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Isoperiodic deformations of the acoustic

operator and periodic solutions of the Harry

Dym equation

D.V.Zakharov∗

Abstract

We consider the problem of describing the possible spectra of an acous-

tic operator with a periodic finite-gap density. We construct flows on

the moduli space of algebraic Riemann surfaces that preserve the pe-

riods of the corresponding operator. By a suitable extension of the

phase space, these equations can be written with quadratic irrational-

ities.

1 Introduction

In the study of periodic potentials of the one-dimensional Schrödinger oper-
ator, we encounter the following problem. A given periodic potential u(x) of
the Schrödinger operator

LS = − d2

dy2
+ u(y) (1.1)

determines a Riemann surface, called the spectral curve, which is algebraic
if the potential has a finite number of energy gaps. Conversely, given a hy-
perelliptic Riemann surface of genus g, there exists a potential u(x) with the
corresponding spectrum, which can be extended to a solution u(x,~t) of the
KdV hierarchy. However, this potential is not in general periodic. We can-
not extend the direct spectral transform to all quasi-periodic potentials. For
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instance, the spectrum of a quasi-periodic potential may have the structure
of a Cantor set (see [1]), making it impossible to associate a Riemann surface
to it. The problem of determining which Riemann surfaces correspond to
periodic finite-gap potentials did not at first receive much attention.

The periods of a potential of the Schrödinger operator are expressed as
certain Abelian integrals on the corresponding spectral curve. The poten-
tial has a given period if and only if these integrals are integer multiples of
the period. Therefore, the subset of curves corresponding potentials with
a given period forms a transcendental submanifold in the moduli space of
hyperelliptic Riemann surfaces.

A description of the possible spectra of a periodic Scrödinger operator,
not necessarily finite-gap, was given by Marchenko and Ostrovsky in [9] in
terms of the properties of a conformal map of a certain type. However, their
approach was difficult from a computational viewpoint. An effective solution
was given by Grinevich and Schmidt in [6], called the method of isoperiodic
deformations. Using an idea developed in [5], [8], the solution consists of
finding a set of differential equations on the spectral data that do not change
the periods of the solution. The submanifold corresponding to solutions of a
given period is then preserved by these flows. By a suitable extension of the
phase space, the equations of isoperiodic deformation can be written with a
rational right-hand side, making them convenient for numerical simulation.

This paper extends this approach to the study of the periodic finite-gap
densities acoustic operator

LA = −r2(x) d
2

dx2
. (1.2)

Finite-gap densities of the acoustic operator and the corresponding periodic
solutions of the Harry Dym equation

rt = r3rxxx (1.3)

were first constructed by Dmitrieva in [2], [3], [4], using a Hopf transformation
to the Schrödinger operator introduced in [12]. Periodic solutions of the
Harry Dym equation were recently shown to be relevant to the Saffman-
Taylor problem (see [13]), while finite-gap periodic densities of the acoustic
operator are related to geodesics on the ellipsoid (see [10], [14], [15]).

In sections 2 and 3, we recall the spectral theory of the periodic Schrödinger
operator and the method of isoperiodic deformations. In section 4, we derive

2



a spectral theory for the acoustic operator by relating it to the Schrödinger
operator, and in section 5 we construct the equations of isoperiodic deforma-
tion for the acoustic operator. By extending the phase space, we write these
equations with quadratic irrationalities. The principal result of this paper is
Theorem 2, which gives the explicit form of the deformation equations.

2 Periodic finite-gap potentials of the Schrödinger

operator

We first recall the spectral theory of the one-dimensional periodic finite-gap
Schrödinger operator

LS = − d2

dy2
+ u(y), (2.1)

where u(y) is a smooth periodic real-valued potential with period Π. For
references, see [11].

We consider two spectral problems for LS :

1. The standard problem in L2(R):

LSϕ = λϕ, |ϕ(y)| <∞ as y → ±∞,

2. The Dirichlet problem on a period:

LSϕ = λϕ, ϕ(y0) = ϕ(y0 +Π) = 0.

