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Abstract
A brief introduction into the properties of dense quark matter is given. Re-
cently proposed gapless color superconducting phases of neutral and beta-
equilibrated dense quark matter are discussed. The currentstatus in the field is
described, and the promising directions of the future research are outlined.

1 Introduction

At sufficiently high baryon density, matter is expected to bedeconfined. The physical degrees of freedom
in a deconfined phase are quarks and gluons, rather than usualhadrons. At present the theory cannot
predict reliably where in the QCD phase diagram the corresponding deconfinement transition should
occur. The issue gets further complicated by the fact that the deconfinement is not associated with a
symmetry-related order parameter and, thus, does not need to be marked by any real phase transition.
Leaving aside this well-known conceptual difficulty, here Idiscuss the recent progress in the studies of
cold and dense matter which, owing in part to the property of the asymptotic freedom in QCD, allows a
relatively rigorous treatment.

It was suggested long time ago that quark matter may exist inside the central regions of compact
stars [1]. By making use of the property of asymptotic freedom in QCD [2], it was argued that quarks
interact weakly, and that realistic calculations taking full account of strong interactions are possible for
sufficiently dense matter [3]. The argument of Ref. [3] consisted of the two main points: (i) the long-
range QCD interactions are screened in dense medium causingno infrared problems, and (ii) at short
distances, the interaction is weak enough to allow the use ofthe perturbation theory. As will become
clear below, the real situation in dense quark matter is slightly more subtle.

2 Color superconductivity

By assuming that very dense matter is made of weakly interacting quarks, one could try to understand the
thermodynamic properties of the corresponding ground state by first completely neglecting the interac-
tion between quarks. In order to construct the ground state,it is important to keep in mind that quarks are
fermions, i.e., particles with a half-integer spin,s = 1/2. They should obey the Pauli exclusion principle
which prohibits for two identical fermions to occupy the same quantum state.

In the ground state of non-interacting quark matter at zero temperature, quarks occupy all available
quantum states with the lowest possible energies. This is formally described by the following quark
distribution function:

fF (k) = θ (µ− Ek) , at T = 0, (1)

whereµ is the quark chemical potential, andEk ≡
√
k2 +m2 is the energy of a free quark (with mass

m) in the quantum state with the momentumk (by definition,k ≡ |k|). As one can see,fF (k) = 1 for
the states withk < kF ≡

√

µ2 −m2, indicating that all states with the momenta less than the Fermi
momentumkF are occupied. The states with the momenta greater than the Fermi momentumkF are
empty, i.e.,fF (k) = 0 for k > kF .

It appears that the perturbative ground state of quark matter, characterized by the distribution func-
tion in Eq. (1), is unstable when there is an attractive (evenarbitrarily weak in magnitude!) interaction
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between quarks. This is because of the famous Cooper instability [4]. The instability develops as a result
of the formation of Cooper pairs〈qk q−k〉 made of quarks from around the highly degenerate Fermi sur-
face, i.e., quarks with the absolute value of momentak ≃ kF . Such Cooper pairs are bosonic states, and
they occupy the same lowest energy quantum state atT = 0, producing a version of a Bose condensate.
The corresponding ground state of quark matter is then a superconductor. This is similar to the ground
state of an electron system in the Bardeen-Cooper-Schrieffer (BCS) theory of low-temperature supercon-
ductivity [5]. Of course, some qualitative differences also arise because quarks, unlike electrons, come
in various flavors (e.g., up, down and strange) and carry non-Abelian color charges. To emphasize the
difference, superconductivity in quark matter is calledcolor superconductivity. For recent review on
color superconductivity see Ref. [6].

As in low-temperature superconductors in solid state physics, one of the main consequences of
color superconductivity in dense quark matter is the appearance of a nonzero gap in the one-particle
energy spectrum. In the simplest case, the dispersion relation of gapped quasiparticles is given by

E∆(k) =
√

(Ek − µ)2 +∆2, (2)

where∆ is the gap. The presence of a nonzero gap affects kinetic (e.g., conductivities and viscosities) as
well as thermodynamic (e.g., the specific heat and the equation of state) properties of quark matter [6].

Historically, it has been known for a rather long time that dense quark matter should be a color
superconductor [7, 8]. In many studies in the past this fact was commonly ignored, however. Only
recently, the potential importance of this phenomenon was appreciated. To large extent, this has been
triggered by the observation [9] that the value of the color superconducting gap∆ can be as large as
100MeV at baryon densities existing in the central regions of compact stars, i.e., at densities which are a
few times larger than the normal nuclear density,n0 ≃ 0.15 fm−3. A posteriori, of course, this estimate
is hardly surprising within the framework of QCD, in which the energy scale is set byΛQCD ≃ 200MeV.
Yet this observation was very important because the presence of a large energy gap in the quasiparticle
spectrum may allow to extract signatures of color superconducting matter in observational data from
compact stars.

3 Two-flavor color superconductivity (Nf = 2)

The simplest color superconducting phase is the two-flavor color superconductor (2SC). This is a color
superconducting phase in quark matter made of up and down quarks.

