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Abstract

It has recently been observed that certain nonassocidgiebras (called ‘weakly nonassociative’,
WNA) determine, via a universal hierarchy of ordinary diffetial equations, solutions of the KP
hierarchy with dependent variable in an associative sghaiy(the middle nucleus). We recall central
results and consider a class of WNA algebras for which thealély of ODEs reduces to a matrix
Riccati hierarchy, which can be easily solved. The resgl8olutions of a matrix KP hierarchy
determine, under a ‘rank one condition’, solutions of thala&cKP hierarchy. We extend these
results to the discrete KP hierarchy. Moreover, we buildidde from the WNA framework to the
Gelfand-Dickey formulation of the KP hierarchy.

1 Introduction

The Kadomtsev-Petviashvili (KP) equation is an extensidh@famous Korteweg-deVries (KdV) equa-
tion to 2+1 dimensions. It first appeared in a stability asalof KdV solitons [1, 2]. In particular, it
describes nonlinear fluid surface waves in a certain apprati®n and explains to some extent the forma-
tion of network patterns formed by line wave segments on amgtrface [2]. It is ‘integrable’ in several
respects, in particular in the sense of the inverse saagtenethod. Various remarkable properties have
been discovered that allow to access (subsets of) its gnfutn different ways, see in particular [3-5].
Apart from its direct relevance in physics, the KP equatiod #s hierarchy (see [5, 6], for example)
is deeply related to the theory of Riemann surfaces (RierSaottky problem, see [7] for a review).
Some time ago, this stimulated discussions concerningdlleeof KP in string theory (see [8-11], for
example). Later the Gelfand-Dickey hierarchies, of whind KdV hierarchy is the simplest and which
are reductions of the KP hierarchy, made their appearanceairnix models, first in a model of two-
dimensional quantum gravity (see [12,13] and referenceeih). This led to important developments
in algebraic geometry (see [14], for example). Of courseatwie mentioned here by far does not ex-
haust what is known about KP and there is probably even mugk imahe world of mathematics and
physics linked to the KP equation and its descendants tilat/aits to be uncovered.

In fact, an apparently completely different appearancenefKP hierarchy has been observed in
[15]. On a freely generated ‘weakly nonassociative’ (WNAgedra (see sectidd 2) there is a family
of commuting derivatiofisthat satisfy identities which are in correspondence withahuations of the
KP hierarchy (with dependent variable in a noncommutatssmeiative subalgebra). As a consequence,
there is a hierarchy of ordinary differential equations @ipon this WNA algebra that implies the KP
hierarchy. More generally, this holds fanyWNA algebra. In this way WNA algebras determine classes
of solutions of the KP hierarchy.

!Families of commuting derivations on certain algebras afsweared in [16, 17], for example. In fact, the ideas unitegly
the work in [15] grew out of our work in [18] which has some digac overlap with [16].
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In section[2 we recall central results of [15] and presentva ressult in propositio]l. Sectidd 3
applies the WNA approach to derive a matrix Ri(ﬁani'erarchy, the solutions of which are solutions of
the corresponding matrix KP hierarchy (which under certaimditions determines solutions of the scalar
KP hierarchy). In section4 we extend these results to theetis KP hierarchy [35—-39]. Furthermore, in
sectior. b we show how the Gelfand-Dickey formulation [5]ra# KP hierarchy (with dependent variable
in any associative algebra) emerges in the WNA frameworkti®#8 contains some conclusions.

2 Nonassociativity and KP
In [15] we called an algebré, o) (over a commutative ringlkeakly nonassociative (WNHA)
(a,boc,d) =0 Va,b,c,d € A, (2.2)
where(a, b, ¢) := (aob)oc—ao (boc)is the associator ih. Themiddle nucleusf A (see e.g. [40]),
A":={beA|(a,b,c) =0 Va,ce A}, (2.2)
is anassociativesubalgebra and a two-sided ideal. We fix A, f ¢ A/, and definei o1 b := a o b,

aopt1bi=ao(fo,b)—(aof)o,b, n=12,.... (2.3)

As a consequence df (2.1), these products only depend omtivatence clas§f| of f in A/A’. The
subalgebra\(f), generated by in the WNA algebrad, is calledj-compatibleif, for eachn € N,

on(f) = fonf (2.4)
extends to a@erivationof A(f). In the following we recall some results from [15].

