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We establish quantum and classical exact solvability for two large classes of maximally

superintegrable Benenti systems in n dimensions with arbitrarily large n. Namely, we solve

the Hamilton–Jacobi and Schrödinger equations for the systems in question. The results

obtained are illustrated for a model with the cubic potential.
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I Introduction

Completely integrable systems in classical mechanics are well known to be of great interest for both

theory and applications, see e.g. [1, 2] and references therein. Indeed, the possibility of analytical

description of the corresponding dynamics enables us to uncover important physical properties of

the systems in question. The prime examples of this are the Kepler laws and numerous physical

models based on (superposition of) harmonic oscillators.

Interestingly, a number of physically relevant exactly solvable models (e.g., the Coulomb prob-

lem for the hydrogen atom and the multidimensional harmonic oscillator, to name just a few)

are maximally superintegrable rather than just completely integrable. In general, a Hamiltonian

dynamical system on a 2n-dimensional phase space is maximally superintegrable, if it possesses

the maximal possible number, 2n − 1, of functionally independent, globally defined integrals of

motion (contrast this with n commuting integrals of motion for completely integrable systems);

see e.g. [3, 4] and references therein for further details. In this case we shall also say that the

Hamiltonian of the system in question is maximally superintegrable.

Quantizing a generic completely integrable classical system and solving the resulting Schrö-

dinger equation may often represent a nontrivial problem. However, solving the Schrödinger

equation for maximally superintegrable systems is often easier (sometimes to the extent of reduc-

ing the determination of energy spectrum to a purely algebraic problem, as is e.g. the case for

the nonrelativistic hydrogen atom and the multidimensional harmonic oscillator) because of the

presence of additional integrals of motion [5].

These facts have lead to a considerable interest in superintegrable systems in general, and

maximally superintegrable systems with natural Hamiltonians on two- or three-dimensional con-

figuration space are now quite well understood, see e.g. [6]–[16] and the survey [4]. However, much

less is known about superintegrable systems in higher dimensions, although such systems often

can be interpreted as multiparticle systems consisting of several one-, two- or three-dimensional

particles with nontrivial interactions and therefore also can be of interest in physics.

Moreover, quantum systems on an 2n-dimensional phase space that are exactly solvable for ar-

bitrary n are relatively scarce, with a few beautiful exceptions like the multidimensional Coulomb

problem and its extensions [17] and the Calogero–Moser–Sutherland and related models, see e.g.

[18] and references therein. Therefore, any new examples would be of considerable interest. Higher-

dimensional superintegrable systems are prime candidates to yield such examples: for instance,

the above examples are superintegrable, see e.g. [3, 17, 19] and references therein. In the present
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work we show that for two large classes of maximally superintegrable Hamiltonians on an 2n-

dimensional phase space with arbitrary n the exact solutions for the Hamilton–Jacobi and the

Schrödinger equation are readily available, see Theorems 3 and 4 below for details.

More specifically, we show that solving the Hamilton–Jacobi and the Schrödinger equations

for the systems in question on the n-dimensional configuration space with arbitrary n amounts

(provided n is sufficiently large) to solving k-dimensional reduced equations, where k is fixed and

independent of n, as presented in Theorems 3 and 4. Moreover, the said reduced equations can

be readily solved, as illustrated by the example of an anharmonic oscillator in Section V.

In order to establish these results, we reveal a hidden symmetry of the systems under study.

This symmetry manifests itself upon passing to the flat coordinates of the metric tensors associ-

ated with the kinetic-energy parts of the Hamiltonians under study, as described in Theorem 2

below. Namely, some of these flat coordinates are cyclic coordinates for the Hamiltonians under

study, so the corresponding momenta are integrals of motion, and the separation of variables is a

reduced one in the sense of [21]. The dynamics in the non-cyclic coordinates is described by the

reduced equations mentioned above.

Note that the metric tensors in question have the so-called maximally balanced signature (the

numbers of plus and minus signs differ at most by one), and the above flat coordinates are the

light-cone ones rather than the orthogonal ones. This leads to an interesting phenomenon: the

aforementioned reduced equations are first-order rather than second-order PDEs, which makes

them easier to solve.

