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Abstract. The Bethe-Brueckner-Goldstone many-body theory of the Nuclear Equa-
tion of State is reviewed in some details. In the theory, one performs an expansion in
terms of the Brueckner two-body scattering matrix and an ordering of the correspond-
ing many-body diagrams according to the number of their hole-lines. Recent results
are reported, both for symmetric and for pure neutron matter, based on realistic two-
nucleon interactions. It is shown that there is strong evidence of convergence in the
expansion. Once three-body forces are introduced, the phenomenological saturation
point is reproduced and the theory is applied to the study of neutron star properties.
One finds that in the interior of neutron stars the onset of hyperons strongly softens
the Nuclear Equation of State. As a consequence, the maximum mass of neutron stars
turns out to be at the lower limit of the present phenomenological observation.

1 Introduction

It is believed that macroscopic portions of (asymmetric) nuclear matter form the
interior bulk part of neutron stars, commonly associated with pulsars. Despite
infinite nuclear matter is obviously an idealized physical system, the theoretical
determination of the corresponding Equation of State is, therefore, an essential
step towards the understanding of the physical properties of neutron stars. On
the other hand, the comparison of the theoretical predictions on neutron stars
with the experimental observations can provide serious constraints on the Nu-
clear Equation of State. Unfortunately, neutron stars are elusive astrophysical
objects, and only indirect observations of their structure, including their sizes
and masses, are possible. However, the astrophysics of neutron stars is rapidly
developing, in view of the observations coming from the new generation of arti-
ficial satellites, and one can expect that it will be possible in the near future to
confront the theoretical predictions with more and more stringent phenomeno-
logical data.

Heavy ion reactions is another field of research where the nuclear Equation
of State (EOS) is a relevant issue. In this case, the difficulty of extracting the
EOS is due to the complexity of the processes, since the interpretation of the
data is necessarily linked to the analysis of the reaction mechanism. An enor-
mous amount of work has been done in the last two decades in the field, but
clear indications about the main characteristics of the EOS have still to come.
Furthermore, the typical time scale of heavy ion reactions is enormously different
from the typical neutron star time scale, and this can prevent a direct link be-
tween the two field of research. In particular, nuclear matter inside neutron stars
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is completely catalized, namely it is quite close to the ground state, reachable
also by weak processes. In heavy ion reactions the evolution is too rapid to allow
weak processes to relax the system towards such a catalized state, and therefore
the tested Equation of State can differ from the neutron star one, especially at
high density.

On the theoretical side, the main general difficulty is the treatment of the
strong repulsive core, which dominates the short range behaviour of the nucleon-
nucleon (NN) interaction, typical of the nuclear system, but which is common
to other systems like liquid helium. Simple perturbation theory cannot of course
be applied, since the matrix elements of the interaction are too large. One way
of overcoming this difficulty is to introduce the two-body scattering G-matrix,
which has a much smoother behaviour even for strong repulsive core. It is possi-
ble to rearrange the perturbation expansion in terms of the reaction G-matrix,
in place of the original bare NN interaction, and this procedure is systemati-
cally exploited in the Bethe-Brueckner-Goldstone (BBG) expansion [1]. In this
contribution we present the latest results on the nuclear EOS based on BBG
expansion and their applications to the physics of neutron stars.

2 The BBG expansion and the nuclear EOS

The BBG expansion for the ground state energy at a given density, i.e. the EOS
at zero temperature, can be ordered according to the number of independent
hole-lines appearing in the diagrams representing the different terms of the ex-
pansion. This grouping of diagrams generates the so-called hole-line expansion
[2]. The smallness parameter of the expansion is assumed to be the “wound pa-
rameter” [2], roughly determined by the ratio between the core volume and the
volume per particle in the system. It gives an estimate of the decreasing factor
introduced by an additional hole-line in the diagram series. The parameter turns
out to be small enough up to 2-3 times nuclear matter saturation density. The
diagrams with a given number n of hole-lines are assumed to describe the main
contribution to the n-particle correlations in the system. At the two hole-line
level of approximation the corresponding summation of diagrams produces the
Brueckner-Hartree-Fock (BHF) approximation, which incorporates the two par-
ticle correlations. The BHF approximation includes the self-consistent procedure
of determining the single particle auxiliary potential, which is an essential ingre-
dient of the method. Once the auxiliary self-consistent potential is introduced,
the expansion is implemented by introducing the set of diagrams which include
“potential insertions”. To be specific, the introduction of the auxiliary potential
can be formally performed by splitting the hamiltonian in a modified way from
the usual one

H = T + V = T + U + (V − U) ≡ H ′
0 + V ′ (1)

where T is the kinetic energy and V the nucleon-nucleon interaction. Then one
consider V ′ = V − U as the new interaction potential and H ′

0 as the new single
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particle hamiltonian. Then, the single particle energy e(k) is given by

e(k) =
h̄2k2

2m
+ U(k) (2)

while U must be chosen in such a way that the new interaction V ′ is, in some
sense, “reduced” with respect to the original one V , so that the expansion in V ′

should be faster converging. The introduction of the auxiliary potential turns
out to be essential, otherwise the hole-expansion would be badly diverging. The
total energy E can then be written as

E =
∑

k

e(k) +B (3)

where B is the interaction energy due to V ′.

The BHF sums the so called “ladder diagrams”. Some of them are depicted in
Fig. 1. One has to consider this set of diagrams where one, two, three, and so one,
two-body interactions v appear, including exchange terms. Special care must be
used in counting correctly the diagrams which give the same contribution.

+ + � � � � � � � � �

+ + � � � � � � � � �

Fig. 1. Third and forth order ladder diagrams in the bare interaction (dashed lines)
and first order potential insertion (bottom).

The repeated action of the two-body potential v clearly describes the scattering
of two nucleons which lie above the Fermi sphere. The summation of the ladder
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diagrams can be performed by solving the integral equation for the Brueckner
G-matrix

〈k1k2|G(ω)|k3k4〉= 〈k1k2|v|k3k4〉+

+
∑

k′

3k
′

4
〈k1k2|v|k

′
3k

′
4〉
(1−ΘF (k′

3))(1−ΘF (k′

4))
ω−e

k′

3
−e

k′

4

〈k′3k
′
4|G(ω)|k3k4〉

(4)

where ΘF (k) = 1 for k < kF and is zero otherwise, being kF the Fermi momen-
tum. The product Q(k, k′) = (1−ΘF (k))(1−ΘF (k

′)), appearing in the kernel of
Eq. (4), enforces the scattered momenta to lie outside the Fermi sphere, and it is
commonly referred as the “Pauli operator”. This G-matrix can be viewed as the
in-medium scattering matrix between two nucleons. It has to be stressed that
the scattering G-matrix depends parametrically on the entry energy ω, namely
it is defined in general also off-shell, as the usual scattering matrix in vacuum.
The self-consistent single particle potential U(k) is determined by the equation

U(k) =
∑

k′<kF

〈kk′|G(ek1 + ek2)|kk
′〉A (5)

with |kk′〉A = |kk′〉 − |kk′〉.
According to the definition of Eq. (2), Eq. (5) implies an implicit self-consistent
procedure.

