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Abstract

It has recently been observed that certain nonassociative algebras (called ‘weakly nonassociative’,
WNA) determine, via a universal hierarchy of ordinary differential equations, solutions of the KP
hierarchy with dependent variable in an associative subalgebra (the middle nucleus). We recall central
results and consider a class of WNA algebras for which the hierarchy of ODEs reduces to a matrix
Riccati hierarchy, which can be easily solved. The resulting solutions of a matrix KP hierarchy
determine, under a ‘rank one condition’, solutions of the scalar KP hierarchy. We extend these
results to the discrete KP hierarchy. Moreover, we build a bridge from the WNA framework to the
Gelfand-Dickey formulation of the KP hierarchy.

1 Introduction

The Kadomtsev-Petviashvili (KP) equation is an extension of the famous Korteweg-deVries (KdV) equa-
tion to 2+1 dimensions. It first appeared in a stability analysis of KdV solitons [1, 2]. In particular, it
describes nonlinear fluid surface waves in a certain approximation and explains to some extent the forma-
tion of network patterns formed by line wave segments on a water surface [2]. It is ‘integrable’ in several
respects, in particular in the sense of the inverse scattering method. Various remarkable properties have
been discovered that allow to access (subsets of) its solutions in different ways, see in particular [3–5].
Apart from its direct relevance in physics, the KP equation and its hierarchy (see [5, 6], for example)
is deeply related to the theory of Riemann surfaces (Riemann-Schottky problem, see [7] for a review).
Some time ago, this stimulated discussions concerning the role of KP in string theory (see [8–11], for
example). Later the Gelfand-Dickey hierarchies, of which the KdV hierarchy is the simplest and which
are reductions of the KP hierarchy, made their appearance inmatrix models, first in a model of two-
dimensional quantum gravity (see [12, 13] and references therein). This led to important developments
in algebraic geometry (see [14], for example). Of course, what we mentioned here by far does not ex-
haust what is known about KP and there is probably even much more in the world of mathematics and
physics linked to the KP equation and its descendants that still waits to be uncovered.

In fact, an apparently completely different appearance of the KP hierarchy has been observed in
[15]. On a freely generated ‘weakly nonassociative’ (WNA) algebra (see section 2) there is a family
of commuting derivations1 that satisfy identities which are in correspondence with the equations of the
KP hierarchy (with dependent variable in a noncommutative associative subalgebra). As a consequence,
there is a hierarchy of ordinary differential equations (ODEs) on this WNA algebra that implies the KP
hierarchy. More generally, this holds foranyWNA algebra. In this way WNA algebras determine classes
of solutions of the KP hierarchy.

1Families of commuting derivations on certain algebras alsoappeared in [16,17], for example. In fact, the ideas underlying
the work in [15] grew out of our work in [18] which has some algebraic overlap with [16].
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In section 2 we recall central results of [15] and present a new result in proposition 1. Section 3
applies the WNA approach to derive a matrix Riccati2 hierarchy, the solutions of which are solutions of
the corresponding matrix KP hierarchy (which under certainconditions determines solutions of the scalar
KP hierarchy). In section 4 we extend these results to the discrete KP hierarchy [35–39]. Furthermore, in
section 5 we show how the Gelfand-Dickey formulation [5] of the KP hierarchy (with dependent variable
in any associative algebra) emerges in the WNA framework. Section 6 contains some conclusions.

2 Nonassociativity and KP

In [15] we called an algebra(A, ◦) (over a commutative ring)weakly nonassociative (WNA)if

(a, b ◦ c, d) = 0 ∀a, b, c, d ∈ A , (2.1)

where(a, b, c) := (a ◦ b) ◦ c− a ◦ (b ◦ c) is the associator inA. Themiddle nucleusof A (see e.g. [40]),

A
′ := {b ∈ A | (a, b, c) = 0 ∀a, c ∈ A} , (2.2)

is anassociativesubalgebra and a two-sided ideal. We fixf ∈ A, f 6∈ A
′, and definea ◦1 b := a ◦ b,

a ◦n+1 b := a ◦ (f ◦n b)− (a ◦ f) ◦n b , n = 1, 2, . . . . (2.3)

As a consequence of (2.1), these products only depend on the equivalence class[f ] of f in A/A′. The
subalgebraA(f), generated byf in the WNA algebraA, is calledδ-compatibleif, for eachn ∈ N,

δn(f) := f ◦n f (2.4)

extends to aderivationof A(f). In the following we recall some results from [15].