The spectrum of the first problem is continuous and consists of an infi-
nite number of segments [Λ0,Λ1], [Λ2,Λ3], . . ., with Λ2j < Λ2j+1 ≤ Λ2j+2. The
spaces between these segments (Λ2j+1,Λ2j+2), which may be of zero length,
are called the energy gaps. The second problem has a purely discrete spec-
trum dj(y0), with exactly one eigenvalue inside or on the boundary of each
of the energy gaps, dj(y0) ∈ [Λ2j−1,Λ2j], including the degenerate gaps.

The principal case of interest is when the potential u(y) has only a finite
number of energy gaps of non-zero length, such a potential is called finite-
gap. Let (−∞, λ0), (λ1, λ2), . . . , (λ2g−1, λ2g) denote the non-trivial energy
gaps, and let γj(y0) denote the eigenvalue of the Dirichlet problem lying in
the j-th non-trivial gap.

The direct spectral transform assigns to the finite-gap potential u(y) the
following data
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1. A hyperelliptic Riemann surface Γ of genus g together with a two-
sheeted covering λ : Γ → CP

1 ramified at λ0, . . . , λ2g and ∞

2. A meromorphic function ϕ(y, y0, P ) on Γ\λ−1(∞), called the Bloch-
Floquet function, that has g simple poles P1(y0), . . . , Pg(y0) on Γ sat-
isfying λ(Pk(y0)) = γk(y0).

This function is a joint eigenfunction of the Schrödinger operator and the
monodromy operator:

LSϕ(y, y0, P ) = λ(P )ϕ(y, y0, P ), (2.2)

ϕ(y + Π, y0, P ) = µ(P )ϕ(y, y0, P ), (2.3)

and has the following high-energy expansion:

ϕ(y, y0, P ) = exp(i(y − y0)
√
λ)(1 + o(1)). (2.4)

The logarithmic derivative of the Bloch-Floquet function is equal to

χ(y, P ) = −iϕy(y, y0, P )

ϕ(y, y0, P )
=

√

R(λ(P ))

S(y, λ(P ))
− i

2

Sy(y, λ(P ))

S(y, λ(P ))
, (2.5)

where the functions R(λ) and S(y, λ) are defined as

R(λ) =

2g
∏

j=0

(λ− λj), S(y, λ) =

g
∏

k=1

(λ− γk(y)). (2.6)

The multi-valued function p(P ) = − i
Π
lnµ(P ) is called the quasi-momentum.

Its differential

dp = − i

Π

dµ

µ

is the unique meromorphic 1-form on Γ satisfying the following properties:

1. dp has a single pole of second order at infinity with the principal part

dp =

(

− 1

k2
+O(1)

)

dk,

where k = λ−1/2 is the local parameter, and
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2. The periods of dp over the a-cycles are equal to zero:

∮

ak

dp = 0, k = 1, . . . , g (2.7)

Since the function µ(λ) = eiΠp(λ) is single-valued, the b-periods of Ωp are
integral multiples of 2π/Π:

∮

bk

dp =
2πnk

Π
, nk ∈ Z, k = 1, . . . , g. (2.8)

Conversely, given a hyperelliptic Riemann surface Γ together with a two-
sheeted covering λ : Γ → CP

1 with real-valued ramification points λ0, . . . , λ2g
and ∞, and a nonspecial divisor D = P1 + · · · + Pg satisfying λ(Pi) ∈
[λ2j−1, λ2j], there exists a smooth real-valued potential u(y) of the Schrödinger
operator with spectral data {λi, Pj(0)}. This potential is given in terms of
the theta-function of Γ by the Matveev-Its formula:

u(y) = −2∂2y ln θ(y
~U1 − ~A(P1)− · · · − ~A(Pg)− ~K|Bij) + C(Γ), (2.9)

where ~A is the Abel map, ~K is the vector of Riemann constants, C(Γ) is a

constant, and the vector ~U1 is the vector of b-periods of the unique meromor-
phic differential dp on Γ satisfying properties (1) and (2) above:

(~U1)k =
1

2π

∮

bk

dp k = 1, . . . , g. (2.10)

This potential is periodic with period Π only if the components of the vector
~U1 are integral multiples of 1/Π. However, for generic spectral data the

components of ~U1 are arbitrary real numbers, so the potential u(y) is in
general quasi-periodic.