Summing up the ladder diagrams to all orders, one then gets the two dia-
grams, direct and exchange, of Fig. 2, where a wavy lines indicates a Brueckner
G-matrix. Indeed, if one expands the G-matrix from Eq. (4), in terms of the
bare interaction v, and inserts the expansion in the diagrams of Fig. 2, one gets
the full sets of ladder diagrams, indicated in Fig. 1. More details on the rules for
writing down the explicit expression of the diagrams can be found in ref. [1].

k

1

k

2

k

1

k

2

Fig. 2. The two hole-line contribution in terms of the Brueckner G-matrix (wavy line).

The first potential insertion diagram, at the bottom of Fig. 1, cancels out the
potential part of the single particle energy of Eq. (2), in the expression for the
total energy E. This is actually true for any definition of the auxiliary potential
U . At the two hole-line level of approximation, one therefore gets

E =
∑

k<kF

h̄2k2

2m + 1
2

∑

k,k′<kF
〈kk′|G(ek + ek′)|kk′〉A

≡
∑

k<kF

h̄2k2

2m + 1
2

∑

k<kF
U(k)

(6)
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where, in the last equality, the definition of Eq. (5) has been adopted. The result
that only the unperturbed kinetic energy appears in the expression for E, and
all the correlations are included in the potential energy part, holds true to all
orders and it is a peculiarity of the BBG expansion. Of course, the modification
of the momentum distribution, and therefore of the kinetic energy, is included
in the interaction energy part, but it is treated on the same footing as the other
correlation effects. This seems to present a noticeable advantage. In fact, the
modification of the kinetic energy in itself is quite large and, of course, positive
and should be therefore compensate by an extremely accurate calculations of
the (negative) correlation energy. On the other hand, putting the two effects on
the same footing, one can expect that strong cancellation occur order by order.

Let us now discuss the choice of the single particle potential U . As it was
discussed in connection with Eq. (1), the potential U is in principle arbitrary,
and it is used only as a tool for speed up the convergence of the expansion.
However, physical considerations suggest the self-consistent procedure defined
by Eq. (5) to obtain the potential U . The self-consistency condition is clearly
non-perturbative and it is a generalization of the usual Hartree-Fock (HF) ap-
proximation, namely the Brueckner G-matrix is used in place of the bare NN
interaction v. For nuclear matter the HF approximation would produce unrealis-
tic results, because of the strong repulsive core. The G-matrix takes into account
the short range correlations between pairs of nucleons, and therefore it gives a
much improved balance between attractive and repulsive contributions. The ap-
proximation of Eq. (6), together with Eqs. (2), (5), is usually referred to as the
Brueckner-Hartree-Fock (BHF) approximation. This definition of U corresponds
to the diagrams of Fig. 3.

Fig. 3. The direct and exchange parts of the auxiliary potential U in terms of the
Brueckner G-matrix.

It has to be noticed that the G-matrix appearing in the diagrams are calculated
on-shell, according to Eq. (5), i.e. its entry energy is equal to the energy of the
two particles with the two entry momenta. Therefore the total energy at the
BHF level of approximation can be written also in terms of the potential U , as
in the second line of Eq. (6).

In the general BBG expansion, in all the higher order diagrams, beyond the
BHF approximation, the same definition of U is kept and the bare NN potential is
replaced by the G-matrix by performing the corresponding ladder sums whenever
it is possible. In this way the diagrammatic expansion is rearranged in terms of
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the Brueckner G-matrix, in place of the bare NN interaction, with the only
obvious prescription that no ladder sums can now appear in the diagrams, just
to avoid double counting.

We have seen that the ladder sum at the BHF level introduce on-shell G-
matrices only. This is not necessarily the case if the ladder sum is performed
inside a generic higher order energy diagram, since then the entry energy of the
resulting G-matrix depends in general on the rest of the diagrams. The energy
denominators appearing in the BBG expansion include, in fact, all the particle
and hole energies across the diagram. This point will be discuss later and we will
see that some exceptions to this expectation can occur.
Another strong reason in favour of keeping the BHF definition for the single
particle potential U in the general BBG expansion is the occurrence of cancella-
tion between diagrams including three hole-lines, thus reducing the relevance of
higher order contributions. This is true for the two diagrams reported in Fig. 4.
The diagram (b) in the right side of the figure is a potential insertion diagram,
where the dashed line with the cross indicates a multiplication by a factor U(k),
being k the momentum of the hole-line to which the potential is attached. The
rule for writing down the potential insertion diagrams can also be found in ref.
[1]. The diagram (a) in the left side of Fig. 4 contains a G-matrix loop in place
of the potential U . If the G-matrix is on-shell,in view of the definition of Eq.
(5) and the graphical rules, one can easily see that the two diagrams cancel out
exactly.

( a ) ( b )

Fig. 4. Lowest order three hole-line diagram (a) and the corresponding potential in-
sertion diagram (b).

At first site the G-matrix of diagram (a) should be not calculated on-shell. How-
ever, it has been shown in ref. [3] that, if the ladder sums included in the diagram
contain bare interactions which appear in all possible position along the diagram,
then their overall contribution reduces indeed to the diagram (a) of Fig. 4, with
the G-matrix calculated on-shell, and the above mentioned cancellation holds
true.

The definition of Eq. (5) does not specify completely the single particle po-
tential U(k). For momenta k > kF the value of the potential U(k) does not
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appear explicitly in the energy expression of Eq. (6) at the BHF level. In old
BHF calculations the potential U(k) was then taken identically zero above the
Fermi momentum, with the justification that the interaction between particles
above kF is expected to be small and anyhow only slightly affecting the total
energy. In this choice, usually referred to as “standard choice”, the potential has
then a jump at kF . For this reason it is also often called “gap choice”. Most
modern BHF calculations adopt a potential U(k) which is defined by extending
the definition of Eq. (5) also above kF , thus making U(k) continuous across the
Fermi sphere. This definition modifies the self-consistent equation and therefore
also the potential for k < kF . As a consequence, this different choice, usually
called “continuous choice”, modifies indirectly also the value of the BHF energy
of Eq. (6). There are some arguments in favour of the continuous choice. Since
U(k) has the physical meaning of single particle potential, it is intimately related
to the single particle self-energy. Indeed, one can show [4] that U(k) is the on-
shell self energy to first order in the hole expansion. As such, the potential U(k)
must be a continuous function of the momentum. Another point to be considered
is related to the two other three hole-line diagrams depicted in Fig. 5. They can
be obtained from the diagrams of Fig. 4 just by attaching the intermediate G-
matrix (diagram a) and the potential U (diagram b) to the particle-line instead
of the hole-line. Diagram (a) is usually denoted as “bubble diagram”. In this
case the G-matrix is not calculated on-shell, since the argumentation of ref. [3]
does not apply, and no exact cancellation can occur between the two diagrams.
Actually, in the standard choice the potential insertion diagram b is identically
zero, since in this case U(k) vanishes for k > kF . On the contrary, in the contin-
uous choice, the potential insertion diagram does not vanish, and some degree of
cancellation can be expected, despite the G-matrix is calculated off-shell, thus
reducing also in this case the contribution from higher order diagrams.