Theorem 1 LetA(f) beδ-compatible. The derivationsδn commute onA(f) and satisfy identities that
are in correspondence viaδn 7→ ∂tn (the partial derivative operator with respect to a variabletn) with
the equations of the potential Kadomtsev-Petviashvili (pKP) hierarchy with dependent variable inA′. �

This is a central observation in [15] with the following immediate consequence.

Theorem 2 Let A be any WNA algebra over the ring of complex functions of independent variables
t1, t2, . . .. If f ∈ A solves the hierarchy of ODEs3

ftn := ∂tn(f) = f ◦n f , n = 1, 2, . . . , (2.5)

then−ft1 lies inA
′ and solves the KP hierarchy with dependent variable inA

′. �

Corollary 1 If there is a constantν ∈ A, ν 6∈ A
′, with [ν] = [f ] ∈ A/A′, then, under the assumptions

of theorem 2,

φ := ν − f ∈ A
′ (2.6)

2Besides their appearance in control and systems theory, matrix Riccati equations (see [19–21], for example) frequently
showed up in the context of integrable systems, see in particular [22–34].

3f has to be differentiable, of course, which requires a corresponding (e.g. Banach space) structure onA. The flows given
by (2.5) indeed commute [15]. Furthermore, (2.5) impliesδ-compatibility of the algebraA(f) generated byf in A overC [15].
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solves the potential KP (pKP) hierarchy4

3
∑

i,j,k=1

εijk
(

λ−1
i (φ[λi] − φ) + φ ◦ φ[λi]

)

[λk]
= 0 , (2.7)

whereεijk is totally antisymmetric withε123 = 1, λi, i = 1, 2, 3, are indeterminates, andφ±[λ](t) :=
φ(t± [λ]), wheret = (t1, t2, . . .) and [λ] := (λ, λ2/2, λ3/3, . . .). �

Remark 1. If C ∈ A
′ is constant, thenf = ν ′ − (φ + C) with constantν ′ := ν + C satisfying

[ν ′] = [ν] = [f ]. Hence, withφ alsoφ+ C is a solution of the pKP hierarchy. This can also be checked
directly using (2.7), of course. �

The next result will be used in section 4.

Proposition 1 Supposef andf ′ solve (2.5) and[f ] = [f ′] in a WNA algebraA. The equation

f ′ ◦ f = α (f ′ − f) (2.8)

is then preserved for allα ∈ C.

Proof: (f ′ ◦ f)tn = f ′
tn ◦ f + f ′ ◦ ftn = (f ′ ◦n f ′) ◦ f + f ′ ◦ (f ◦n f)

= (f ′ ◦n f ′) ◦ f − f ′ ◦n (f ′ ◦ f) + α f ′ ◦n (f ′ − f)

+f ′ ◦ (f ◦n f)− (f ′ ◦ f) ◦n f + α (f ′ − f) ◦n f

= −f ′ ◦n+1 f + f ′ ◦n+1 f + α (f ′ ◦n f ′ − f ◦n f) = α (f ′ − f)tn .

In the third step we have added terms that vanish as a consequence of (2.8). Then we used (3.11) in [15]
(together with the fact that the products◦n only depend on the equivalence class[f ] = [f ′] ∈ A/A′), and
also (2.3), to combine pairs of terms into products of one degree higher. �

Remark 2.In functional form, (2.5) can be expressed (e.g. with the help of results in [15]) as

λ−1(f − f−[λ])− f−[λ] ◦ f = 0 . (2.9)

Settingf ′ = f−[λ] (which also solves (2.9) iff solves it), this takes the form (2.8) withα = −λ−1. �

In order to apply the above results, we need examples of WNA algebras. For our purposes, it is
sufficient to recall from [15] that any WNA algebra withdim(A/A′) = 1 is isomorphic to one determined
by the following data:
(1) an associative algebraA (e.g. any matrix algebra)
(2) a fixed elementg ∈ A
(3) linear mapsL,R : A → A such that

[L,R] = 0 , L(a ◦ b) = L(a) ◦ b , R(a ◦ b) = a ◦ R(b) . (2.10)

AugmentingA with an elementf such that

f ◦ f := g , f ◦ a := L(a) , a ◦ f := R(a) , (2.11)

leads to a WNA algebraA with A
′ = A, provided that the following condition holds,

∃ a, b ∈ A : R(a) ◦ b 6= a ◦ L(b) . (2.12)

This guarantees that the augmented algebra isnot associative. Particular examples ofL andR are given
by multiplication from left, respectively right, by fixed elements ofA (see also the next section).