Therefore, the problem of describing all finite-gap potentials of period
Π is reduced to the following: describe all hyperelliptic Riemann surfaces
such that the 1-form dp, uniquely determined by conditions (1) and (2), has
b-periods that are integral multiples of 2π/Π. An effective solution of this
problem was given in [6], which we now recall.
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3 Isoperiodic deformations for the Schrödinger

operator

Let Γ0 be a hyperelliptic Riemann surface corresponding to a real-valued
potential of the Schrödinger operator of period one. Consider a deformation
Γ(t) of Γ0, i.e. let a continuously varying one-periodic family of hyperelliptic
Riemann surfaces of genus g, equipped with two-sheeted covering maps λ(t) :
Γ(t) → CP

1, branched at points λ0(t), . . . , λ2g(t) on the real axis and∞, such
that Γ(0) = Γ0. If each of the curves Γ(t) also corresponds to a potential of
period one, then this deformation is called isoperiodic. The principal result
of [6] consists of an effective description of all such deformations.

Suppose we have an isoperiodic deformation Γ(t), then each of the curves
has a unique meromorphic 1-form dp(t) satisfying properties (1) and (2)
above, such that its b-periods are integers. Consider the meromorphic 1-
form

ω =
∂p

∂t
dλ− ∂λ

∂t
dp (3.1)

on Γ0. This form has a double pole at infinity and no other singularities,
such forms are called weakly meromorphic. If we choose the connection in
such a way that ∂p

∂t
= 0, then the deformation is explicitly given in terms of

the ramification points
∂λj
∂t

= − ω(λk)

dp(λk)
. (3.2)

Conversely, given a weakly meromorphic 1-form ω, we can define a deforma-
tion of Γ0 using the above formula. If we now choose the connection in such
a way that ∂λ

∂t
= 0, then we see that

∂p

∂t
=

ω

dλ
(3.3)

is a single-valued function on Γ0, so therefore the periods of dp(t) are con-
stant. Therefore, if Γ0 corresponds to a potential of period one, then so do
the surfaces Γ(t). Thus, isoperiodic deformations of the Schrödinger operator
are described by meromorphic 1-forms with prescribed singularities, namely
with a double pole at infinity. We now try to adapt this approach to obtain
isoperiodic deformations for the acoustic operator.
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4 Spectral theory of the acoustic operator

We now consider the acoustic operator

LA = −r2(x) d
2

dx2
, (4.1)

where the function r(x), called the density, is smooth and positive. The
spectral theory of the acoustic operator with a smooth periodic density has
been widely studied. The L2(R) spectrum of the problem

LAψ(x, λ) = λψ(x, λ), (4.2)

like that of the periodic Schrödinger operator, has a zone structure and con-
sists of an infinite number of bands [Λ0,Λ1], [Λ2,Λ3], . . ., with Λ2j < Λ2j+1 ≤
Λ2j+2. If the density r(x) is smooth, then there is a constraint Λ0 = 0. The
finite-gap densities of LA can be constructed using the following well-known
relation [12]:

Proposition 1 Suppose r(x), ψ(x, λ) satisfy the acoustic equation

− r2(x)
d2

dx2
ψ(x, λ) = λψ(x, λ). (4.3)

Perform a change of variables

y(x) =

∫ x

0

dx′

r(x′)
. (4.4)

Then the functions

u(y) =
1

4
r2x(x)−

1

2
r(x)rxx(x), (4.5)

ϕ(y, λ) = ψ(x, λ)r−1/2(x), (4.6)

satisfy the Schrödinger equation

− d2

dx2
ϕ(y, λ) + u(y)ϕ(y, λ) = λϕ(y, λ). (4.7)

If r(x) is a periodic density of LA with period T , then u(y) is a periodic
potential of LS with period

Π =

∫ x0+T

x0

dx

r′(x)
, (4.8)

and the operators LA and LS have the same spectrum in L2(R).
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This proposition allows us to construct finite-gap densities of the acoustic
operator by taking a finite-gap potential u(y) of the Schrödinger operator,
given by the Matveev-Its formula for some spectral data {λi, γk} with λ0 =
0, and solving the equations (4.4)-(4.5) for the density r(x). This inverse
transformation is only defined up to a parameter, as the acoustic equation
has the gauge transformation

x→ αx, r(x) → α−1r(αx), (4.9)

so that a periodic potential corresponds to a one-parameter family of periodic
densities. The choice of this α should be considered as an additional spectral
parameter of the problem.