Theorem 1 Let A(f) bed-compatible. The derivation, commute on\(f) and satisfy identities that
are in correspondence vi@, — 0;, (the partial derivative operator with respect to a varialslg) with
the equations of the potential Kadomtsev-PetviashviliRpHKierarchy with dependent variable i. [

This is a central observation in [15] with the following imdiate consequence.

Theorem 2 Let A be any WNA algebra over the ring of complex functions of inddpnt variables
t1,to,.... If f € A solves the hierarchy of ODES

ftn :z@tn(f):fonf, n:1,2,..., (25)
then— f;, lies in A’ and solves the KP hierarchy with dependent variablé'in O

Corallary 1 If there is a constant € A, v ¢ A’, with [v] = [f] € A/A’, then, under the assumptions
of theoreni 2,

p=v—feh (2.6)

%Besides their appearance in control and systems theoryixnRitcati equations (see [19-21], for example) frequentl
showed up in the context of integrable systems, see in péati{22—34].

3 f has to be differentiable, of course, which requires a cpoeding (e.g. Banach space) structuredorThe flows given
by (2.3) indeed commute [15]. Furthermofe, {2.5) impliesompatibility of the algebra.(f) generated by in A overC [15].
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Z Eijk (A;l(gb[)\,} - d)) +¢o qb[)\l]) ] =0, 2.7)

i,j,k=1
wheree; ;. is totally antisymmetric witlrio3 = 1, A;, i = 1,2, 3, are indeterminates, and,y (t) :=
(t £+ [\]), wheret = (t1,t2,...) and[\] := (A, A2/2,03/3,...). O

Remark 1.If C € A’ is constant, therf = v/ — (¢ + C) with constant’ := v + C satisfying
[V'] = [v] = [f]. Hence, withg also¢ + C'is a solution of the pKP hierarchy. This can also be checked
directly using [[2.77), of course. O

The next result will be used in sectibh 4.
Proposition 1 Supposef and f/ solve [2.5) andf] = [f'] in a WNA algebraA. The equation
frof=a(f =) (2.8)

is then preserved for atk € C.

Proof: (popy = floof+Fofm=(fonf)of+Fo(fonf)
= (Fonf)of—Fon(fof)+af on(f —f)
+f o (fonf)—(Fof)onf+alf —fonf

= —FonfHFompfralfonf —Ffouf)=alf = .

In the third step we have added terms that vanish as a consa®oé[2.8). Then we used (3.11) in [15]
(together with the fact that the produetsonly depend on the equivalence clags= [f'] € A/A’), and

also [2.3), to combine pairs of terms into products of onea&edigher. O
Remark 2In functional form, [2.5) can be expressed (e.g. with the lo¢iresults in [15]) as
AT = fop) = foge f=0. (2.9)

Settingf’ = f_[5 (which also solved (219) if solves it), this takes the formi(2.8) with= -2~L 0O

In order to apply the above results, we need examples of WNAbahs. For our purposes, it is
sufficient to recall from [15] that any WNA algebra wilim (A /A") = 1 is isomorphic to one determined
by the following data:

(1) an associative algebré (e.g. any matrix algebra)
(2) afixed elemeny € A
(3) linear map<, R : A — A such that

[L,R]=0, L(aob)=L(a)ob, R(aob)=aoR(D). (2.10)
Augmenting.4 with an elemenif such that
fofi=g, foa:=L(a), ao f:=7R(a), (2.11)
leads to a WNA algebra with A’ = A, provided that the following condition holds,
Ja,be A: R(a)ob#aoL(b). (2.12)

This guarantees that the augmented algebnatigassociative. Particular examples®indR are given
by multiplication from left, respectively right, by fixedezhents of4 (see also the next section).