( a ) ( b )

Fig. 5. Bubble three hole-line diagram (a) and the corresponding potential insertion
diagram (b)

At first sight it can be surprising that the final result for the nuclear matter
EOS could depend on the choice of the single particle potential U , since the
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splitting of Eq. (1) is a trivial identity and the final result should be indepen-
dent on the particular choice of U(k). This is of course true only if the full BBG
expansion to all order could be summed up exactly. If the expansion is truncated
at a given order, the results can show still a dependence on the choice of U(k),
and this dependence will be stronger more the expansion is far from a reasonable
convergence. One can, therefore, take the degree of the dependence on U(k) as
a measure of the degree of convergence reached at a given order of the expan-
sion. The gap and continuous choices can be considered two opposite cases for
the potential U(k), since any other reasonable choice would modify mainly its
definition for k > kF and would be somehow intermediate between these two
cases. In fact, the exact cancellation between the two diagrams of Fig. 4 occurs
only with the definition of Eq. (5) for k < kF , and it appears inconvenient to
adopt a choice for U(k) which does not include the cancellation. However, other
choices are surely possible, and one should check also in those other cases the
degree of convergence reached at a given level of the expansion. In the sequel we
will restrict to the gap and continuous choices for checking the convergence of
the expansion.

Let us consider the symmetric nuclear matter EOS at the BHF level of ap-
proximation. The results for the two choices for U(k) are reported in Fig. 6,
where the Argonne v14 [5] is used for the bare NN potential.

Fig. 6. Nuclear matter saturation curve for the Argonne v14 NN potential. The solid
lines indicate the results at the Brueckner (two hole-lines) level for the standard (BHF-
G) and the continuous choices (BHF-C) respectively.

It is apparent from the figure that the degree of convergence is not yet satis-
factory at the BHF level. The difference for the energy per particle is of about
4-5 MeV in the considered density range. It has to be kept in mind, however,
that the potential energy part of the binding energy of Eq. 6 is about -40 MeV
around saturation density, and therefore the discrepancy between the two choices
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is of about 10%. This is the expected degree of convergence at the BHF level,
according to the above discussed criterion.

The BHF results imply that, for a check of convergence, it is mandatory to
consider the three hole-line diagrams contribution. According to the BBG ex-
pansion, this set of diagrams describes the irreducible three-nucleon correlations,
i.e. the three-body correlations which cannot be reduced to a product of two-
body correlations, already introduced at the BHF level. Let us consider in some
detail how the three hole-line diagrams can be summed up exactly, in analogy to
the summation of the ladder two hole-line diagrams of the BHF approximation.
Indeed, since the two hole-line contribution has been summed up by introducing
the G-matrix, which is the in-medium two-body scattering matrix, it is therefore
conceivable that the three hole-line diagrams could be summed up by introduc-
ing some similar generalization of the scattering matrix for three particles. The
three-body scattering problem has a long history by itself, and has been given a
formal solution by Fadeev [6]. For three distinguishable particles the three-body
scattering matrix T (3) is expressed as the sum of three other scattering matrices,
T (3) = T1+T2+T3. The scattering matrices Ti satisfy a system of three coupled
integral equations. The kernel of this set of integral equations contains explicitly
the two-body scattering matrices pertaining to each possible pair of particles.
Also in this case, therefore, the original two-particle interaction disappears from
the equations in favour of the two-body scattering matrix. For identical parti-
cles the three integral equations reduce to one, because of symmetry. In fact,
the three functions Ti must coincide within a change of variable with a unique
function, which we can still call T (3). The analogous equation and scattering
matrix in the case of nuclear matter (or other many-body systems in general)
has been introduced by Bethe [7,8]. The integral equation, the Bethe–Fadeev
equation, reads schematically

T (3) = G + G X Q3

e T (3)

〈k1k2k3|T
(3)|k′1k

′
2k

′
3〉 = 〈k1k2|G|k′1k

′
2〉δK(k3 − k′3)+

+ 〈k1k2k3|G12 X
Q3

e T (3)|k′1k
′
2k

′
3〉 .

(7)

The factor Q3/e is the analogous of the similar factor appearing in the inte-
gral equation for the two-body scattering matrix G, see Eq. (4). Therefore, the
projection operator Q3 imposes that all the three particle states lie above the
Fermi energy, and the denominator e is the appropriate energy denominator,
namely the energy of the three-particle intermediate state minus the entry en-
ergy ω, in close analogy with the equation for the two-body scattering matrix
G of Eq. (4). The real novelty with respect to the two-body case is the operator
X . This operator interchanges particle 3 with particle 1 and with particle 2,
X = P123 + P132, where P indicates the operation of cyclic permutation of its
indices. It gives rise to the so-called “endemic factor” in the Fadeev equations,
since it is an unavoidable complication intrinsic to the three-body problem in
general. The reason for the appearance of the operator X in this context is that
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no two successive G matrices can be present in the same pair of particle lines,
since the G matrix already sums up all the two-body ladder processes. In other
words, the G matrices must alternate from one pair of particle lines to another,
in all possible ways, as it is indeed apparent from the expansion by iteration of
Eq. (7), which is represented in Fig. 7.

T

(3)

=

+ + +

k

1

k

2

k

3

+ + + � � � � � �

Fig. 7. The first few terms in the expansion of the Bethe-Fadeev integral equation.

Therefore, both cyclic operations are necessary in order to include all possible
processes. Adding all terms with an arbitrary number of G-matrices, one gets
a generalized ladder series for three-particles, analogous to the ladder series
introduced for the two particles case in defining the G-matrix. Indeed, this is
the basis for the integral equation (7). In the structure of Eq. (7) the third
particle, with initial momentum k3, is somehow singled out from the other two.
This choice is arbitrary, but it is done in view of the use of the Bethe-Fadeev
equation within the BBG expansion.

In order to see how the introduction of the three-body scattering matrix
T (3) allows to sum up the three hole-line diagrams, we first notice, following
B.D.Day [9], that this set of diagrams can be divided into two distinct groups.
The first one includes the graphs where two hole-lines, out of three, originate
at the first interaction of the graph and terminate at the last one without any
further interaction in between. Schematically the sum of this group of diagram
can be represented as in part (a) of Fig. 8.
The third hole-line has been explicitly indicated, out from the rest of the di-
agram. The remaining part of the diagram describes the rescattering, in all
possible way, of three particle-lines, since no further hole-line must be present
in the diagram. This part of the diagram is indeed the three-body scattering
matrix T (3), and the operator Q3 in Eq. (7) assures, as already mentioned, that
only particle lines are included.