II Preliminaries

For fixed integer m and k consider the separable Benenti Hamiltonians [22, 23] on the phase

space T ∗Q, the cotangent space of an n-dimensional Riemannian manifold Q endowed with the

contravariant metric tensor Gm:

H(m,k)
r =

1

2
µTKrGmµ+ V (k)

r r = 1, . . . , n. (1)

Here λ = (λ1, . . . , λn)T are coordinates on Q and µ = (µ1, . . . , µn)T are the corresponding mo-

menta. The contravariant metric tensors Gm have the form [24]

Gm = LmG0, m ∈ Z, G0 = diag

(

1

∆1
, . . . ,

1

∆n

)

,

where ∆i =
∏

j 6=i

(λi−λj), and L = diag(λ1, . . . , λn) is a (1, 1)-tensor on Q called a special conformal

Killing tensor [25]. The Killing tensors Kr from (1) are diagonal in the λ-coordinates and can be
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constructed as follows [22]:

K1 = I, Kr =

r−1
∑

k=0

(−1)kσkL
r−1−k, r = 2, . . . , n, (2)

where I is an n × n unit matrix, and σk = σk(λ) are symmetric polynomials in the variables

λ1, . . . , λn (σ0 = 1, σ1 =
∑n

i=1 λ
i, . . . , σn = λ1λ2 · · ·λn). They are related to the coefficients of the

characteristic polynomial of the tensor L as follows:

det(ξI− L) =

n
∑

i=0

(−1)iσiξ
n−i. (3)

Consider the (q, p)-coordinates defined as follows [20]:

qi = (−1)iσi(λ), pi = −
n
∑

k=1

(λk)n−iµk/∆k, i = 1, . . . , n. (4)

Notice that qi are nothing but the coefficients of the characteristic polynomial of L (3). In the

(q, p)-coordinates we have

(G0)
rs = δr+s

n+j +

n−1
∑

j=1

qjδr+s
n+j, Li

j = −δ1j qi + δi+1
j ,

whence for m = 0, . . . , n we find [26]

(Gm)rs =



































δr+s
n−m+1 +

n−m−1
∑

j=1

qjδr+s
n−m+j+1, r, s = 1, . . . , n−m,

−
n
∑

j=n−m+1

qjδr+s
n−m+j+1, r, s = n−m+ 1, . . . , n,

0 otherwise.

Here and below δji stands for the Kronecker delta.

The geodesic Hamiltonians Em,r = 1
2
µTKrGmµ are polynomial in the (p, q)-coordinates for

m = 0, 1, 2, . . . [20]. In particular, for m = 0, . . . , n we have

Em,1 = 1
2

n−m
∑

j=1

pjpn−m−j+1 + 1
2

n−m−1
∑

k=1

qk
n−m
∑

j=k+1

pjpn−m+k−j+1 − 1
2

m
∑

k=1

qn−m+k
k
∑

j=1

pn−m+jpn−m+k−j+1.

The basic separable potentials are given by the recursion relations [20]

V
(k+1)
r = V

(k)
r+1 + V

(1)
r V

(k)
1 , k = 1, 2, . . . , V

(1)
r = −qr,

V
(0)
r = 0,

V
(−k−1)
r = V

(−k)
r−1 + V

(−1)
r V

(−k)
n , k = 1, 2, . . . , V

(−1)
r = −qr−1/qn,

(5)

where we tacitly assume that q0 ≡ 1 and that qi ≡ 0 for i > n.
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For any fixed m and k the Hamiltonians H
(m,k)
r are in involution with respect to the canonical

Poisson bracket on T ∗Q
{f, g} =

n
∑

j=1

∂f

∂λj
∂g

∂µj
− ∂g

∂λj
∂f

∂µj
.

These Hamiltonians are automatically separable in the (λ, µ)-coordinates because they satisfy the

Stäckel separation relations by construction [24]. Note that the transition from the (λ, µ)- to the

(p, q)-coordinates is a canonical transformation.

III Superintegrability and flat coordinates

For any natural number n ≥ 2 let

Hm,r ≡ Em,r +

k1
∑

k=k0

ckV
(k)
r , r = 1, . . . , n,

where ck are arbitrary constants and m, k0 and k1 are integers. It is readily seen that these

Hamiltonians are in involution for any fixed m, k0 and k1 (see Theorem 1 of [27] for details):

{Hm,r, Hm,s} = 0, r, s = 1, . . . , n.