“4This functional representation of the potential KP hiehgrappeared in [41,42]. See also [15, 26] for equivalent fdam.
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3 A classof WNA algebrasand a matrix Riccati hierarchy

Let M(M, N) be the vector space of complé{ x N matrices, depending smoothly on independent
real variables, t9, ..., and letS, L, R, ) be constant matrices of dimensiabsx N, M x M, N x N
andN x M, respectively. Augmenting with a constant elemeiaind settin

vov=-S, wvoA=LA, Aov=-AR, AoB=AQB, (3.1)
forall A, B € M(M, N), we obtain a WNA algebrgA, o). The condition[(2.12) requires
RQ + QL . (3.2)
For the products,,, n > 1, we have the following result.
Proposition 2

vo,v=-5,, vo, A=L,A, Ao, v=—-AR,, Ao, B=AQ,B, (3.3)

R, Q. n . (R Q
<Sn Ln>:H with H._<S L)' (3.4)

Proof: Using the definition[(Z]3), one proves by induction that

where

SnJrl = LSn + SRn ; LnJrl = LLn + SQn 5 RnJrl = QSn + RRn ) QnJrl = QLn + RQn )

forn=1,2,...,whereS; = S,L; = L, R = R, Q1 = Q. This can be written as

Rn-l—l Qn-‘,—l - H Rn Qn
Sn+1 Ln+1 Sn L” ’

which implies [3.4). O
Using [2.6) and[(3]3) irf (215), leads to the matrix Riccatjatpn
Gr, =Sy + Lnd — ORy — dQnd, n=1,2,... . (3.5)

Solutions of[(3.5) are obtained in a well-known way (see §21, for example) via
p=YX! (3.6)

from the linear system

Z, —H"Z, 7= ( X > 3.7)
Y
with an N x N matrix X and anM x N matrixY’, providedX is invertible. This system is solved by

Z(t) =z,  where ¢(H):=> t,H". (3.8)

n>1

SUsing [2.6), in terms of this yields relations of the forni (2.]11).

® The corresponding functional form )s‘l(qu — @)+ dQo\ = S + Loy — ¢R, which is easily seen to implj(2.7),
see also [43]. The appendix provides a FORM program [44, 4&3mindependently verifies that any solution[of{3.5), et
ton = 1,2, 3, indeed solves the matrix pKP equation(i (M, N), o).
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If Q hasrank 1, then

@ = tr(Q9) (3.9)

defines a homomorphism frofo\1 (M, N), o) into the scalars (with the ordinary product of functions).
Hence, if¢ solves the pKP hierarchy ibM (M, N), o), theny solves the scalar pKP hierard}]\Wlore
generally, ifQ = VU” with V,U of dimensionsN x r, respectivelyM x r, thenUT ¢V solves the

r x r-matrix KP hierarchy.

GL(N+M,C) acts on the space of &IN+ M) x (N -+ M) matricesH by similarity transformations.
In a given orbit this allows to choose féf some ‘normal form’, for which we can evaluake (3.8) and then
elaborate the effect a¥ L(N + M, C) transformations (see also remark 3 below) on the correspgnd
solution of the pKP hierarchy, with the respectigegiven by the normal form off. By a similarity
transformation we can always achieve that= 0 and the problem of solving the pKP hierarchy (with
some non-zer@)) can thus in principle be reduced to solving its linear palternatively, we can always
achieve thatS = 0 and the next two examples take this route.

Example 1. If S = 0, we can in general not achieve that afge= 0. In fact, the matrices

H:(ﬁ%) and HO::<§2> (3.10)

are similar (i.e. related by a similarity transformatiofiuid only if the matrix equatio = RK — KL
has anV x M matrix solutionk [56—60], and then

H=THy, T, T= < IéV ;5) . (3.11)

It follows that

H'"=THyT ' = ( }En R”KL—nKL” > (3.12)
and thus
N ) 619
If (8.2) holds, we obtain the following solution of the matpKP hierarchy i M (M, N), o),
¢ =By (In + K — e S KB gy e8| (3.14)
wheregy = Yy X, !. This in turn leads to
© = tr (e—ﬂR)(RK — KL)e*W g (Iy + Ko — e—ﬂR)Keﬁ(L)qbo)‘l)
- tr(log(IN + Ko — e—ﬂR)Kef(L)%))tl
= (log7)y , ri=det(Iy + Koo — e SH K gy (3.15)