4This functional representation of the potential KP hierarchy appeared in [41,42]. See also [15,26] for equivalent formulae.
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3 A class of WNA algebras and a matrix Riccati hierarchy

Let M(M,N) be the vector space of complexM × N matrices, depending smoothly on independent
real variablest1, t2, . . ., and letS,L,R,Q be constant matrices of dimensionsM ×N , M ×M , N ×N
andN ×M , respectively. Augmenting with a constant elementν and setting5

ν ◦ ν = −S , ν ◦ A = LA , A ◦ ν = −AR , A ◦B = AQB , (3.1)

for all A,B ∈ M(M,N), we obtain a WNA algebra(A, ◦). The condition (2.12) requires

RQ 6= QL . (3.2)

For the products◦n, n > 1, we have the following result.

Proposition 2

ν ◦n ν = −Sn , ν ◦n A = LnA , A ◦n ν = −ARn , A ◦n B = AQnB , (3.3)

where
(

Rn Qn

Sn Ln

)

= Hn with H :=

(

R Q
S L

)

. (3.4)

Proof: Using the definition (2.3), one proves by induction that

Sn+1 = LSn + SRn , Ln+1 = LLn + SQn , Rn+1 = QSn +RRn , Qn+1 = QLn +RQn ,

for n = 1, 2, . . ., whereS1 = S, L1 = L, R1 = R, Q1 = Q. This can be written as
(

Rn+1 Qn+1

Sn+1 Ln+1

)

= H

(

Rn Qn

Sn Ln

)

,

which implies (3.4). �

Using (2.6) and (3.3) in (2.5), leads to the matrix Riccati equations6

φtn = Sn + Lnφ− φRn − φQnφ , n = 1, 2, . . . . (3.5)

Solutions of (3.5) are obtained in a well-known way (see [21,32], for example) via

φ = Y X−1 (3.6)

from the linear system

Ztn = HnZ , Z =

(

X
Y

)

(3.7)

with anN ×N matrixX and anM ×N matrixY , providedX is invertible. This system is solved by

Z(t) = eξ(H)Z0 where ξ(H) :=
∑

n≥1

tnH
n . (3.8)

5Using (2.6), in terms off this yields relations of the form (2.11).
6 The corresponding functional form isλ−1(φ[λ] − φ) + φQφ[λ] = S + Lφ[λ] − φR, which is easily seen to imply (2.7),

see also [43]. The appendix provides a FORM program [44,45] which independently verifies that any solution of (3.5), reduced
to n = 1, 2, 3, indeed solves the matrix pKP equation in(M(M,N), ◦).
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If Q has rank 1, then

ϕ := tr(Qφ) (3.9)

defines a homomorphism from(M(M,N), ◦) into the scalars (with the ordinary product of functions).
Hence, ifφ solves the pKP hierarchy in(M(M,N), ◦), thenϕ solves the scalar pKP hierarchy.7 More
generally, ifQ = V UT with V,U of dimensionsN × r, respectivelyM × r, thenUTφV solves the
r × r-matrix KP hierarchy.

GL(N+M,C) acts on the space of all(N+M)×(N+M) matricesH by similarity transformations.
In a given orbit this allows to choose forH some ‘normal form’, for which we can evaluate (3.8) and then
elaborate the effect ofGL(N +M,C) transformations (see also remark 3 below) on the corresponding
solution of the pKP hierarchy, with the respectiveQ given by the normal form ofH. By a similarity
transformation we can always achieve thatQ = 0 and the problem of solving the pKP hierarchy (with
some non-zeroQ) can thus in principle be reduced to solving its linear part.Alternatively, we can always
achieve thatS = 0 and the next two examples take this route.

Example 1. If S = 0, we can in general not achieve that alsoQ = 0. In fact, the matrices

H =

(

R Q
0 L

)

and H0 :=

(

R 0
0 L

)

(3.10)

are similar (i.e. related by a similarity transformation) if and only if the matrix equationQ = RK−KL
has anN ×M matrix solutionK [56–60], and then

H = T H0 T
−1 , T =

(

IN −K
0 IM

)

. (3.11)

It follows that

Hn = T Hn
0 T −1 =

(

Rn RnK −KLn

0 Ln

)

(3.12)

and thus

eξ(H) =

(

eξ(R) eξ(R)K −Keξ(L)

0 eξ(L)

)

. (3.13)

If (3.2) holds, we obtain the following solution of the matrix pKP hierarchy in(M(M,N), ◦),

φ = eξ(L)φ0 (IN +Kφ0 − e−ξ(R)Keξ(L)φ0)
−1e−ξ(R) , (3.14)

whereφ0 = Y0X
−1
0 . This in turn leads to

ϕ = tr
(

e−ξ(R)(RK −KL)eξ(L)φ0 (IN +Kφ0 − e−ξ(R)Keξ(L)φ0)
−1

)