Explicit formulas for r(x) in terms of theta-functions were obtained by
Dmitrieva in [2]-[4] by extending the Hopf transformation (4.4)-(4.6) to a
transformation between the Harry Dym hierarchy and the Korteweg-de Vries
hierarchy. Finite-gap periodic densities of the acoustic operator are then
equivalent to x-periodic solutions of the Harry Dym equation

rt = r3rxxx. (4.10)

Since periodic densities correspond to periodic potentials, and periodic
potentials of the Schrödinger operator are described by the isoperiodic de-
formations, the problem of describing all periodic densities of the acoustic
operator is in some sense solved. However, we would like to find a natural
choice of the constant for the gauge transformation, depending explicitly on
the spectral data, and a set of differential equations on the spectral data of
the acoustic operator, such that the period of the unique density correspond-
ing to the spectral data is preserved under these flows. We now turn to this
problem.

Let r(x) be a finite-gap density of period T , and let ψ±(x, x0, λ) be the
Bloch-Floquet function of the corresponding acoustic operator LA, that is a
joint eigenfunction of the acoustic and monodromy operators:

LAψ±(x, x0, λ) = λψ±(x, x0, P ), (4.11)

ψ±(x+ T, x0, λ) = e±iT q(λ)ψ±(x, x0, λ), (4.12)

normalized by the relation

ψ±(x, x0, T )|x=x0
= 1. (4.13)
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Let LS be the associated Schrödinger operator given by (4.4)-(4.6). Then the
function ψ(x, x0, λ) can be expressed in terms of the Bloch-Floquet function
(2.2)-(2.3) of LS as follows:

ψ±(x, x0, λ) = r−1/2(x0)r
1/2(x)ϕ(y, y0, λ(P )). (4.14)

Hence, we can consider the Bloch-Floquet as a meromorphic function on the
spectral curve Γ of LS, i.e. we can set

ψ±(x, x0, λ) = ψ(x, x0, λ(P )) (4.15)

for some meromorphic function ψ(x, x0, P ) on Γ satisfying

LAψ(x, x0, P ) = λ(P )ψ(x, x0, P ), (4.16)

ψ(x+ T, x0, P ) = eiT q(P )ψ(x, x0, P ), (4.17)

where the multivalued function q(P ) is called the quasi-momentum of the
acoustic operator LA. It can be expressed in terms of the logarithmic deriva-
tive of the Bloch-Floquet function

ξ(x, P ) = −iψx(x, x0, P )

ψ(x, x0, P )
(4.18)

as follows:

q(P ) =
1

T

∫ x0+T

x0

ξ(x, P )dx. (4.19)

To study the function ξ(x, P ), we first see that it can be expressed in terms
of the logarithmic derivative χ(y, P ) of ϕ(y, y0, P ) as follows:

ξ(x, P ) =
1

r(x)
χ(y, P )− i

2

rx(x)

r(x)
. (4.20)

Substituting this in (2.5), we get

ξ(x, P ) =

√

R(λ)

r(x)S(x, λ)
− i

2

r′(x)

r(x)
− i

2

Sx(x, λ)

S(x, λ)
, (4.21)

where R(λ) = λ

2g
∏

j=1

(λ − λj) and S(x, λ) =

g
∏

k=1

(λ − γk(y(x))). Therefore,

the quasi-momentum q(P ) and its differential have the following high-energy
expressions:

q(P ) =
1

kT

∫ x0+T

x0

dx

r(x)
+O(1), (4.22)
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dq(P ) =

(

− 1

k2T

∫ x0+T

x0

dx

r(x)
+O(1)

)

dk, (4.23)

where k = λ−1/2.
A simple calculation also shows that ξ(x, P ) satisfies the Ricatti equation:

− iξ′(x, P ) + ξ2(x, P )− λ(P )

r2(x)
= 0. (4.24)