If rank(Q) = 1, theny solves the scalar pKP hierarchy. Besidesl(3.2) and this cankition, further
conditions will have to be imposed on the (otherwise arbyjjrenatricesk, K, L and¢, to achieve thap

"For related results and other perspectives on the rank amdgitimn, see [46] and the references cited there. The idea to
look for (simple) solutions of matrix and more generally gier versions of an ‘integrable’ equation, and to gendirat@ it
(complicated) solutions of the scalar equation by use oftalsie map, already appeared in [47] (see also [48-55]).
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is areal andregular solution. See [61], and references cited there, for clasksslutions obtained from
an equivalent formula or restrictions of it. This includesltihsolitons and soliton resonances (KP-II),
and lump solutions (passing to KP-I vig, — i to,, and performing suitable limits of parameters).

Example2. If M = N andS = 0, let us consider

L I I -K
_ -1 _ _
H=THyT ", HO_(O L)’ ’7_<0 7 >, (3.16)
with I = Iy and a constanV x N matrix K. As a consequence,
Q=I+[L,K]. (3.17)

We note thatH, is not similar todiag(L, L) [60]. Now we obtain

H'=THT ! = < Ién ”Lnflgn[Ln’K] > (3.18)
and furthermore
) ( 65(()L) 2@1 nt, Ln—;i;L) + [e¢D)| K] ) . (3.19)
If [L,[L, K]] # 0 (which is condition[(3.R)), we obtain the solution
¢ =Py (I + Ko+ F)le ¢ (3.20)
of the matrix pKP hierarchy iQM (N, N), o), where
Fo= <Zntn Lt e—ﬂL)Kef(L))(po. (3.21)
n>1
Furthermore, using}, = e ¢)(I + [L, K])et () ¢, we find
o= te((I + [L, K])§) = tr(Fy (I + Ko + F)~") = (trlog(I + Ko + F))y, (3.22)
and thus
© = (log 1)y, , 7 := det <I + K¢y + (Z nt, Lt — e—ﬂL)Keﬁ(L))%) . (3.23)

n>1

If rank(7 + [L, K]) = 1 (see also [46,62, 63] for appearances of this conditioe)) ¢ghsolves the scalar
pKP hierarchy. Assuming thay, is invertible, we can rewrite as follows,

7 = det <6£(L)(¢61 + K)e_g(L) + Z nt, L" ! — K) (3.24)

n>1
(dropping a factorlet(¢o)). This simplifies considerably if we ségl = -KB8 Choosing moreover
Lij=—(¢i—q;)"" i#j, Li=-p;, K=daglq,...,qn), (3.25)

(3.23) reproduces a polynomial (in any finite number of thetau function associated with Calogero-
Moser systems [46, 62, 63]. Alternatively, we may choose

L = diag(qu,-.-,an), Kij=(si—q)" i#j, Ki=npi. (3.26)

®Note that in this casg = (>, -, nt, L' — K)~', which is rational in any finite number of the variabtes
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The corresponding solutions of the KP-I hierarcly, (— it2,) include the rational soliton solutions
(‘lumps’) originally obtained in [64]. In particulaiy = 2 andgs = —q1, p2 = p1 (Where the bar means
complex conjugation), yields the single lump solution gilxy

where ¢'(q) := Zntn gt

n>1

7= p1+& (@) + (3.27)

1
4%@1)2

{topritog , k=1,2,...} .