= tr
(

log(IN +Kφ0 − e−ξ(R)Keξ(L)φ0)
)

t1

= (log τ)t1 , τ := det(IN +Kφ0 − e−ξ(R)Keξ(L)φ0) . (3.15)

If rank(Q) = 1, thenϕ solves the scalar pKP hierarchy. Besides (3.2) and this rankcondition, further
conditions will have to be imposed on the (otherwise arbitrary) matricesR,K,L andφ0 to achieve thatϕ

7For related results and other perspectives on the rank one condition, see [46] and the references cited there. The idea to
look for (simple) solutions of matrix and more generally operator versions of an ‘integrable’ equation, and to generatefrom it
(complicated) solutions of the scalar equation by use of a suitable map, already appeared in [47] (see also [48–55]).
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is areal andregular solution. See [61], and references cited there, for classesof solutions obtained from
an equivalent formula or restrictions of it. This includes multi-solitons and soliton resonances (KP-II),
and lump solutions (passing to KP-I viat2n 7→ i t2n and performing suitable limits of parameters).

Example 2. If M = N andS = 0, let us consider

H = T H0 T
−1 , H0 =

(

L I
0 L

)

, T =

(

I −K
0 I

)

, (3.16)

with I = IN and a constantN ×N matrixK. As a consequence,

Q = I + [L,K] . (3.17)

We note thatH0 is not similar todiag(L,L) [60]. Now we obtain

Hn = T Hn
0 T −1 =

(

Ln nLn−1 + [Ln,K]
0 Ln

)

(3.18)

and furthermore

eξ(H) =

(

eξ(L)
∑

n≥1 n tn L
n−1eξ(L) + [eξ(L),K]

0 eξ(L)

)

. (3.19)

If [L, [L,K]] 6= 0 (which is condition (3.2)), we obtain the solution

φ = eξ(L)φ0 (I +Kφ0 + F )−1e−ξ(L) (3.20)

of the matrix pKP hierarchy in(M(N,N), ◦), where

F :=
(

∑

n≥1

n tn L
n−1 − e−ξ(L)Keξ(L)

)

φ0 . (3.21)

Furthermore, usingFt1 = e−ξ(L)(I + [L,K])eξ(L)φ0, we find

ϕ = tr((I + [L,K])φ) = tr(Ft1(I +Kφ0 + F )−1) = (tr log(I +Kφ0 + F ))t1 (3.22)

and thus

ϕ = (log τ)t1 , τ := det
(

I +Kφ0 + (
∑

n≥1

n tnL
n−1 − e−ξ(L)Keξ(L))φ0

)

. (3.23)

If rank(I + [L,K]) = 1 (see also [46,62,63] for appearances of this condition), thenϕ solves the scalar
pKP hierarchy. Assuming thatφ0 is invertible, we can rewriteτ as follows,

τ = det
(

eξ(L)(φ−1
0 +K)e−ξ(L) +

∑

n≥1

n tn L
n−1 −K

)

(3.24)

(dropping a factordet(φ0)). This simplifies considerably if we setφ−1
0 = −K.8 Choosing moreover

Lij = −(qi − qj)
−1 i 6= j , Lii = −pi , K = diag(q1, . . . , qN ) , (3.25)

(3.24) reproduces a polynomial (in any finite number of thetn) tau function associated with Calogero-
Moser systems [46,62,63]. Alternatively, we may choose

L = diag(q1, . . . , qN ) , Kij = (qi − qj)
−1 i 6= j , Kii = pi . (3.26)

8Note that in this caseφ = (
P

n≥1 n tn Ln−1 −K)−1, which is rational in any finite number of the variablestn.
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The corresponding solutions of the KP-I hierarchy (t2n 7→ i t2n) include the rational soliton solutions
(‘lumps’) originally obtained in [64]. In particular,N = 2 andq2 = −q̄1, p2 = p̄1 (where the bar means
complex conjugation), yields the single lump solution given by

τ = |p1 + ξ′(q1)|
2 +

1

4ℜ(q1)2
where ξ′(q) :=

∑

n≥1

n tn q
n−1

∣

∣

∣

{t2k 7→i t2k , k=1,2,...}
. (3.27)

Example 3. Let M = N andL = Sπ−, R = π+S, Q = π+Sπ−, with constantN × N matrices
π+, π− subject toπ+ + π− = I. The matrixH can then be written as

H =

(

π+
I

)

S
(

I π−
)

, (3.28)

which lets us easily calculate

Hn =

(

π+S
n π+S

nπ−
Sn Snπ−

)

. (3.29)

As a consequence, we obtain

φ = (−C+ + eξ(S)C−)(π−C+ + π+e
ξ(S)C−)

−1 , (3.30)

whereC± := I ∓ π±φ0. This solves the matrix pKP hierarchy inM(M,N) with the productA ◦ B =
Aπ+Sπ−B if (3.2) holds, which isπ+S(π+ − π−)Sπ− 6= 0. If furthermorerank(π+Sπ−) = 1, then

ϕ = tr(Qφ) = −tr(π+S) + (log τ)t1 , τ = det(π−C+ + π+e
ξ(S)C−) (3.31)

solves the scalar pKP hierarchy (see also [43]). We will meetthe basic structure underlying this example
again in section 5.