The spectrum of the acoustic operator always starts at λ = 0, i.e. the left-
most branch point of Γ is λ = 0. We consider the Ricatti equation in the
neighborhood of this point. Let k =

√
λ be the local parameter and consider

the Taylor series for ξ(x, P ) at k = 0:

ξ(x, P ) = ξ0(x) + ξ1(x)k + ξ2(x)k
2 +O(k3). (4.25)

Substituting this into the Ricatti equation, we get that ξ0(x) = 0, ξ1(x) = C
for some constant C, and that ξ2(x) is a full derivative. Therefore, the quasi-
momentum q(P ) and its differential near k = 0 are equal to

q(P ) = Ck +O(k3). (4.26)

dq(P ) = (C +O(k2))dk. (4.27)

On the other hand, comparing the obtained expression for ξ(x, P ) with (4.21),
we see that

C =

√

λ1 · · ·λ2g
(−1)gr(x)γ1(x) · · ·γg(x)

, (4.28)

and hence r(x) is expressed in terms of the spectral data and the additional
constant C as follows:

r(x) =

√

λ1 · · ·λ2g
(−1)gCγ1(x) · · · γg(x)

. (4.29)

The constant C in this formula corresponds to the gauge transformation (4.9)
and should be considered in addition to the λj and γk as part of the spectral
data of the problem.

To construct isoperiodic deformations of the acoustic operator, we need a
rule of choosing the constant C. The natural choice seems to be C = (−1)g.
With this choice, the value of dq at λ = 0 does not depend on the spectral
curve Γ, which will be used to construct the isoperiodic deformations. Also,
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with this choice of C, a vanishingly small potential u(x) → 0, or equivalently
vanishingly small energy gaps (λ2j−1 − λ2j → 0), correspond to a density
r(x) → 1 normalized at unity.

We summarize the results of this section in the following

Theorem 1 Let {λi, γk(y)} be the spectral data of a finite-gap periodic Schrödinger
operator LS with potential u(y) such that λ0 = 0. Then the density r(x) of the
associated acoustic operator LA related to u(y) by (4.4)-(4.6) is given by the
equation (4.29), where C is an arbitrary constant. If we choose C = (−1)g,
then the differential of the quasi-momentum of LA has a pole of second order
at λ = ∞ with principal part (4.23), and has fixed first and second order
terms at λ = 0:

dq(P ) = ((−1)g +O(k2))dk. (4.30)

Using this theorem, we construct isoperiodic deformations for the acoustic
operator.

5 Isoperiodic deformations of the acoustic op-

erator

We recall that a deformation of a Riemann surface is given by a meromorphic
1-form

ω =
∂q

∂t
dλ. (5.1)

To give an isoperiodic deformation for the acoustic operator, this 1-form must
satisfy the following conditions:

1. The quasimomentum differential dq has a second order pole at infinity,
so ∂q

∂t
has a first order pole at infinity. Since dλ has a third order pole

at infinity, ω has a pole of fourth order at infinity.

2. At zero dq has fixed first and second order terms, therefore ∂q
∂t

has a
third order zero (with our choice of C). Since dλ has a first order zero,
ω has a zero of fourth order at λ = 0.

Therefore, a 1-form ω defines an isoperiodic deformation if and only if it
has divisor 4 · 0− 4 ·∞. The space of such forms is g-dimensional. Since the
total space of spectral curves has dimension 2g, and there are g conditions
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for the period to be equal to one, these forms are a basis of isoperiodic
deformations.

As before, the deformation is given explicitly in terms of the branch points
as

∂λj
∂t

= − ω(λj)

dq(λj)
, j = 1, . . . , 2g. (5.2)

On a hyperelliptic surface, the 1-form dq can be written explicitly as

dq =
Q(λ)

2
√

R(λ)
dλ, (5.3)

where
Q(λ) = qgλ

g + · · ·+ q0, (5.4)

and q0 = (−1)g
√

λ1 · · ·λ2g. The coefficients of the polynomial Q(λ) are
determined by setting the a-periods of dq to zero and are expressed in terms
of certain hyperelliptic integrals.