Example3. Let M = N andL = S7_, R = 7S, Q = wS7_, with constantV x N matrices
wy,w_ subjecttor, + 7_ = I. The matrixH can then be written as

T4+
H:<I>S(I ), (3.28)
which lets us easily calculate
n_ meS" o m St
H" = < gn gnr ) . (3.29)
As a consequence, we obtain
= (—Cy + B0 (r_Cy + 1t ) (3.30)

whereCy := I F m1¢p. This solves the matrix pKP hierarchy vt (M, N') with the productd o B =
Am S7_B if (B.2) holds, which isr S(ry — m_)Sm_ # 0. If furthermorerank (7 S7_) = 1, then

o =tr(Q¢) = —tr(nS) + (log 1)y, , 7 =det(r_Cy + mefCL) (3.31)

solves the scalar pKP hierarchy (see also [43]). We will nteebasic structure underlying this example
again in sectiofi]5.

Remark 3A GL(N + M, C) matrix

A B
T = < C D) (3.32)
can be decomposed as follows,

_ Iy BD™! Sp 0 Iy 0
T‘(o I ><o D><D1(J In ) (3-33)
if D and its Schur complemesst, = A — BD~!C are both invertible. Let us see what effect the three
parts of7 induce ong when acting ore.
(1) Writing P = D~1C, the first transformation leads to— ¢ + P, a shift by the constant matrik.
(2) The second transformation amounts¢to— D(bSBl (where ¢ is now the result of the previous

transformation).
(3) Writing K = —BD™!, the last transformation is — ¢ (Iy — K¢)~ 1. O

4 WNA algebras and solutions of the discrete KP hierarchy

The potential discrete KP (pDKP) hierarchy in an asso@agilgebral.A, o) can be expressed in func-
tional form as foIIow@

QAT = QN = 2" — Q) (4.1)

®This functional representation of the pDKP hierarchy isiegjent to (3.32) in [39].




where), 11 are indeterminates,
Q) =2 o— ) — (67 —d_py) 0 0, (4.2)

and¢ = (¢ )kez, ¢;: := ¢r11. The pDKP hierarchy implies that each compongptk € Z, satisfies
the pKP hierarchy and its remaining content is a special piEkBind transformation (BT) acting be-
tween neighbouring sites on the linear lattice labeled:§85, 39]. This suggests a way to extend the
method of section]3 to construct exact solutions of the pDigPanchy. What is needed is a suitable
extension of{(25) that accounts for the BT and this is otfdrg propositior IL.

Theorem 3 Let A be a WNA algebra with a constant element A, v ¢ A’. Any solution

f=W-9r)kez, (4.3)
of the hierarchy[(25) together with the compatible coristtq
ftof=0 (4.4)

yields a solutionp = (¢ )xez of the pDKP hierarchy im\’.

Proof: Since[f ] = [f], the compatibility follows by setting’ = f* anda = 0 in propositior L. Using
fr, = fo f,werewrite[(2.9) as

A=)+ (= fop)of = fu =0,
Insertingf = v — ¢, this takes the form
AHo =) = bt — (0~ d-p) 0 b =0 — 0y
with 6 := —¢ o v. Next we usel(4l4) angy, = f o f to obtain(f* — f) o f + fi, = 0, which is
bty — (07 —p)op=0"—90.
Together with the previous equation, this leads to
Ao —opy) — (T —d_p) oo =0"—0_
(which is actually equivalent to the last two equations)thsd
Q) =607 —6_py .

This is easily seen to solve(4.1). O

Let us choose the WNA algebra of sectioft13.Evaluation of [(2.5) leads to the matrix Riccati
hierarchy[3.b), and(4.4) witliT = v + C — ¢ becomes

S+OR+(L+CQ)p—¢"R—¢TQpd=0, (4.5)
which can be rewritten as
¢T =(S+Lo)(R+ Qo) ' +C =Y (xH)! (4.6)
10 Note that [44) impliesf™* o, f = 0, where f'* := fi1n. This follows by induction fromf™+9+ o1 f =
f(n+1)+ o (fn+ on f) — (f(n+1)+ ° f"+) on f = f(n+1)+ o (fn+ on f) — (f+ ° f)"+ on f, where we used(2.3) and