Remark 3.A GL(N +M,C) matrix

T =

(

A B
C D

)

(3.32)

can be decomposed as follows,

T =

(

IN BD−1

0 IM

)(

SD 0
0 D

)(

IN 0
D−1C IM

)

, (3.33)

if D and its Schur complementSD = A− BD−1C are both invertible. Let us see what effect the three
parts ofT induce onφ when acting onZ.
(1) Writing P = D−1C, the first transformation leads toφ 7→ φ+ P , a shift by the constant matrixP .
(2) The second transformation amounts toφ 7→ DφS−1

D (whereφ is now the result of the previous
transformation).
(3) Writing K = −BD−1, the last transformation isφ 7→ φ (IN −Kφ)−1. �

4 WNA algebras and solutions of the discrete KP hierarchy

The potential discrete KP (pDKP) hierarchy in an associative algebra(A, ◦) can be expressed in func-
tional form as follows,9

Ω(λ)+ − Ω(λ)−[µ] = Ω(µ)+ − Ω(µ)−[λ] , (4.1)

9This functional representation of the pDKP hierarchy is equivalent to (3.32) in [39].
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whereλ, µ are indeterminates,

Ω(λ) := λ−1(φ− φ−[λ])− (φ+ − φ−[λ]) ◦ φ , (4.2)

andφ = (φk)k∈Z, φ+
k := φk+1. The pDKP hierarchy implies that each componentφk, k ∈ Z, satisfies

the pKP hierarchy and its remaining content is a special pKP Bäcklund transformation (BT) acting be-
tween neighbouring sites on the linear lattice labeled byk [35, 39]. This suggests a way to extend the
method of section 3 to construct exact solutions of the pDKP hierarchy. What is needed is a suitable
extension of (2.5) that accounts for the BT and this is offered by proposition 1.

Theorem 3 LetA be a WNA algebra with a constant elementν ∈ A, ν 6∈ A
′. Any solution

f = (ν − φk)k∈Z , (4.3)

of the hierarchy (2.5) together with the compatible constraint10

f+ ◦ f = 0 (4.4)

yields a solutionφ = (φk)k∈Z of the pDKP hierarchy inA′.

Proof: Since[f+] = [f ], the compatibility follows by settingf ′ = f+ andα = 0 in proposition 1. Using
ft1 = f ◦ f , we rewrite (2.9) as

λ−1(f − f−[λ]) + (f − f−[λ]) ◦ f − ft1 = 0 .

Insertingf = ν − φ, this takes the form

λ−1(φ− φ−[λ])− φt1 − (φ− φ−[λ]) ◦ φ = θ − θ−[λ]

with θ := −φ ◦ ν. Next we use (4.4) andft1 = f ◦ f to obtain(f+ − f) ◦ f + ft1 = 0, which is

φt1 − (φ+ − φ) ◦ φ = θ+ − θ .

Together with the previous equation, this leads to

λ−1(φ− φ−[λ])− (φ+ − φ−[λ]) ◦ φ = θ+ − θ−[λ]

(which is actually equivalent to the last two equations), sothat

Ω(λ) = θ+ − θ−[λ] .

This is easily seen to solve (4.1). �

Let us choose the WNA algebra of section 3.11 Evaluation of (2.5) leads to the matrix Riccati
hierarchy (3.5), and (4.4) withf+ = ν + C − φ+ becomes

S + CR+ (L+ CQ)φ− φ+R− φ+Qφ = 0 , (4.5)

which can be rewritten as

φ+ = (S + Lφ)(R +Qφ)−1 + C = Y + (X+)−1 (4.6)

10 Note that (4.4) impliesfn+ ◦n f = 0, wherefn+
k := fk+n. This follows by induction fromf (n+1)+ ◦n+1 f =

f (n+1)+ ◦ (fn+ ◦n f) − (f (n+1)+ ◦ fn+) ◦n f = f (n+1)+ ◦ (fn+ ◦n f) − (f+ ◦ f)n+ ◦n f , where we used (2.3) and
[fn+] = [f ] in the first step.