The second group includes the diagrams where two of the hole-lines enter
their second interaction at two different vertices in the diagram, as represented
in part (b) of Fig 8. Again the remaining part of the diagram is T (3), i.e. the
sum of the amplitudes for all possible rescattering process of three particles. It
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T

(3)

( a )

T

(3)

( b )

Fig. 8. Schematic representation of the direct (a) and exchange (b) three hole-line
diagrams.

is easily seen that no other structure is possible. The set of diagrams indicated
in part (b) can be obtained by the ones of part (a) by simply interchanging the
final (or initial) point of one of the “undisturbed” hole-line with the final (or
initial) point of the third hole-line. This means that one can obtain each graph
of the group depicted in Fig. 8b by acting with the operator X on the bottom of
the corresponding graph of Fig. 8a. In this sense the diagrams of Fig. 8b can be
considered the “exchange” diagrams of the ones in Fig. 8a (not to be confused
with the term “exchange” introduced previously for the matrix elements of G).
If one inserts the terms obtained by iterating Eq. (7) inside these diagrams in
substitution of the scattering matrix T (3) (the box in Fig. 8), the first diagram,
coming from the inhomogeneous term in Eq. (7), is just the bubble diagram of
Fig. 5. The corresponding exchange diagrams is the so called “ring diagram” of
Fig. 9.

Fig. 9. The ring diagram, belonging to the set of three hole-line diagrams. It can be
considered the exchange diagram of the bubble diagram.
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It is easy to draw the remaining series of diagram which one obtains by going
on with the iterations.

Once the Bethe-Fadeev equations are solved, the contribution of the direct
three hole-line diagrams of Fig. 8a can be written as

Edir
3h = 1

2

∑

k1,k2,k3≤kF

∑

{k′},{k′′}≥kF
〈k1k2|G|k′1k

′
2〉A·

· 1e 〈k′1k
′
2k

′
3|XT (3)X |k′′1k

′′
2k

′′
3 〉

1
e′ 〈k′′1k

′′
2 |G|k1k2〉A ,

(8)

In Eq. (8) the denominator e = ek′

1
+ ek′

2
− ek1 − ek2 , and analogously e′ =

ek′′

1
+ ek′′

2
− ek1 − ek2 . The exchange diagrams of Fig. 8b can be obtained by

multiplying the same expression by a further factor X . In summary, the entire
set of three hole-line diagrams can be obtained by multiplying the expression of
Eq. (8) by 1 +X .

It has been recognized a long ago [8] that the summation of all three-hole
diagrams is essential, since individual three-hole diagram can be quite large,
but strong cancellation occurs among the different contributions. This is partic-
ularly true for the bubble diagram of Fig. 5a and the ring diagram of Fig. 9,
which turn out to be quite large but of opposite sign. As already mentioned,
the potential insertion diagram of Fig. 5b is different from zero in the contin-
uous choice and it turns out to be essential in compensating the contribution
of both bubble and ring diagrams. A scheme of approximation was first devised
by B.D. Day [9] within the gap choice for the single particle potential. In this
scheme the bubble and ring diagrams are indeed singled out from the whole set
of three hole-line diagrams, while the remaining series of diagrams is summed
up by solving the Bethe-Fadeev integral equation. The bubble diagram requires
special numerical treatment, since very large partial waves contribute to the in-
termediate G-matrix. Once the bubble and ring diagrams are subtracted from
the Bethe-Fadeev equation, the resulting integral equation for the whole set of
the higher order diagrams turns out to be much less sensitive to the larger partial
waves. We will refer to this contribution as the “higher order” contribution. The
numerical solution of the Bethe-Fadeev integral equation is delicate. The main
difficulty is the large matrix to be inverted to get the scattering matrix T (3).
This difficulty can be overcome by introducing a separable representation of the
G-matrix appearing in the kernel of the integral equation, as already performed
by B.D. Day [9] in the case of the gap choice. We refer to this reference and to
ref. [1] for other details of the numerical methods.

The degree of cancellation among the different terms is apparent in Fig. 10,
where the bubble, ring and higher order contributions are displayed [10] in the
case of the gap choice and the Argonne v14 NN potential.

The final result, denoted as “total”, is relatively small and much smaller in size
than the individual contributions. The corresponding results for the continuous
choice are displayed in Fig. 11. In this case the additional contribution (BUBU)
of the potential insertion diagram in Fig. 5b must be considered. One can see the
relevance of this term in comparison with the others and its role in determining
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Fig. 10. The contributions of the bubble (BUB) , ring (RING) and higher order
(HIGH) diagrams to the binding energy of symmetric nuclear matter as a function
of Fermi momentum, calculated within the gap choice. The line denoted by TOTAL is
the sum of all these contributions and gives the overall three hole-line contribution to
the EOS.

the size of the total three hole-line contribution. The latter turns out to be much
smaller in the continuous choice than in the gap choice.

Fig. 11. The same as in Fig. 10, but within the continuous choice. Here the line denoted
by BUBU is the contribution of the potential insertion diagram of Fig. 5b.
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The final Equation of State obtained by adding the three hole-line contribution
is reported in Fig. 12, both for the gap choice (squares) and the continuous
choice (stars), again for the Argonne v14 potential, for a much wider range of
densities than in Fig. 6. For comparison, the EOS at the two hole-line level in the
continuous choice is also again reported (solid line) from Fig. 6. Two conclusions
can be drawn from these results.
i) The two saturation curves in the gap and continuous choices, with the inclusion
of the three hole-line diagrams, tend now to collapse in a single EOS, with
some deviations only at the highest density. This is a strong indication that
a high degree of convergence has been reached at this level of the expansion,
according to the criterion discussed above. Notice that the saturation curves
extend from a density which is about one half of saturation density to about five
times saturation density, and, therefore, it appears unlikely that the agreement
between the two choices can be considered as a fortuitous coincidence.
ii) The Brueckner two hole-line EOS within the continuous choice turns out to be
already close to the full EOS, since in this case the three hole-line contribution
is quite small. In first approximation one can adopt the BHF results with the
continuous choice as the nuclear matter EOS.

Fig. 12. The Nuclear Equation of State including the three hole-line contribution
within the gap choice (squares) and the continuous choice (stars), for the Argonne
v14 potential. For comparison, the EOS at the two hole-line level in the continuous
choice is also reported (solid line).

The phenomenological saturation point for symmetric nuclear matter is, how-
ever, not reproduced, which confirms the finding in ref. [9]. The binding energy
per particle at the minimum of the saturation curve turns out to be close to
the empirical value of about -16 MeV, but the corresponding density comes out
about 30-40 % larger than the empirical one. Usually this drawback is corrected
by introducing three-body forces in the nuclear hamiltonian, and indeed all re-
alistic two-nucleon forces, which fit the experimental two-nucleon phase shifts
and deuteron data, are not able to reproduce the empirical saturation point. In
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other words, the results indicate that the missing of the saturation point is not
due to a lack of accuracy in the treatment of the nuclear many-body problem,
but to a defect of the nuclear hamiltonian. The need of three-body forces in nu-
clear matter is consistent with the findings in the study of few nucleon systems,
where also the binding energy and radii, as well as scattering data, cannot be
reproduced with only two-body forces. Not surprisingly, the effects of three-body
forces seem to be more pronounced in nuclear matter than in few body systems.