We have the following straightforward generalization of Theorem 1 from [20] (see also [27]):

Theorem 1 Given a natural n ≥ 2 and an integer m ∈ {0, . . . , n − 1}, let k0 = −m and k1 =

n− 1 −m. Then pn−m is an integral of motion for Hm,1, i.e., {Hm,1, pn−m} = 0.

Moreover, Fm,s = {Hm,s, pn−m} are additional integrals of motion for Hm,1: {Hm,1, Fm,s} = 0,

s = 2, . . . , n, and the (2n − 1) integrals of motion for Hm,1 (Hm,r, r = 1, . . . , n, and Fm,s, s =

2, . . . , n) are functionally independent, so Hm,1 is maximally superintegrable.

Under the assumptions of Theorem 1 the Hamiltonian Hm,1 involves n− 1 parameters ci (note

that V
(0)
1 ≡ 0).

Proposition 1 ([26]) Given a natural n ≥ 2 and an integer m ∈ {0, . . . , n}, the metric Gm in

the coordinates ri defined by the formulas

qi = ri + 1
4

i−1
∑

j=1

rjri−j, i = 1, . . . , n−m,

qi = −1
4

n
∑

j=i

rjrn−j+i, i = n−m+ 1, . . . , n,
(6)

takes the form

(Gm)kl =
(

δk+l
n−m+1 + δk+l

2n−m+1

)

. (7)
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The transition from (q, p)- to (r, π)-coordinates, where πk =
n
∑

i=1

∂qi

∂rk
pi, k = 1, . . . , n, is a canonical

transformation, and we have

Em,1 ≡ H
(0)
m,1 =

1

2

(

n−m
∑

j=1

πjπn−m+1−j +

n
∑

j=n−m+1

πjπ2n−m+1−j

)

. (8)

The tensor L in the coordinates ri takes the form:

for m < n: Li
j = δi+1

j (1 − δin−m) − 1
2
riδ1j − 1

2
rn−j−m+1+n[(j+m−1)/n]δin−m

for m = n: Li
j = δi+1

j + 1
4
rirn−j+1.

Here and below [k] denotes the largest integer less than or equal to k.

The canonical coordinates (r, π) are not orthogonal, but the metric tensor Gm is constant in

these coordinates. Bringing Gm into the canonical form, with +1 and −1 at the diagonal and

zeros off the diagonal, is possible [26] but we shall not need this here.

Recall [20] that for k = 1, . . . , n − 1 the potentials V
(k)
1 are independent of qj with j =

k + 1, . . . , n. Likewise, for k = 1, . . . , n − 1 the potentials V
(−k)
1 are independent of qj with

j = 1, . . . , n−k. On the other hand, the change of variables (6) is partially triangular: qi with i =

1, . . . , n−m depend only on r1, . . . , ri while qi with i = n−m+1, . . . , n depend only on ri, . . . , rn.

Hence the coordinates ri enjoy the following remarkable property:

Theorem 2 Given a natural n ≥ 2, and two non-negative integers, m ∈ {0, . . . , n − 2} and k,

consider the Hamiltonians H
(k,+)
m,1 = Em,1 +

k
∑

j=1

cjV
(j)
1 and H

(−k,−)
m,1 = Em,1 +

k
∑

j=1

cjV
(−j)
1 , where cj

are arbitrary constants.

If k ∈ {1, . . . , n − m} then the Hamiltonian H
(k,+)
m,1 commutes not only with the ‘standard’

integrals H
(k,+)
m,r = Em,r +

k
∑

j=1

cjV
(j)
r , r = 2, . . . , n, but also with πj, j = k + 1, . . . , n, i.e., rj are

cyclic variables for H
(k,+)
m,1 for j = k + 1, . . . , n.

Likewise, if k ∈ {0, . . . , m} then the Hamiltonian H
(−k,−)
m,1 commutes, in addition to H

(−k,−)
m,r =

Em,r +
k
∑

j=1

cjV
(−j)
r , r = 2, . . . , n, with πj, j = 1, . . . , n− k, i.e., rj are cyclic variables for H

(−k,−)
m,1

for j = 1, . . . , n− k.