11Since there is only a single elementν, the matricesL,R, S do not depend on the discrete variablek.
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(assuming that the inverse matrices exist), whereX+, Y + are the components of

Z+ = TH Z = TH eξ(H)Z(0) , (4.7)

with Z,H, T taken from section 3. Deviating from the notation of section3, we writeZ(0) for the
constant vector, sinceZ0 should now denote the component ofZ at the lattice site0. In order that (4.7)
defines a pDKP solution on the whole lattice, we needH invertible. Since the matrixC, and thus also
T , may depend on the lattice sitek, solutions of (4.1) are determined by

Zk = TkHTk−1H · · ·T1HZ0 , Z−k = (T−kH)−1(T−k+1H)−1 · · · (T−1H)−1Z0 , k ∈ N . (4.8)

This corresponds to a sequence of transformations applied to the matrix pKP solutionφ0 determined by
Z0, which generate new pKP solutions (cf. [35]).φ1 is then given by (4.6) in terms ofφ0, and

φ2 = [LS + SR+ LC1R+ (L2 + SQ+ LC1Q)φ0]

×[R2 +QS +QC1R+ (QL+RQ+QC1Q)φ0]
−1 + C2 (4.9)

shows that the action of theTk becomes considerably more involved fork > 1. In the special case
Tk = IN+M (so thatCk = 0), we have

Zk = eξ(H)(HkZ
(0)
0 ) k ∈ Z . (4.10)

If X(0)
k , Y

(0)
k are the components of the vectorHkZ

(0)
0 , the lattice componentφk of the pDKP solution

determined in this way is therefore just given by the pKP solution of section 3 with initial data (att = 0)

φ
(0)
k = Y

(0)
k (X

(0)
k )−1 = Lkφ

(0)
0 [Rk + (RkK −KLk)φ

(0)
0 ]−1 . (4.11)

With the restrictions of example 1 in section 3, assuming that L andR are invertible (so thatH is
invertible), the corresponding solution of the matrix pDKPhierarchy (in the matrix algebra with product
A ◦B = A(RK −KL)B) is

φk = eξ(L)Lkφ
(0)
0 [Rk(IN +Kφ

(0)
0 )− e−ξ(R)Keξ(L)Lkφ

(0)
0 ]−1e−ξ(R) , k ∈ Z , (4.12)

which leads to

ϕk = (log τk)t1 with τk = det
(

Rk(IN +Kφ
(0)
0 )− e−ξ(R)Keξ(L)Lkφ

(0)
0

)

k ∈ Z . (4.13)

If Q = RK −KL has rank 1, this is a solution of the scalar pDKP hierarchy.12 As a special case, let us
chooseM = N ,L = diag(p1, . . . , pN ),R = diag(q1, . . . , qN ), andK with entriesKij = (qi−pj)

−1.13

ThenQ has rank 1 and we obtainN -soliton tau functions of the scalar discrete KP hierarchy.These can
also be obtained via the Birkhoff decomposition method using appropriate initial data as in [65,66].

With the assumptions made in example 2 of section 3, settingφ
(0)
0 = −K−1, assuming thatK and

L are invertible, and choosing forTk the identity, we find the matrix pDKP solution

φk =
(

∑

n≥1

n tn L
n−1 + k L−1 −K

)−1
, k ∈ Z . (4.14)

If rank(IN + [L,K]) = 1, this leads to the following solution of the scalar pDKP hierarchy,

ϕk = (log τk)t1 with τk = det
(

∑

n≥1

n tn L
n−1 + k L−1 −K

)

. (4.15)

In example 3 of section 3,H is not invertible, so that (4.7) does not determine a pDKP solution.
12Recall thatϕ = tr(Qφ) (cf. 3.9) determines a homomorphism ifQ has rank 1. As a consequence, ifφ solves the matrix

pDKP hierarchy (4.1), thenϕ solves the scalar pDKP hierarchy.
13The condition (3.2) requiresqi 6= pj for all i, j = 1, . . . , N .
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5 From WNA to Gelfand-Dickey

LetR be the complex algebra of pseudo-differential operators [5]

V =
∑

i≪∞

vi ∂
i , (5.1)

with coefficientsvi ∈ A, whereA is the complex differential algebra of polynomials in (in general
noncommuting) symbolsu(m)

n , m = 0, 1, 2, . . ., n = 2, 3, . . ., where∂(u(m)
n ) = u

(m+1)
n and∂(vw) =

∂(v)w + v ∂(w) for v,w ∈ A. We demand thatu(m)
n , n = 2, 3, . . ., m = 0, 1, 2, . . ., are algebraically

independent inA, and we introduce the following linear operators onR,

S(V) := LV , π+(V) := V≥0 , π−(V) := V<0 := V − V≥0 , (5.2)

whereV≥0 is the projection of a pseudo-differential operatorV to its differential operator part, and