The standard NN interaction models are based on the meson–nucleon field
theory, where the nucleon is considered an unstructured point-like particle. The
Paris, the Argonne v14 (with the improved version v18 [11]), and the set of Bonn
potentials [12] fall in this category. In the one-boson exchange potential (OBEP)
model one further assumes that no meson–meson interaction is present and each
meson is exchanged in a different interval of time from the others. However,
the nucleon is a structured particle, it is a bound state of three quarks with
a gluon-mediated interaction, according to Quantum Chromodynamics (QCD).
The absorption and emission of mesons can be accompanied by a modification of
the nucleon structure in the intermediate states, even in the case of NN scattering
processes, in which only nucleonic degrees of freedom are present asymptotically.
A way of describing such processes is to introduce the possibility that the nucleon
can be excited (“polarized”) to other states or resonances. The latter can be the
known resonances observed in meson–nucleon scattering. At low enough energy
the dominant resonance is the ∆33, which is the lowest in mass. If the internal
nucleon state can be distorted by the presence of another nucleon, the interaction
between two nucleons is surely altered by the presence of a third one. This effect
produces clearly a definite three-body force, which is absent if the nucleons are
considered unstructured. The simplest of such process is depicted in Fig. 13b.

�

( a ) ( b )

N N N

Fig. 13. An interaction process among three nucleons with only two-body force (a),
and a process involving a genuine three-body force (b).

Such a process can be interpreted in different but equivalent ways. One way is to
view the pion (meson) coming from the first nucleon to polarize the second one,
which therefore interacts with a third one as a∆33 resonance, surely in a different
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way than if it had remained a nucleon, like in Fig. 13a. The process of Fig. 13a
is not indeed a three-nucleon force, but just a repetition of a two-nucleon force.
The introduction of a three-nucleon interaction is a consequence of viewing pro-
cesses like the one of Fig. 13b as an effective interaction among three nucleons,
which eventually will be medium-dependent. The genuine three-nucleon forces
can be extracted from processes like the one of Fig. 13b by projecting out the
∆33 (or other resonances) degrees of freedom in some approximate way. The
theory of three-nucleon forces has a very long history, and it started to be de-
veloped since the early stage [13] of the theory of nuclear matter EOS, as well
as of few nucleon systems [14]. The most extensive study of the three-nucleon
forces (TNF) has been pursued by Grangé and collaborators [15]. Fig. 14, re-
produced from Ref. [16], indicates some of the processes which can give rise to
TNF. Graph of Fig. 14a is a generalization of the process of Fig. 13b, where
other nucleon resonances (e.g. the Roper resonance) can appear as intermedi-
ate virtual excitation and other exchanged mesons can be present. Graph 14b
includes possible non-linear meson-nucleon coupling, as demanded by the chiral
symmetry limit [16]. Graph 14c is the simplest one which includes meson-meson
interaction. Other processes of this type are of course possible [15,16], which in-
volves other meson-meson couplings, and they should be included in a complete
treatment of TNF. Diagram 14d describes the effect of the virtual excitation of

N
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Fig. 14. Some of the processes which can produce a genuine three-body force.

a nucleon-antinucleon pair, and it is therefore somehow of different nature from
the others. It gives an important (repulsive) contribution and it has been shown
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[17] to describe the relativistic effect on the EOS to first order in the ratio U/m
between the single particle potential and the nucleon rest mass.

The σ meson, appearing in some of the diagrams, is a hypothetical scalar me-
son, believed to be responsible for the intermediate attraction in the two-nucleon
interaction, whose mass and coupling constant are treated as parameters. One
should therefore be careful, as discussed in Ref. [15], to be at least consistent
between the treatments of the two-nucleon and the three-nucleon forces. A com-
plete calculations of the TNF in the framework of the meson-nucleon theory, i.e.
the calculation of the “best” TNF, is not yet available.

A simpler possibility is to adopt a more phenomenological approach, like
the one followed by the Urbana group [18]. Since the EOS obtained with only
two-body forces seems to need additional attraction at lower density and an
additional repulsion at higher density, it is therefore conceivable that the main
effect of TNF can be schematized by one attractive and one repulsive term,
as representative of the whole set of three-nucleon processes. Actually, once
the usual static approximation is made for the nucleons and the resonances
in calculating the meson exchange process, the structure of the different three-
body forces turns out to be quite similar. Since the strengths of the different
vertex appearing in these diagrams cannot be considered fairly well known, one
can treat the strengths of the two representative terms as free parameters to be
fitted to some known physical quantities. More explicitly, the TNF is written as

Vijk = V 2π
ijk + V R

ijk . (9)

The first (attractive) contribution is a cyclic sum over the nucleon indices i, j, k
of products of anticommutator {,} and commutator [,] terms

V 2π
ijk = A

∑

cyc

(

{Xij , Xjk}{τi · τj , τj · τk}

+ 1
4 [Xij , Xjk][τi · τj , τj · τk]

)

,

(10)

where
Xij = Y (rij)σi · σj + T (rij)Sij (11)

is the one–pion exchange operator, σ and τ are the Pauli spin and isospin oper-
ators, and Sij = 3

[

(σi ·rij)(σj ·rij)−σiσj

]

is the tensor operator. Y (r) and T (r)
are the Yukawa and tensor functions, respectively, associated to the one–pion
exchange, as in the two–body potential. The repulsive part is taken as

V R
ijk = U

∑

cyc T
2(rij)T

2(rjk) . (12)

The strengths A (< 0) and U (> 0) can be fitted to reproduce the ground state
energy of both three nucleon systems (triton and 3He), and the empirical nuclear
matter saturation point.
One such a fit, within the Brueckner approximation, is reported in Fig. 15.
The empirical saturation point is now reproduced and the EOS become much
more repulsive at high density. Of course, the higher density region, needed e.g.
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Fig. 15. Saturation curve for symmetric nuclear matter in the Brueckner approxima-
tion without (dashed curve) and with (full line) three-body forces.

in neutron star studies, is obtained by extrapolating the TBF from the region
around saturation where they are actually adjusted. This EOS can therefore be
inaccurate at the higher densities. One can see indeed that the contribution of
the three-body forces is substantial at high density, and therefore an accurate
inclusion of the three-body forces is highly demanded.

More detail on the use of phenomenological three-body forces will be given
in the Section on neutron stars.