Note that, in contrast with the above, the additional integrals of motion for H
(k)
i,1 found earlier

in [20] were quadratic rather than linear in momenta.
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IV Exact solvability in n dimensions

Because of the special form (7) of the metric Gm in the variables r1, . . . , rn the existence of

cyclic variables simplifies solving the Hamilton–Jacobi and the Schrödinger equations for the

Hamiltonians H
(k,+)
m,1 with m = 0, . . . , n−2 and k = 1, . . . , n−m−1 and H

(−k,−)
m,1 form = 0, . . . , n−2

and k = 0, . . . , m even more than one could expect, especially provided n is sufficiently large.

Let Ps ≡ −i∂/∂rs, s = 1, . . . , n, where i =
√
−1. The following results are readily verified by

straightforward computation:

Theorem 3 Fix a non-negative integer m, a natural k, and k constants cj, j = 1, . . . , k. Then

for any natural n such that n ≥ 2k +m the most general common eigenfunction ψ of

H(k,+)
m,1 ≡ 1

2

(

n−m
∑

a=1

PaPn−m+1−a +

n
∑

b=n−m+1

PbP2n−m+1−b

)

+

k
∑

j=1

cjV
(j)
1

and of Pj, j = k + 1, . . . , n, with the eigenvalues E and πj, j = k + 1, . . . , n, respectively, is

quasiclassical and reads ψ = exp(iS), where S(r1, . . . , rn) = S0(r
1, . . . , rk) +

n
∑

j=k+1

rjπj satisfies

the stationary Hamilton–Jacobi equation for H
(k,+)
m,1 , and S0 is a general solution of the reduced

Hamilton–Jacobi equation, a first order linear PDE in k independent variables:

k
∑

j=1

πn−m+1−j
∂S0

∂rj
+

k
∑

j=1

cjV
(j)
1 = ε, (9)

where

ε = E −
[(n−m)/2]
∑

j=k+1

πn−m+1−jπj −
(n−m− 2[(n−m)/2])

2
π2
n−m−[(n−m)/2] −

1

2

n
∑

j=n−m+1

πjπ2n−m+1−j .

Theorem 4 Fix a natural k, a non-negative integer m ≥ 2k, and k constants cj, j = 1, . . . , k.

Then for any natural n ≥ m the most general common eigenfunction ψ of

H(−k,−)
m,1 ≡ 1

2

(

n−m
∑

a=1

PaPn−m+1−a +
n
∑

b=n−m+1

PbP2n−m+1−b

)

+
k
∑

j=1

cjV
(−j)
1

and of Pj, j = 1, . . . , n − k, with the eigenvalues E and πj, j = 1, . . . , n − k, respectively, is

quasiclassical and reads ψ = exp(iS), where S(r1, . . . , rn) = S0(r
n−k+1, . . . , rn) +

n−k
∑

j=1

rjπj satisfies

the stationary Hamilton–Jacobi equation for H
(−k,−)
m,1 , and S0 is a general solution of the reduced

Hamilton–Jacobi equation, a first order linear PDE in k independent variables:

n
∑

j=n−k+1

π2n−m+1−j
∂S0

∂rj
+

k
∑

j=1

cjV
(−j)
1 = ε̃, (10)

where

ε̃ = E − 1

2

n−m
∑

j=1

πn−m+1−jπj −
n−k
∑

j=n−[m/2]+1

πjπ2n−m+1−j −
(m− 2[m/2])

2
π2
n−[m/2].
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Let us briefly outline the integration strategy for (9) and (10). Consider (9) first. Assume that

we have found new coordinates z1(r1, . . . , rk), . . . , zk(r1, . . . , rk) such that

k
∑

j=1

πn−m+1−j
∂

∂rj
=

∂

∂zk
.

This is always possible, but the choice of z’s is not unique and depends on the particular values

of πj . Now (9) becomes an ODE in zk involving z1, . . . , zk−1 as parameters:

∂S0

∂zk
+

k
∑

j=1

cjV
(j)
1 = ε, (11)

where V
(j)
1 are now considered as functions of z’s.