L = ∂ + u2 ∂
−1 + u3 ∂

−2 + · · · . (5.3)

Let I denote the identity ofR (which we identify with the identity inA), and letO be the subspace of
linear operators onR spanned byS and elements of the formSπ±Sπ± · · · π±S (with any combination
of signs).O becomes an algebra with the product given by

A ◦B := Aπ+Sπ−B . (5.4)

(O, ◦) is then generated by the elements(Sπ−)
mS (π+S)

n, m,n = 0, 1, . . .. Let us furthermore intro-
duceA := {v ∈ A : v = res(A(I)), A ∈ O}, whereres takes the residue (the coefficient of∂−1) of a
pseudo-differential operator. This is a subalgebra ofA, since forA,B ∈ O we have

res(A(I)) res(B(I)) = res(Aπ+Sπ−B(I)) , (5.5)

so that the product of elements ofA is again inA. As a consequence of this relation (read from right to
left), A is generated by the elementsres((Sπ−)mS(π+S)

n(I)), m,n = 0, 1, . . .. Based on the following
preparations, we will argue thatA and(O, ◦) are actually isomorphic algebras.

Lemma 1 For all V ∈ R,

res((Sπ−)
mV) = res(Dm V) , m = 0, 1, . . . , (5.6)

whereD0 = I and{Dm}∞m=1 are the differential operators recursively determined byDm = (Dm−1L)≥0.

Proof: We do the calculation form = 2. This is easily generalized to arbitrarym ∈ N.

res((Sπ−)
2 V) = res(L(LV<0)<0) = res(L≥0LV<0) = res((L≥0L)≥0V) = res(D2 V) . �

Proposition 3

res((Sπ−)
mS(π+S)

n(I)) =

m
∑

k=0

(

m

k

)

u
(k)
m+n+2−k + terms nonlinear inu(j)k , m, n = 0, 1, . . . (5.7)
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Proof: According to the preceding lemma, we have

res((Sπ−)
mS(π+S)

n(I)) = res(DmS(π+S)
n(I)) .

Next we note thatDm = ∂m + Dm, (π+S)n(I) = ∂n + D′
n with differential operatorsDm,D′

n (of

degree smaller thanm, respectivelyn) such that each of its summands contains factors from{u
(j)
k } (so

their coefficients are non-constant polynomials in theu
(j)
k ). It follows that

res((Sπ−)
mS(π+S)

n(I)) = res((∂m +Dm)L<0(∂
n +D′

n))

= res(∂m
L<0∂

n) + terms nonlinear inu(j)k .

It remains to evaluate

res(∂m
L<0∂

n) =
∞
∑

j=1

res(∂mu1+j∂
n−j) =

∞
∑

j=1

res
(

m
∑

k=0

(

m

k

)

u
(k)
1+j∂

m+n−j−k
)

=

m
∑

k=0

(

m

k

)

u
(k)
m+n+2−k .

�

According to the last proposition, the linear term with the highest derivative14 in the residue of
(Sπ−)

mS(π+S)
n(I) is given byu(m)

n+2. We conclude that the monomials(Sπ−)mS(π+S)
n, m,n =

0, 1, . . ., are algebraically independent in(O, ◦), since any algebraic relation among them would in-

duce a corresponding algebraic relation in the set ofu
(m)
n , but we assumed theu(m)

n to be algebraically
independent. Together with (5.5), this implies thatA and(O, ◦) are isomorphic algebras.

The last result allows us to introduce a WNA structure directly on A as follows.15 AugmentingA
with f such that, forV,W ∈ O(I),

f ◦ f := −res(L) , f ◦ res(V) := res(LV<0) ,

res(V) ◦ f := −res(V<0L) , res(V) ◦ res(W) := res(V) res(W) , (5.8)

indeed defines a WNA algebraA = A(f). The relations (5.8) are well-defined sinceres(A(I)) uniquely
determinesA ∈ O. By induction we obtain

f ◦n f = −res(Ln) , f ◦n res(V) = res(LnV<0) ,

res(V) ◦n f = −res(V<0L
n) , res(V) ◦n res(W) = res(V<0L

nW<0) . (5.9)

Let theun now depend on variablest1, t2, . . ., and set∂ = ∂t1 . The hierarchy (2.5) of ODEs,

ftn = f ◦n f = −res(Ln) , n = 1, 2, . . . , (5.10)

by use of the WNA structure implies

∂tn(res(L
m)) = −∂tn(f ◦m f) = −ftn ◦m f − f ◦m ftn

= −(f ◦n f) ◦m f − f ◦m (f ◦n f) = res
(

L
m(Ln)<0 − (Ln)≥0L

m
)