3 The EOS for pure neutron matter

In this Section we will extend the analysis to pure neutron matter EOS, which is
more appropriate for neutron star studies, at densities up to about five times the
saturation one. Moreover, we consider the calculations for two nucleon-nucleon
potentials, the Av14 and the Av18, in order to analyse the dependence of the
results on the nuclear interaction.

We will not give the detail about the contributions of different diagrams, but
simply illustrate the results for the neutron EOS, obtained by including only
two-body forces. The neutron matter EOS [19] is reported (full lines) in Figs. 16
and 17, both for the continuous choice (BHFC) and standard choice (BHFG). As
for symmetric nuclear matter, the discrepancy between the two curves indicates
to what extent the EOS still depends on the choice of the auxiliary potential
at BHF level, and therefore the degree of convergence. The EOS for the Av18
appears more repulsive, but the trend for the two potentials is similar. The
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discrepancy does not exceed 4 MeV in the whole density range for the Av14
potential, and it is tiny in the case of Av18, except for the highest densities. It
is also substantially smaller than in the symmetric nuclear matter case, where
the discrepancy is large as much as about 8 MeV at kF = 1.8fm−1 for the Av14
. According to our criterion, this suggests a smaller value of the three hole-line

Fig. 16. Equation of state of pure neutron matter for the Av14 nucleon-nucleon po-
tential. The two full lines correspond to the Brueckner-Hartree-Fock approximation,
in the gap (BHFG) and continuous choice (BHFC) respectively. The addition of the
three-hole contribution D3 gives the total equation of state for the gap (stars) and
continuous choice (open circles) respectively.

contribution and is in agreement with the smaller value in neutron matter of
the “wound parameter”, which is the smallness parameter of the expansion and
should give a rough estimate of the ratio between the three hole-line and the two
hole-line contributions (in general between two successive order contributions).
It can be estimated by the average depletion of the momentum distribution
below the Fermi momentum. Indeed, at densities around the saturation value
the wound parameter turns out to be close to 0.1 in neutron matter [20] and
about 0.25 in symmetric nuclear matter [21].

These expectations are indeed confirmed by the calculations of the three hole-
line contributions. The inclusion of the three hole-line contributions results in the
two final EOS depicted in Figs. 16 and 17, where the points marked by stars and
the circles correspond to the standard and continuous choices, respectively. For
both NN potentials, the very close agreement between the two EOS is a strong
evidence that the expansion has reached convergence. Notice that, at Brueckner
(two hole) level, the EOS for the standard and continuous choices cross at some
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Fig. 17. The same as in Fig. 16, but for the Argonne v18 potential

value of the density, and at that point the overall three hole-line contribution
has the same value in both choices. Furthermore, in the continuous choice the
three hole-line contribution is substantially smaller, and it is actually negligible
to a first approximation. It appears that the corresponding values of the wound
parameter, which is close to 0.1 in neutron matter [20], give an upper limit for
the ratio between three and two hole-line contributions.

The final EOS appears more repulsive at high density for the Av18 than
for the Av14 potential. At lower density, up to about kF = 2.0fm−1, the two
potentials produce very close EOS. This is not surprising, since both potentials
fit the NN experimental phase shifts up to 350 MeV Lab energy, which indeed
corresponds to a relative momentum of about 2.0fm−1. Above this density, the
main contribution to the EOS comes from values of the relative NN momentum
which need extrapolation beyond the region where the potentials have been fitted
to the empirical data. It is likely that different extrapolations are obtained from
different potentials in general, and therefore the EOS at high density is largely
dependent on the NN potential model, even without the inclusion of three-body
forces. The inclusion of three-body forces in pure neutron matter is discussed in
the next Section.

4 Neutron Star Structure

Once the Nuclear Equation of State, both for symmetric and pure neutron mat-
ter, has been established on a firm basis, one can try to study the structure
of neutron star (NS) interior. It is indeed believed that the interior of neutron
stars is mainly formed by asymmetric nuclear matter with increasing density to-
wards the center. The exterior crust should be actually formed by different state
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of matter at sub-nuclear density, namely crystal structures of atomic species
of increasing mass number. In the region where the nuclei start to drip, the
crystalline structure is probably mixed with a neutron gas, until nuclei merge
into uniform asymmetric nuclear matter. This outer region is the place where
many interesting phenomena occur. However, to the extent that the analysis is
restricted to the mass and radius of the star, the main contribution is coming
from the interior, where nuclear matter sets in. One can hope, therefore, that
neutron stars could be a testing ground for the Nuclear Equation of State. The
neutron star masses are usually affected by large uncertainties and independent
measurements of the radii have not yet been performed. Only recently some
indirect indications of neutron star radii have been reported, and, as already
noticed, the astrophysics of neutron stars is rapidly developing. An accurate
enough measurement of both mass and radius of a neutron star is expected to
produce an enormous advancement in our knowledge in the nuclear Equation of
State.

The observed neutron star masses are ≈ (1 − 2)M⊙ (where M⊙ is the mass
of the sun, M⊙ = 1.99× 1033g). Typical radii of NS are thought to be of order
10 km, and the central density is a few times normal nuclear matter density
(ρ0 ≈ 0.17 fm−3). This requires a detailed knowledge of the EOS for densities
ρ ≫ ρ0. This is a very hard task from the theoretical point of view. In fact,
whereas at densities ρ ≈ ρ0 the matter consists mainly of nucleons and leptons,
at higher densities several species of particles may appear due to the fast rise
of the baryon chemical potentials with density. Among these new particles are
strange baryons, namely, the Λ, Σ and Ξ hyperons. Due to its negative charge,
the Σ− hyperon is the first strange baryon expected to appear with increasing
density in the reaction n+ n → p+Σ−, in spite of its substantially larger mass
compared to the neutral Λ hyperon (MΣ− = 1197 MeV,MΛ = 1116 MeV).
Other species in stellar matter may appear, like ∆ isobars along with pion and
kaon condensations. It is therefore mandatory to generalize the study of nuclear
EOS with the inclusion of the possible hadrons, other than nucleons, which can
spontaneously appear in the inner part of a NS, just because their appearance is
able to lower the ground state energy of the nuclear matter dense phase. In the
following we will concentrate on the production of strange baryons and assume
that a baryonic description of nuclear matter holds up to densities as those
encountered in the core of neutron stars.