The general solution of (11) reads

S0 = K(z1, . . . , zk−1) −
k
∑

j=1

∫

cjV
(j)
1 dzk + εzk, (12)

where K is an arbitrary smooth function of its arguments.

Likewise, assume that we have found new coordinates z̃n−k+1(rn−k+1, . . . , rn), . . . , z̃n(rn−k+1, . . . , rn)

such that
n
∑

j=n−k+1

π2n−m+1−j
∂

∂rj
=

∂

∂z̃n
.

Then the general solution of (10) reads

S0 = K̃(z̃n−k+1, . . . , z̃n−1) −
k
∑

j=1

∫

cjV
(−j)
1 dz̃n + ε̃z̃n, (13)

where K̃ is an arbitrary smooth function of its arguments.

Thus, the stationary Schrödinger equations for the Hamiltonians H
(k,+)
m,1 and H

(−k,−)
m,1 with

m = 0, . . . , n − 2 (for H
(−k,−)
m,1 we have an extra condition m ≥ 2k) and arbitrary constants ci,

i = 1, . . . , k, in the space of n dimensions for any n ≥ 2k + m essentially reduce to a linear first-

order PDEs in k independent variables, and these PDE can be explicitly solved. This is a rather

surprising result, as only a few potentials for which the Schrödinger equation is exactly solvable

in the space of arbitrarily high dimension were known so far, cf. the discussion in Introduction.

It is readily seen that there exists no real value of E for which the eigenfunction

ψ = exp

(

i

(

S0 +

n
∑

j=k+1

πjr
j

))

of H(k,+)
m,1 constructed in Theorem 3 with S0 given by (12) can have a finite norm

∫

Q
|ψ|2dr1 . . . drn ∼

∫

Q
| exp(K(z1, . . . , zk−1))|2dz1 . . . dzn.

8



The latter integral obviously diverges for any choice of K because of integration over zk+1,. . . ,

zn. Therefore no common eigenfunction ψ of H(k,+)
m,1 and Pj , j = k + 1, . . . , n, can belong to the

discrete spectrum of H(+)
m,1. In a similar fashion we can show that no common eigenfunction ψ of

H(−k,−)
m,1 and Pj , j = 1, . . . , n− k, can belong to the discrete spectrum of H(−k,−)

m,1 .

V Example: an anharmonic oscillator

Consider the Hamiltonian

H ≡ H
(3)
0,1 =

1

2

n−1
∑

k=0

qk
n
∑

j=k+1

pjpn+k−j+1 − q3 + 2q1q2 − (q1)3,

in the (q, p)-cootdinates. It commutes with

Hi ≡ H
(3)
0,i =

1

2

n
∑

i,j=1

(KrG)ijpipj − qi+2 + qi+1q1 + qiq2 − qi(q1)2, i = 2, . . . , n,

by construction.

A Superintegrability

The Hamiltonian H is superintegrable [20] because it also commutes with the function

I =



















1
2
p22 + (q1)2, n = 2,

1
2
p23 − q1, n = 3,

pn, n ≥ 4,

and hence Fr = {I,Hr}, r = 2, . . . , n also Poisson commute with H , and all functions in the set

{Hr, r = 1, . . . , n, Fs, s = 2, . . . , n} are functionally independent.

For n ≥ 4 the additional integrals Fr are simply Fr = {pn, Hr} = −∂Hr/∂q
n, and we readily

find that

Fr =
1

2

n
∑

i=n−r+2

n
∑

j=2n+2−i−r

qi+j+r−2n−2pipj + δr+2
n − δr+1

n q1 − δrn(q2 − (q1)2).

In particular, we obtain

F2 = p2n/2, (14)

so F2 is simply a half of square of I, and it is straightforward to verify (see Theorem 5 of [27] for

a more general result of this kind) that we have

{pn, Fr} = 0, r = 2, . . . , n, {Fr, Fs} = 0, r, s = 2, . . . , n.

9



It can be readily inferred from the above and from Theorem 1 that the quantities {H, I, F3, . . . , Fn}
are functionally independent and Poisson commute for all n ≥ 2.