= res
(

[(Ln)≥0,L
m]

)

. (5.11)

14If m = 0, the linear term is simplyun+2 and thus again ‘the linear term with the highest derivative’.
15Note that the corresponding WNA structure for(O, ◦) resembles that of example 3 in section 3.
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Since also∂tn(res(L
m)) = res([(Lm)≥0,L

n]) = ∂tm(res(Ln)), we conclude that if we extendA to Ã
by adjoining an elementφ = ∂−1(u2), then

φtn = res(Ln) , n = 1, 2, . . . . (5.12)

It follows thatν := f +φ satisfies∂tn(ν) = 0, n = 1, 2, . . ., and is therefore constant. (5.12) determines
all theuk in terms of the derivatives ofφ (see [67], for example). From (5.12) withn = 2, 3, and (5.11)
with m = n = 2, we recover the pKP equation

(4φt3 − φt1t1t1 − 6φt1
2)t1 − 3φt2t2 + 6 [φt1 , φt2 ] = 0 , (5.13)

in accordance with the general theory. More generally, the equations (5.11) determine the whole pKP
hierarchy. They are the residues of

∂tn(L
m) = [(Ln)≥0,L

m] , m, n = 1, 2, . . . . (5.14)

This is equivalent to the Gelfand-Dickey (GD) system∂tn(L) = [(Ln)≥0,L], n = 1, 2, . . ., which is a
well-known formulation of the KP hierarchy (see [5], for example).

We have thus shown how the Gelfand-Dickey formulation of theKP hierarchy can be recovered in
the WNA framework. In fact, for the particular WNA algebra chosen above, the hierarchy (2.5) of ODEs
is equivalent to the Gelfand-Dickey formulation of the KP hierarchy.

6 Conclusions

In this work we extended our previous results [15, 61] on the relation between weakly nonassociative
(WNA) algebras and solutions of KP hierarchies to discrete KP hierarchies. We also provided further
examples of solutions of matrix KP hierarchies and corresponding solutions of the scalar KP hierarchy.
In particular we recovered a well-known tau function related to Calogero-Moser systems in this way
(example 2 in section 3). Furthermore, we established a connection with the Gelfand-Dickey formulation
of the KP hierarchy. As a byproduct, in section 5 we obtained anew realization of thefreeWNA algebra
generated by a single element, which also has a realization in terms of quasi-symmetric functions [15].
There is more, however, we have to understand in the WNA framework. In particular this concerns the
multi-component KP hierarchy (see [68] and references therein) and its reductions, which include the
Davey-Stewartson, two-dimensional Toda lattice andN -wave hierarchies. Our hope is that also in these
cases the WNA approach leads in a quick way to relevant classes of exact solutions.

Appendix: From Riccati to KP with FORM

The following FORM program [44,45] verifies that any solution of the first three equations of the Riccati
hierarchy (3.5) solves the pKP equation in an algebra with productA ◦B = AQB.

Functions phi,phix,phiy,phit,L,Q,R,S,dx,dy,dt; Symbol n;

Local pKP = dx*(4*phit - 6*phix*Q*phix - dxˆ2*phix) - 3*dy*phiy

+ 6*( phix*Q*phiy - phiy*Q*phix ); * pKP equation

repeat;

id phix = S + L*phi - phi*R - phi*Q*phi; * Riccati system

id phiy = S(2) + L(2)*phi - phi*R(2) - phi*Q(2)*phi;

id phit = S(3) + L(3)*phi - phi*R(3) - phi*Q(3)*phi;

id dx*phi = phix + phi*dx; * product rule of differentiation

12



id dy*phi = phiy + phi*dy; id dt*phi = phit + phi*dt;

id dx?{dx,dy,dt}*L?{L,Q,R,S} = L*dx; * L,Q,R,S are constant

* recursion relations for matrices (see proof of proposition 2):

id L(n?{2,3}) = L*L(n-1) + S*Q(n-1);

id R(n?{2,3}) = Q*S(n-1) + R*R(n-1);

id S(n?{2,3}) = L*S(n-1) + S*R(n-1);

id Q(n?{2,3}) = Q*L(n-1) + R*Q(n-1);

id L?{L,Q,R,S}(1) = L;

endrepeat;

id dx?{dx,dy,dt} = 0;

print pKP; * should return zero

.end

This program provides an elementary and quick way toward theclasses of exact solutions of the KP
equation given in the examples in section 3.
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