As we have seen from the previous Sections, the nuclear EOS can be calcu-
lated with good accuracy in the Brueckner two hole-line approximation within
the continuous choice for the single particle potential, since the results in this
scheme are quite close to the full convergent calculations which include also the
three hole-line contribution. It is then natural to include the hyperon degrees of
freedom within the same approximation to calculate the nuclear EOS needed to
describe the NS interior. To this purpose, one needs also a nucleon-hyperon (NY)
and a hyperon-hyperon (YY)interaction. In the following this interaction will be
taken as the Nijmegen soft-core model [22]. In the calculations the hyperon-
hyperon interaction will be neglected in first approximation. We will comment
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on this point in the sequel. With these NN and NY potentials, the various G
matrices are evaluated by solving numerically the Brueckner equation, which
can be written in operatorial form as

Gab[W ] = Vab +
∑

c

∑

p,p′

Vac

∣

∣

∣
pp′

〉 Qc

W − Ec + iǫ

〈

pp′
∣

∣

∣
Gcb[W ] , (13)

where the indices a, b, c indicate pairs of baryons and the Pauli operator Q and
energy E determine the propagation of intermediate baryon pairs. In a given
nucleon-hyperon channels c = (NY ) one has, for example,

E(NY ) = mN +mY +
k2N
2mN

+
k2Y
2mY

+ UN (kN ) + UY (kY ) . (14)

The hyperon single-particle potentials within the continuous choice are given by

UY (k) = Re
∑

N=n,p

∑

k′<k
(N)

F

〈

kk′
∣

∣

∣
G(NY )(NY )

[

E(NY )(k, k
′)
]

∣

∣

∣
kk′

〉

(15)

and similar expressions of the form

UN (k) =
∑

N ′=n,p

U
(N ′)
N (k) +

∑

Y =Σ−,Λ

U
(Y )
N (k) (16)

apply to the nucleon single-particle potentials. The nucleons feel therefore di-
rect effects of the other nucleons as well as of the hyperons in the environ-
ment, whereas for the hyperons there are only nucleonic contributions, because
of the missing hyperon-hyperon potentials. The equations (13–16) define the
BHF scheme with the continuous choice of the single-particle energies. Due to
the occurrence of UN and UY in Eq. (14) they constitute a coupled system that
has to be solved in a self-consistent manner for several Fermi momenta of the
particles involved. Once the different single-particle potentials are known, the
total nonrelativistic baryonic energy density, ǫ, and the total binding energy per
baryon, B/A, can be evaluated

B

A
=

ǫ

ρn + ρp + ρΣ− + ρΛ
, (17)

ǫ =
∑

i=n,p,Σ−,Λ

∫ k
(i)

F

0

dk k2

π2

(

mi +
k2

2mi
+

1

2
Ui(k)

)

(18)

As we have seen, nonrelativistic calculations, based on purely two-body in-
teractions, fail to reproduce the correct saturation point of symmetric nuclear
matter, and three-body forces among nucleons are needed to correct this defi-
ciency. In the sequel the so-called Urbana model will be used, which consists, as
we have already seen, of an attractive term due to two-pion exchange with exci-
tation of an intermediate ∆ resonance, and a repulsive phenomenological central
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term. We introduced the same Urbana three-nucleon model within the BHF ap-
proach (for more details see Ref. [23]). In our approach the TBF is reduced to a
density dependent two-body force by averaging on the position of the third par-
ticle, assuming that the probability of having two particles at a given distance
is reduced according to the two-body correlation function. The corresponding
nucleon matter EOS (no hyperon) satisfies several requirements, namely (i) it
reproduces correctly the nuclear matter saturation point, (ii) the incompressibil-
ity is compatible with values extracted from phenomenology, (iii) the symmetry
energy is compatible with nuclear phenomenology, (iv) the causality condition
is always fulfilled.

If leptons, namely electrons and muons, and hyperon are introduced, the
general EOS can be calculated for a given composition of the baryon components.
This allows the determination of the chemical potentials (by simple numerical
derivatives of the energy) of all the species, baryonic and leptonic, which are
the fundamental input for the equations of chemical equilibrium. The latter
determines the actual detailed composition of the dense matter and therefore the
EOS to be used in the interior of neutron stars. Indeed, at high density the matter
composition is constrained by three conditions: i) chemical equilibrium among
the different species, ii) charge neutrality, and iii) baryon number conservation.
At density ρ ≈ ρ0 the stellar matter is composed of a mixture of neutrons,
protons, electrons, and muons in β-equilibrium [electrons are ultrarelativistic
at these densities, µe = (3π2ρxe)

1/3]. In that case the equations for chemical
equilibrium read

µn = µp + µe , (19)

µe = µµ . (20)

Since we are looking at neutron stars after neutrinos have escaped, we set the
neutrino chemical potential equal to zero. Strange baryons appear at density
ρ ≈ (2 − 3)ρ0 [24], mainly in baryonic processes like n + n → p + Σ− and
n+ n → n+ Λ. The equilibrium conditions for those processes read

2µn = µp + µΣ , (21)

µn = µΛ . (22)

The other two conditions of charge neutrality and baryon number conservation
allow the unique solution of a closed system of equations, yielding the equilibrium
fractions of the baryon and lepton species for each fixed baryon density. They
read

ρp = ρe + ρµ + ρΣ , (23)

ρ = ρn + ρp + ρΣ + ρΛ . (24)

Finally, from the knowledge of the equilibrium composition one determines the
equation of state, i.e., the relation between pressure P and baryon density ρ. It
can be easily obtained from the thermodynamical relation

P = −
dE

dV
. (25)
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being E the total energy and V the total volume. Equation (25) can be explicitly
worked out in terms of the baryonic and leptonic binding energies, respectively
B and EL,

P = −
dE

dV
= −

d

dV
(B + EL) = PB + PL , (26)

PB = ρ2
d(B/A)

dρ
= ρ2

d

dρ

[

(xn + xp)
ǫNN

ρN
+ xΣ

ǫNΣ

ρΣ
+ xΛ

ǫNΛ

ρΛ

]

, (27)

PL = ρ2
d(EL/A)

dρ
= ρ2

d

dρ

[

xe−
ǫe−

ρe−
+ xµ−

ǫµ−

ρµ−

]

. (28)

In the above equations xi represent the baryon fraction of each species. As far
as the leptons are concerned, at those high densities electrons are a free ultra-
relativistic gas, whereas muons are relativistic. Therefore their energy densities
ǫL are well-known from textbooks, see e.g. ref.[25]. In order to construct models
of neutron stars, one needs to calculate the total mass-energy density E as well.
This can be easily obtained just adding the mass-energy densities of each species
Ei

E = EN + EΣ + EΛ + Ee− + Eµ− , (29)

While the electron and muon contributions, respectively Ee− and Eµ− , are known
from textbooks, the baryonic contribution are given by

EN =
1

c2
(ǫNN +mNρN ) , (30)

EΣ =
1

c2
(ǫNΣ +mΣρΣ) , (31)

EΛ =
1

c2
(ǫNΛ +mΛρΛ) . (32)

being mi the rest mass and c the speed of light. For more details, the reader is
referred to ref. [24] and references therein.