Thus, the Hamiltonian H is maximally superintegrable for all n = 2, 3, . . .. For n = 3 we

have, in addition to H , H2, H3 and I, the following integral K = p3p2 + q1p23/2 − q2 + (q1)2 =

π2π3 − r2 + 3(r1)2/4 which is quadratic in momenta. Note that I and K commute.

B Quantization and solution of equations of motion

in the (r, π)-coordinates

In the (r, π)-coordinates we have

H =
1

2

n
∑

j=1

πjπn+1−j − r3 +
3

2
r1r2 − 1

2
(r1)3.

The quantization is obvious: H goes into the operator

H =
1

2

n
∑

j=1

PjPn+1−j − r3 +
3

2
r1r2 − 1

2
(r1)3.

For n ≥ 4 we can look for the common eigenfunctions ψ of H and Pi, i = 4, . . . , n:

Hψ = Eψ, Piψ = πiψ, i = 4, . . . , n. (15)

By Proposition 2, for n ≥ 6 finding ψ requires solving the equation (9) that becomes

3
∑

k=1

πn+1−k∂S0/∂r
k − r3 + 3

2
r1r2 − 1

2
(r1)3 = ε, (16)

where

ε = E −
[n/2]
∑

k=4

πn+1−kπk −
(n− 2[n/2])

2
π2
[n/2]+1.

Eq.(16) is a first order PDE that can be readily solved in full generality.

Let K(ω1, ω2) stand below for an arbitrary (smooth) function of its arguments.

If πn 6= 0 then the general solution of (16) reads

S0 =
(r1)4

8πn
+
πn−1(r

1)3

4π2
n

+

(

− 3r2

4πn
− πn−2

2π2
n

)

(r1)2 +
(r3 + ε)r1

πn

+K

(

(r2πn − πn−1r
1)

πn
,

(r3πn − πn−2r
1)

πn

)

.

If πn = 0 but πn−1 6= 0 then the general solution of (16) is

S0 =
(r1)3r2

2πn−1

− 3r1(r2)2

4πn−1

− πn−2(r
2)2

2π2
n−1

+
(r3 + ε)r2

πn−1

+K

(

r1,
(r3πn−1 − πn−2r

2)

πn−1

)

.
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Finally, if πn = πn−1 = 0 but πn−2 6= 0 then the general solution of (16) has the form

S0 =
(r3)2 − 3r1r2r3 + (r1)3r3 + 2εr3

2πn−2
+K(r1, r2).

By Proposition 2 for n ≥ 6 the most general common eigenfunction ψ of H and of Pi, i =

4, . . . , n is

ψ = exp

(

i

(

S0 +
n
∑

j=4

πjr
j

))

where S0 is given above. This eigenfunction is not square integrable for any choice of K and for

any values of πi.

An integral of the stationary Hamilton–Jacobi equation for H is given by

S = S0 +

n
∑

j=4

πjr
j .

C Special cases: n ≤ 5

We list below the exact solutions for the corresponding Schrödinger and Hamilton–Jacobi equa-

tions. None of the eigenfunctions listed below is square integrable.

Case 1: n = 2

Here q3 = 0 and there is a pair of commuting operators H and I. In the (r, π)-coordinates

we have

H = P1P2 + 2r1r2 − (r1)3/2, I = P2
2/2 + (r1)2.

and their common eigenfunction ψ satisfying Hψ = Eψ, Iψ = λ1ψ has, up to multiplication by

an arbitrary constant, the form

ψ =
1

√

(r1)2 − λ1

(

r1 +
√

(r1)2 − λ1

)E/
√
2

exp
(

√

2((r1)2 − λ1)(r
2 − (r1)2/12 − λ1/6)

)

We actually have two such eigenfunctions, as
√

(r1)2 − λ1 is a two-valued function.