[f™*] = [f] in the first step.
Hsince there is only a single elementthe matriced., R, S do not depend on the discrete variable
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(assuming that the inverse matrices exist), wheére Y~ are the components of
ZT=THZ =TH W 70 (4.7)

with Z, H, T taken from sectiofl]3. Deviating from the notation of secnwe write Z(9) for the
constant vector, sincg, should now denote the componentfat the lattice sité). In order that[(4.]7)
defines a pDKP solution on the whole lattice, we négchvertible. Since the matrix’, and thus also
T, may depend on the lattice site solutions of[(4.11) are determined by

Zy=TWHT1H--T\HZy, Z_jy= T H) (T H) - (T_1H) ' Z, keN.(4.8)

This corresponds to a sequence of transformations aplifeetmatrix pKP solutiory determined by
Zy, which generate new pKP solutions (cf. [35). is then given by[(4]6) in terms afy, and

¢ = [LS+ SR+ LCiR+ (L?+ SQ + LC1Q) o)
x[R* + QS + QC1R + (QL + RQ + QC1Q) o] ' + C3 (4.9)

shows that the action of thg, becomes considerably more involved for> 1. In the special case
Ty = In+ar (SO thatCy, = 0), we have

Z, =M HZOY  kez. (4.10)

If X,(CO),Yk(O) are the components of the vectHlkZ(O), the lattice component;, of the pDKP solution
determined in this way is therefore just given by the pKP tsofuof sectiorl B with initial data (at = 0)

o) = v = LRl [RF + (RFK — KLM)o] ! (4.12)

With the restrictions of example 1 in sectibh 3, assuming fhand R are invertible (so thaff is
invertible), the corresponding solution of the matrix pDHKiBrarchy (in the matrix algebra with product
AoB=A(RK — KL)B)is

o = SO LSO RF Iy + Ko(") — e ¢ R KB Lrp0))~1e—4(R) keZ, (4.12)
which leads to

or = (log7p)y,  with 74 = det <R"“(IN + K\ — e—ﬂR)Keﬁ(L)L%gO)) keZ.(4.13)

If Q = RK — KL hasrank 1, this is a solution of the scalar pDKP hiera@hys a special case, let us
chooseM = N, L = diag(p1,...,pn), R = diag(q1, ..., qn), andK with entriesK;; = (¢; —pj)_l
Then@ has rank 1 and we obtaiN-soliton tau functions of the scalar discrete KP hierardiyese can
also be obtained via the Birkhoff decomposition method gisippropriate initial data as in [65, 66].

With the assumptions made in example 2 of sedtion 3, se:ﬁé??g: — K1, assuming thaf’ and
L are invertible, and choosing far, the identity, we find the matrix pDKP solution

m:(ZntnL”*lJrkL*l—K) : kel. (4.14)

n>1
If rank(Ix + [L, K]) = 1, this leads to the following solution of the scalar pDKP hiehy,
vr = (log 7)1, with 75, = det <Zntn 0tk - K) . (4.15)
n>1

In example 3 of sectiop 3 is not invertible, so thaf (417) does not determine a pDKBt&mi.

2Recall thaty = tr(Q¢) (cf. [3:9) determines a homomorphism@fhas rank 1. As a consequencegiolves the matrix
pDKP hierarchy[(4]1), thep solves the scalar pDKP hierarchy.
13The condition[[ZR) requireg # p; foralli,j =1,..., N.
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5 From WNA to Gelfand-Dickey

Let R be the complex algebra of pseudo-differential operatdrs [5

V= Z Ul'ai, (5-1)

1<€00

with coefficientsv; € 2, where2l is the complex differential algebra of polynomials in (inngeal

noncommuting) symbola,(lm), m=20,1,2,...,n=2,3,..., wherea(ugm)) = uﬁlmﬂ) andd(vw) =

d(v) w + v d(w) for v,w € A. We demand thanﬁ{”), n=23,...,m=0,1,2,..., are algebraically
independent if?(, and we introduce the following linear operators?n

S(V) =LV, T+ (V) == V>0, T—(V) =V =V — V>0, (5.2)
whereVs is the projection of a pseudo-differential operabto its differential operator part, and
L=04+ud  fuzd 2+ . (5.3)