In figure 18 we show the chemical composition of β-stable and asymmetric
nuclear matter containing hyperons. In the upper panel we display the case when
only two-body nucleonic forces are present, whereas in panel b) nucleonic TBF’s
are included. We observe that the inclusion of TBF’s shifts the hyperon onset
points down to ρ ≃ 2− 3 times normal nuclear matter density, since some addi-
tional repulsion is now present. Moreover, an almost equal percentage of nucleons
and hyperons are present in the stellar core at high densities. A strong delep-
tonization of matter takes place, since it is energetically convenient to maintain
charge neutrality through hyperon formation than β-decay. This can have far
reaching consequences for the onset of kaon condensation. The main physical
features of the nuclear EOS which determine the resulting compositions are es-
sentially the symmetry energy of the nucleon part of the EOS and the hyperon
single particle potentials inside nuclear matter. Since at low enough density the
nucleon matter is quite asymmetric, the small percentage of protons feel a deep
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Fig. 18. The equilibrium composition of asymmetric and β-stable nuclear matter con-
taining Σ− and Λ hyperons is displayed. In the upper panel only two-body nucleonic
forces are present, whereas in the lower panel TBF’s have been included.

single particle potential, and therefore it is energetically convenient to create a
Σ− hyperon since then a neutron must be converted into a proton. The deepness
of the proton potential is mainly determined by the nuclear matter symmetry
energy. Furthermore, the potential felt by the hyperons can shift substantially
the threshold density at which each hyperon set in. This points are illustrated
in Fig. 19, where the different single particle potentials are plotted at a given
nucleon density. For simplicity, neutron and proton densities are fixed, given by
ρN = 0.4 fm−3 and ρp/ρN = 0.1, and the Σ− density is varied. Under these
conditions the Σ− single-particle potential is sizably repulsive, while UΛ is still
attractive (see also Ref. [24]) and the nucleons are much strongly bound. The
Σ− single-particle potential has a particular shape with an effective mass m∗/m
slightly larger than 1, whereas the lambda effective mass is typically about 0.8
and the nucleon effective masses are much smaller.
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Fig. 19. The single-particle potentials of nucleons n, p and hyperons Σ, Λ in bary-
onic matter of fixed nucleonic density ρN = 0.4 fm−3, proton density ρp/ρN = 0.1,
and varying Σ density ρΣ/ρN = 0.0, 0.1, 0.2, 0.3. The vertical lines represent the cor-
responding Fermi momenta of n, p, and Σ. For the nucleonic curves, the thick lines
represent the complete single-particle potentials UN , whereas the thin lines show the
values excluding the Σ contribution, i.e., U
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N .

The resulting Equation of State is displayed in Figure 20. The dotted line
represents the case when only two-body forces are present, whereas the solid line
shows the case when TBF’s are included. The upper curves show the equation of
state when stellar matter is composed only by nucleons and leptons. We mainly
observe a stiffening of the equation of state because of the repulsive contribution
coming from the TBF’s. The inclusion of hyperons (lower curves) produces a
soft equation of state which turns out to be very similar to the one obtained
without TBF’s. This is quite astonishing because, in the pure nucleon case, the
repulsive character of TBF at high density increases the stiffness of the EOS,
thus changing dramatically the equation of state. However, when hyperons are
included, the presence of TBF’s among nucleons enhances the population of Σ−

and Λ because of the increased nucleon chemical potentials with respect to the
case without TBF, thus decreasing the nucleon population. The net result is
that the equation of state looks very similar to the case without TBF, but the
chemical composition of matter containing hyperons is very different when TBF
are included. In the latter case, the hyperon populations are larger than in the
case with only two-body forces. This has very important consequences for the
structure of the neutron stars. Of course, this scenario could partly change if
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hyperon-hyperon interactions were known or if TBF would be included also for
hyperons, but this is beyond our current knowledge of the strong interaction.
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Fig. 20. The pressure is displayed vs. the baryon density for hyperon-free (upper
curves) and hyperon-rich (lower curves) matter. The solid (dashed) lines represent
the case when nucleonic TBF’s are (are not) included.

5 Equilibrium configurations of neutron stars

We assume that a star is a spherically symmetric distribution of mass in hydro-
static equilibrium. The equilibrium configurations are obtained by solving the
Tolman-Oppenheimer-Volkoff (TOV) equations [25] for the pressure P and the
enclosed mass m,

dP (r)

dr
= −

Gm(r)E(r)

r2
[1 + P (r)/E(r)]

[

1 + 4πr3P (r)/m(r)
]

1− 2Gm(r)/r
, (33)

dm(r)

dr
= 4πr2E(r) , (34)

being G the gravitational constant. Starting with a central mass density E(r =
0) ≡ Ec, we integrate out until the pressure on the surface equals the one corre-
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sponding to the density of iron. This gives the stellar radius R and the gravita-
tional mass is then

MG ≡ m(R) = 4π

∫ R

0

dr r2E(r) . (35)

For the outer part of the neutron star we have used the equations of state
by Feynman-Metropolis-Teller [26] and Baym-Pethick-Sutherland [27], and for
the medium-density regime we use the results of Negele and Vautherin [28].
For density ρ > 0.08 fm−3 we use the microscopic equations of state obtained
in the BHF approximation described above. For comparison, we also perform
calculations of neutron star structure for the case of asymmetric and β-stable
nucleonic matter. The results are plotted in Fig. 21. We display the gravitational
mass MG (in units of the solar mass Mo) as a function of the radius R (panel (a))
and central baryon density nc (panel (b)). We note that the inclusion of hyperons
lowers the value of the maximum mass from about 2.1 Mo down to 1.26Mo. This
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Fig. 21. In panel (a) the mass-radius relation is shown in the case of beta-stable matter
with hyperons (solid line) and without hyperons (dashed line). The thick line represents
the measured value of the pulsar PSR1913+16 mass. In panel (b) the mass is displayed
vs. the central density. The dotted line represents the equilibrium configurations of
neutron stars containing nucleons plus hyperons and rotating at the Kepler frequency
ΩK .

value lies below the value of the best observed pulsar mass, PSR1916+13, which
amounts to 1.44 solar masses. However the observational data can be fitted if
rotations are included, see dotted line in panel (b). In this case only equilibrium
configurations rotating at the Kepler frequency ΩK are shown. However, ΩK is
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much larger than the rotational frequency of that pulsar, and therefore rotation
probably does not play any role.
In conclusion, the main finding of our work is the surprisingly low value of the
maximum mass of a neutron star, which hardly comprises the observational
data. This fact indicates how sensitive the properties of the neutron stars are
to the details of the interaction. In particular our result calls for the need of
including realistic hyperon-hyperon interactions. However, the use of the avail-
able hyperon-hyperon interactions seem to introduce only minor changes in the
results [29]. Despite the uncertainty on the NY and YY interactions, it is un-
likely that one can obtain a neutron star mass substantially larger. The possible
occurrence of a quark core is usually assumed to further soften the EOS and
lower the maximum mass. However, this is not necessarily true, since at large
density the quark pressure should be close to the one of a ultra-relativistic Fermi
gas, which can rise fast enough to stabilize the system. In any case, the possible
quark core is not expected to change dramatically the critical neutron star mass.
Even if an explicit analysis of the quark core has still to be worked out, it is
fair to say that the observation of a neutron star with a mass much larger than
1.4-1.5 solar mass would indicate that indeed some basic ingredient is missing in
our understanding of neutron star structure.
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