The eigenfunction ψ is not quasiclassical: we have a complete integral of the stationary

Hamilton–Jacobi equation for H of the form

S = −i lnψ +
i

3
√

2
((r1)2 − λ1)

1/2(−2λ1 − (r1)2 + 12r2) − i

2
ln((r1)2 − λ1),

or equivalently,

S =
E√

2
arctan

(

r1

((r1)2 − λ1)1/2

)

− 1

12
(12r2 − (r1)2 − 2λ1)(2(λ1 − (r1)2))1/2.
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Case 2: n = 3

Now we have a triplet of commuting operators H, I = π2
3/2 − r1, and F2 = P3

3/2 − 3r1P3/2 −P2

and their common eigenfunction ψ such that Hψ = Eψ, Iψ = λ1ψ and F2ψ = λ2ψ reads

ψ =
1

(r1 + λ1)1/2
exp
(

i
√

2(λ1 + r1)1/2r3 + i(−λ2 +
√

2(r1 + λ1)
1/2λ1)r

2

− i√
2

(r1 + λ1)
1/2r1r2 +

i

28

√
2(r1 + λ1)

1/2(r1)3 +
i

4
(−λ2 +

3

7

√
2(r1 + λ1)

1/2λ1)(r
1)2

−i(−λ2 +

√
2

7
(r1 + λ1)

1/2λ1)λ1r
1 +

i
√

2

14
(r1 + λ1)

1/2(−10λ31 + 14E − 7λ22)
)

If we take another triple of commuting operators H, I = π2
3/2−r1, and K = P2P3−r2+3(r1)2/4

then their common eigenfunction ψ such that Hψ = Eψ, Iψ = λ1ψ and Kψ = νψ reads

ψ =
1

(r1 + λ1)3/4
exp
(

i
√

2(λ1 + r1)1/2r3 − i√
2(λ1 + r1)1/2

(

− 23

224
(r1)4

−λ1
28

(r1)3 +
3

4
r2(r1)2 +

1

28
(−7ν + 2λ21)(r

1)2 − 1

7
(14E + 2λ31 − 7λ1ν)r1 − (r2)2/2 − νr2

−(−2λ21ν + 4
7
λ41 + 2λ1E + 1

2
ν2)
))

.

In the latter case the eigenfunction ψ is almost quasiclassical: we have a complete integral of

the Hamilton–Jacobi equation for H of the form

S = −i lnψ +
3i

4
ln(r1 + λ1).

In both cases we again actually have two eigenfunctions as (r1 + λ1)
1/2 is two-valued.

Case 3: n = 4

The common eigenfunction of P4, H and Fi, i = 2, 3, with the respective eigenvalues π4, E, λ2,λ3

reads

ψ = exp
(

iπ4r
4 +

i

16π5
4

(2π4
4 + 2 + 3π2

4)(r1)4 +
i

4π5
4

λ2(π
2
4 + 2)(r1)3 − i

4π3
4

(3π2
4 + 2)(r1)2r2

− i

4π5
4

(−3λ22 + 2π2
4λ3)(r

1)2 − iλ2
π3
4

r2r1 +
i

π4
r3r1 +

i

2π5
4

(−2λ2π
2
4λ3 + λ32 + 2π4

4E)r1

+
i

2π4
(r2)2 +

i

2π3
4

(−λ22 + 2π2
4λ3)r

2 +
ir3

π4
λ2

)

This eigenfunction is quasiclassical: S = −i lnψ is a complete integral for the stationary

Hamilton–Jacobi equation for H .
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Case 4: n = 5

The common eigenfunction of Pi, i = 4, 5, H and Fi, i = 3, 4, with the respective eigenvalues

π4, π5, E, λ3,λ4 reads, up to an overall constant factor,

ψ = exp
(

iπ5r
5 + iπ4r

4 +
i

8π5
(r1)4 +

i

12π3
5

(3π5π4 + 2)(r1)3 − 3i

4π5
(r1)2r2

+
i

4π3
5

(2λ3 + π2
4)(r1)2 − i

π2
5

π4r
2r1 +

i

π5
r3r1

− i

8π3
5

(−8Eπ2
5 − 4λ23 + 3π4

4 + 8π4λ4π5 − 4π2
4λ3)r

1 +
i

2π5
(r2)2

+
i

2π2
5

(2λ4π5 − 2π4λ3 + π3
4)r2 − i

2π5
(π2

4 − 2λ3)r
3
)

Unlike the previous case, this wave function is not quasiclassical: there is a complete integral

of the stationary Hamilton–Jacobi equation for H of the form

S = −i lnψ +
1

24π3
5

(π2
4 − 2r1 − 2λ3)

3
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