Let I denote the identity oR (which we identify with the identity irdl), and letO be the subspace of
linear operators ok spanned by and elements of the forrinr S7y - - - 7.5 (with any combination
of signs).O becomes an algebra with the product given by

AoB:=An, St_B. (5.4)

(O, 0) is then generated by the eleme(sr_)™S (71S)", m,n = 0,1, .... Let us furthermore intro-
duceAd := {v € A : v =res(A(I)), A € O}, whereres takes the residue (the coefficient@f!) of a
pseudo-differential operator. This is a subalgebr@l adince forA, B € O we have

res(A(I))res(B(I)) = res(Any . St_B(I)), (5.5)

so that the product of elements dfis again in4. As a consequence of this relation (read from right to
left), A is generated by the elements((S7_)"S(7+S)"(I)), m,n = 0,1,.... Based on the following
preparations, we will argue that and(O, o) are actually isomorphic algebras.

Lemmal Forall V € R,

res((Sm_)™V) =res(Dy, V), m=0,1,..., (5.6)
whereD, = I and{D,, }>>_, are the differential operators recursively determinedby = (D,,,—1£)>0.
Proof: We do the calculation fom = 2. This is easily generalized to arbitrany € N.

res((S7_)2V) = res(£(L£V<0)<0) = res(L£0LV0) = res((£50L)>0V) = res(Da V) . 0

Proposition 3

res((Sm_)™S(n.S)M(1) = (ZL) u¥) 5, +terms nonlinear in | m,n =0,1,... (5.7)
k=0
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Proof: According to the preceding lemma, we have
res((Sm_)"S(m+S)" (1)) = res(Dy,S(m+S)" (1)) .

Next we note thaD,,, = 9™ + D,,, (7 5)"(I) = 0™ + D), with differential operatorsD,,, D,, (of
degree smaller tham, respectivelyn) such that each of its summands contains factors f{aiﬁ)} (so
their coefficients are non-constant polynomials imnlﬁé). It follows that

res((S7_)"S (7 8)"(I)) = r1es((0™ + Dp)L<o(0™ + D))
()

= r1es(0"Lo0") + terms nonlinear iny;’

It remains to evaluate

e = S = 3 (3 ()l

j=1 j=1 k=0
m
- ()
k m+n+2—Fk * O
k=0

According to the last proposition, the linear term with thghest derivativi#] in the residue of
(Sm_)™S(mS)™(I) is given byuf{’fQ. We conclude that the monomial§7_)™S(wS)", m,n =

0,1,..., are algebraically independent {0, o), since any algebraic relation among them would in-

duce a corresponding algebraic relation in the setﬁﬁ?, but we assumed m&m) to be algebraically
independent. Together with (5.5), this implies thaand (O, o) are isomorphic algebras.

The last result allows us to introduce a WNA structure diyeoh A as follows Augmenting.A
with f such that, fon’, W € O(1I),

fof:=-res(£), fores(V) :=res(&V<),
res(V) o f := —tes(V0L), res(V) o res(W) :=res(V) res(W), (5.8)

indeed defines a WNA algebfa= A(f). The relations[(5I8) are well-defined sines(A(I)) uniquely
determinesA € O. By induction we obtain

fon f=—res(£"), [ onres(V) =res(L"Vog),
res(V) o, f = —res(VoL"), res(V) o, res(W) = res(Vo£" Wxo) . (5.9)

Let thew,, now depend on variables, to, . . ., and seb = 9;,. The hierarchyl[(2]5) of ODEs,
ft, = fon f=—res(£"), n=12,..., (5.10)
by use of the WNA structure implies

O, (res(£™)) = =0, (fom f)=—fr.om [ — fom fi.
= —(fonS)om S = fom (f on f) = res(£7(£) <o — (£7)208™)

- res([(ﬁ")zo,ﬁm]) . (5.11)

¥f m = 0, the linear term is simply...» and thus again ‘the linear term with the highest derivative’
Note that the corresponding WNA structure {@, o) resembles that of example 3 in secfidn 3.
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Since alsa);, (res(£7)) = res([(£™)>0, £"]) = 9y, (res(£")), we conclude that if we extend to A
by adjoining an element = 9! (uz), then