An arbitrary 1-form ω with divisor 4 · 0− 4 · ∞ can be written as

ω =
f(λ)

2
√

R(λ)
dλ, (5.5)

where

f(λ) = fg+1λ
g+1 + · · ·+ f2λ

2 = λ2(fg+1λ
g−1 + · · ·+ f2). (5.6)

The deformation given by such an ω has the form

∂λj
∂t

= − f(λj)

Q(λj)
, j = 1, . . . , 2g. (5.7)

It is possible to choose a basis in the space of meromorphic 1-forms with
divisor 4 · 0 − 4 · ∞ and construct a basis of deformations by this formula.
However, the right-hand side of the deformation equations contains the coeffi-
cients of Q(λ) that are in turn expressed as hyperelliptic integrals containing
the ramification points. To avoid this difficulty, we use the approach of [6].
Factoring the polynomial Q(λ)

Q(λ) = (β1λ−
√

λ1λ2) · · · (βgλ−
√

λ2g−1λ2g), (5.8)

we consider the parameters βk as independent variables that are deformed
along with the ramification points. This extension of the phase space greatly
simplifies the deformation equations.

The deformations of βk are easily shown to be given by the following
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Lemma 1 Let ∂
∂t

be the flow given by the form ω with polynomial f(λ). Then
the deformations of λi and βk have the form

∂λj
∂t

= − f(λj)

Q(λj)
(5.9)

∂βk
∂t

= βk

[

− 1

2λ2k−1

f(λ2k−1)

Q(λ2k−1)
− 1

2λ2k

f(λ2k)

Q(λ2k)
+

+
1

Q′(λ)
·
(

f ′(λ)− f(λ)R′(λ)

2R(λ)

)
∣

∣

∣

∣

λ=

√
λ2k−1λ2k

βk



 (5.10)

As we see, the equations no longer contain hyperelliptic integrals. This
form makes the equations of isoperiodic deformation useful for numerical
simulations.

To write the deformations explicitly, we choose a basis in the space of
differentials with divisor 4 · 0− 4 · ∞ as follows:

ωk =
ckλ

2

βkλ−
√

λ2k−1λ2k
dq, (5.11)

where ck are arbitrary constants. Then

fk(λ)

Q(λ)
=

ckλ
2

βkλ−
√

λ2k−1λ2k
, (5.12)

and the deformation equations are given by our final theorem.

Theorem 2 Let Γ be a hyperelliptic Riemann surface with ramification points
λ0 = 0, λ1, . . . , λ2g, corresponding to a smooth density of period one. Let the

zeroes of the quasimomentum be

√
λ2k−1λ2k

βk
, k = 1, . . . , g. Consider the flows

∂λj
∂tk

= −
ckλ

2
j

βkλj −
√

λ2k−1λ2k
(5.13)

∂βl
∂tk

= ckβk

[

− 1

2λ2l−1

λ22l−1

βkλ2l−1 −
√

λ2k−1λ2k
− 1

2λ2l

λ22l
βkλ2l −

√

λ2k−1λ2k
+

+
λ2l−1λ2l
β2
l

(

βk

√

λ2l−1λ2l
βl

−
√

λ2k−1λ2k

)−1


 ; l 6= k (5.14)
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∂βk
∂tk

= ckβk

[

− 1

2λ2k−1

λ22k−1

βkλ2k−1 −
√

λ2k−1λ2k
− 1

2λ2l

λ22k
βkλ2k −

√

λ2k−1λ2k
+

+
1

βk







λ2k−1λ2k
β2
k

∑

l 6=k

βl

(

βl

√

λ2k−1λ2k
βk

−
√

λ2l−1λ2l

)−1

+ 2

√

λ2k−1λ2k
βk

−

λ2k−1λ2k
βk

·
(

βk
√

λ2k−1λ2k
−

2g
∑

j=1

βk
√

λ2k−1λ2k − λjβk

)}]

(5.15)

on the spectral data, where ∂
∂tk

is the flow given by ωk defined by (5.11).
Then any Riemann surface obtained by moving along these flows in the mod-
uli space of hyperelliptic Riemann surfaces corresponds to a density r(x) of
period one of the acoustic operator. These flows form a basis in the space of
isoperiodic deformations of the acoustic operator.

We see that these extended equations do not involve hyperelliptic inte-
grals.
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