E − 1
, (Eφ)m := φm+1.

We note that R is the so-called ILW operator, satisfying the modified Yang–Baxter equation in
the algebra of shift operators [17].

Remark 2. Notice that now ImN is larger than ImP; however ImP is still an invariant

submanifold for ImN , namely TrSlφ = 0 implies TrSlNφ = 0 ∀ l. Indeed, from (3.2) it follows
the recurrence relation TrSlNφ = TrSl+1φ, entailing Tr [NN − I]φ = 0 = TrSl[NN − I]φ, ∀ l.

As we mentioned before, to the best of our knowledge explicit evolution equations can be
found in the literature only for 2×2 matrices. They are for instance reported in the fundamental
reference [2], where the corresponding “Lax pair” (3.1) is also shown. As it was first pointed out
in [13], both the Discrete Heisenberg (DH) ferromagnet and the Discrete Translational (DT) flow
belong to the kernel of N 2−I, which is in fact the linear span of them. They read respectively:

Sm,t = [Sm, βmSm+1 + βm−1Sm−1],

Sm,τ = βm(Sm + Sm+1)− βm−1(Sm + Sm−1),

where βm := 1
Tr (I+SmSm+1)

. Each of the above two equations can be derived from the other by
applying the recursion operator N .

The above results, and Remark 2 strongly suggest the following

Conjecture. For N × N matrices obeying the cyclic constraint SN = I, the local evolution

equations span Ker (NN − I); hence, starting from any of them, the others can be obtained by

applying subsequently N . In other words, we can always f ind in Ker (NN−I) a cyclic basis φ(r)

such that: φ(r+1) = Nφ(r), φ(r+N) = φ(r).
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53 (1990), 35–81.

[10] Potts R., Some generalized order-disorder transformations, Proc. Camb. Phil. Soc. 48 (1952), 106–109.

[11] Wu F.Y., The Potts model, Rev. Modern Phys. 54 (1982), 235–268.

[12] Hartmann A.K., Calculation of partition functions by measuring component distributions, Phys. Rev. Lett.
94 (2005), 050601, 4 pages, cond-mat/0410583.

[13] Ragnisco O., Santini P.M., A unified algebraic approach to integral and discrete evolution equations, Inverse
Problems 6 (1990), 441–452.

[14] Nijenhuis A., Connection-free differential geometry, in Proc. Conf. Differential Geometry and Applications,
(August 28 – September 1, 1995, Masaryk University, Brno, Czech Republic), Editors J. Janyska, I. Kolar
and J. Slovak, Masaryk University Brno, 1996, 171–190.

[15] Kreyszig E., Introductory functional analysis with applications, Wiley Classic Library, 1989.

[16] Morosi C., The R-matrix theory and the reduction of Poisson manifolds J. Math. Phys. 33 (1992), 941–952.

[17] Morosi C., Tondo G., Yang–Baxter equations and intermediate long wave hierarchies, Comm. Math. Phys

122 (1989), 91–103.

[18] Morosi C., Tondo G., Some remarks on the bi-Hamiltonian structure of integral and discrete evolution
equations, Inverse Problems 6 (1990), 557–566.

http://arxiv.org/abs/hep-th/9211111
http://arxiv.org/abs/cond-mat/0410583

	Introduction
	The classical Heisenberg chain on the line for NN matrices
	The discrete case: some results and a conjecture
	References