¢, = res(L"), n=12,.... (5.12)

It follows thaty := f + ¢ satisfies),, (v) = 0,n = 1,2, ..., and is therefore constanf. (5112) determines
all theuy, in terms of the derivatives af (see [67], for example). Frorh (5112) with= 2, 3, and (5.111)
with m = n = 2, we recover the pKP equation

(4¢t3 - ¢t1t1t1 —6 ¢t12)t1 -3 (btgtg +6 [¢t17¢t2] = 07 (513)

in accordance with the general theory. More generally, theatons [(5.111) determine the whole pKP
hierarchy. They are the residues of

By, (EM) = [(£")0, £M], mon=1,2,... . (5.14)

This is equivalent to the Gelfand-Dickey (GD) syst&m(£) = [(£")>0,£], n = 1,2,..., which is a
well-known formulation of the KP hierarchy (see [5], for exgle).

We have thus shown how the Gelfand-Dickey formulation ofKiRehierarchy can be recovered in
the WNA framework. In fact, for the particular WNA algebraosien above, the hierarchy (R.5) of ODEs
is equivalent to the Gelfand-Dickey formulation of the Kfedairchy.

6 Conclusions

In this work we extended our previous results [15, 61] on #lation between weakly nonassociative
(WNA) algebras and solutions of KP hierarchies to discreletferarchies. We also provided further
examples of solutions of matrix KP hierarchies and corredpg solutions of the scalar KP hierarchy.
In particular we recovered a well-known tau function refate Calogero-Moser systems in this way
(example 2 in sectidn 3). Furthermore, we established agmiom with the Gelfand-Dickey formulation
of the KP hierarchy. As a byproduct, in sectidn 5 we obtaineewa realization of théree WNA algebra
generated by a single element, which also has a realizatiterms of quasi-symmetric functions [15].
There is more, however, we have to understand in the WNA fnarie In particular this concerns the
multi-component KP hierarchy (see [68] and referencesethgrand its reductions, which include the
Davey-Stewartson, two-dimensional Toda lattice Afdvave hierarchies. Our hope is that also in these
cases the WNA approach leads in a quick way to relevant dadsxact solutions.

Appendix: From Riccati to KP with FORM

The following FORM program [44,45] verifies that any solutiof the first three equations of the Riccati
hierarchy [(3.5) solves the pKP equation in an algebra witldpect A o B = AQB.

Functions phi,phix,phiy,phit,L,Q,R,S,dx,dy,dt; Symbol n;

Local pKP = dxx* (4xphit - 6xphix*QOxphix - dx"2xphix) - 3xdy=*phiy
+ 6% ( phix*Q+phiy - phiy*Qxphix ); * pKP equation
repeat;

id phix = S + L*phi - phi*R - phi*Qxphi; +* Riccati system

id phiy = S(2) + L(2)+*phi - phi*R(2) - phi*xQ(2) *phi;

id phit = S(3) + L(3)+*phi - phi*R(3) - phi*Q(3) *phi;

id dxx*phi = phix + phixdx; * product rule of differentiation

12



id dyx*phi = phiy + phixdy; id dtxphi = phit + phixdt;
id dx?{dx,dy,dt}~L?{L,Q,R,S} = Lxdx; * L,Q,R,S are constant
* recursion relations for matrices (see proof of proposition 2):

id L(n?{2,3}) = L*L(n-1) + S*xQ(n-1);

id R(n?{2,3}) = 9*xS(n-1) + RxR(n-1);

id S(n?{2,3}) = L*S(n-1) + S*R(n-1);

id Q(n?{2,3}) = Q*xL(n-1) + RxQ(n-1);

id L?{L,Q,R,S} (1) = L;

endrepeat;

id dx?{dx,dy,dt} = 0;

print pKP; * should return zero

.end

This program provides an elementary and quick way towarcctheses of exact solutions of the KP
equation given in the examples in sectidn 3.
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