In weakly interacting regime of QCD at asymptotic densities, the 2SC phase of matter was studied
from first principles in Ref. [10]. It should be mentioned, however, even at the highest densities existing
in the central regions of compact stars (n<∼10n0) quark matter is unlikely to be truly weakly interacting.
In such a situation, the use of the microscopic theory of strong interactions is very limited, and one has
to rely on various effective models of QCD. A very simple typeof such a model, used for the description
of color superconducting matter, is the Nambu-Jona-Lasinio (NJL) model with a local four-fermion
interaction (for a review see, e.g., Ref. [11]). One of its simplest versions is defined by the following
Lagrangian density [12]:

LNJL = ψ̄a
i

(

iγµ∂µ + γ0µ−m
(0)
i

)

ψa
i +GS

[

(ψ̄ψ)2 + (iψ̄γ5~τψ)
2
]

+ GD(iψ̄
Cεǫaγ5ψ)(iψ̄εǫ

aγ5ψ
C), (3)

whereψC = Cψ̄T is the charge-conjugate spinor andC = iγ2γ0 is the charge conjugation matrix. The
matrixC is defined so thatCγµC−1 = −γTµ . Regarding the other notation,~τ = (τ1, τ2, τ3) are the Pauli
matrices in the flavor space, while(ε)ik ≡ εik and(ǫa)bc ≡ ǫabc are the antisymmetric tensors in the
flavor and in the color spaces, respectively. The dimensionful coupling constantGS = 5.01GeV−2 and
the momentum integration cutoff parameterΛ = 0.65GeV (which appears only in loop calculations) are
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adjusted so that the values of the pion decay constant and thevalue of the chiral condensate take their
standard values in vacuum QCD:Fπ = 93 MeV and〈ūu〉 = 〈d̄d〉 = (−250MeV)3 [12]. Without loss
of generality, the strength of the coupling constantGD is taken to be proportional to the value ofGS :
GD = ηGS whereη is a dimensionless parameter of order 1. It is important thatη is positive, which
corresponds to an attraction in the color-antisymmetric diquark channel. This property is suggested by
the microscopic interaction in QCD at high density, as well as by the instanton-induced interaction at
low density [9].

The color-flavor structure of the condensate of spin-0 Cooper pairs in the 2SC phase reads
〈(

ψ̄C
)a

i
γ5ψb

j

〉

∼ εijǫ
abc. (4)

In a fixed gauge, the color orientation of this condensate canbe chosen arbitrarily. It is conventional

to point the condensate in the third (blue) color direction,
〈(

ψ̄C
)a

i
γ5ψb

j

〉

∼ εijǫ
ab3. Then, the Cooper

pairs in the 2SC phase are made of the red and green quarks only, while blue quarks do not participate
in pairing at all. These unpaired blue quarks give rise to ungapped quasiparticles in the low-energy
spectrum of the theory.

The flavor antisymmetric structure in Eq. (4) corresponds toa singlet representation of the global
SU(2)L×SU(2)R chiral group. This means that the (approximate) chiral symmetry is not broken in the
2SC ground state. In fact, there are no other global continuous symmetries which are broken in the
2SC phase. There exist, however, several approximate symmetries which are broken. One of them
is the approximate U(1)A symmetry which is a good symmetry at high density when the instantons
are screened [13]. Its breaking in the 2SC phase results in a pseudo-Nambu-Goldstone boson [14].
Additional four pseudo-Nambu-Goldstone states may appearas a result of a less obvious approximate
axial color symmetry discussed in Ref. [15].

In the ground state, the vector-like SU(3)c color gauge group is broken down to the SU(2)c sub-
group. Therefore, five out of total eight gluons of SU(3)c become massive due to the Anderson-Higgs
mechanism. The other three gluons, which correspond to the unbroken SU(2)c, do not interact with
the gapless blue quasiparticles. They give rise to low-energy SU(2)c gluodynamics. The red and green
quasiparticles decouple from this low-energy SU(2)c gluodynamics because they are gapped [16].

The gap equation in the NJL model in the mean field approximation looks as follows:

∆ ≃ 4GD

π2

∫ Λ

0

(

∆
√

(p− µ)2 +∆2
+

∆
√

(p+ µ)2 +∆2

)

p2dp. (5)

This gap equation is analogous to the Schwinger-Dyson equation in QCD [10] in which the gluon long-
range interaction is replaced by a local interaction.

The approximate solution to the gap equation in Eq. (5) reads

∆ ≃ 2
√

Λ2 − µ2 exp

(

− π2

8GDµ2
+

Λ2 − 3µ2

2µ2

)

. (6)

This is very similar to the BCS solution in the case of low temperature superconductivity in solid state
physics [5]. As in the BCS theory, it has the same type non-analytic dependence on the coupling constant
and the same type dependence on the density of quasiparticlestates at the Fermi surface. (Note that in
QCD at asymptotic density, in contrast, the long-range interaction leads to a qualitatively different non-
analytic dependence of the gap on the coupling constant,∆ ∼ µα

−5/2
s exp

(

−C/√αs

)

whereC =
3(π/2)3/2 [10]).

When the quark chemical potentialµ takes a value in the range between400MeV and500MeV,
and the strength of the diquark pairing isGD = ηGS with η between0.7 and1, the value of the gap
appears to be of order100MeV. In essence, this is the result that was obtained in Ref. [9].
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4 Color-flavor locked phase (Nf = 3)

It may happen that dense baryonic matter is made not only of the lightest up and down quarks, but of
strange quarks as well. In fact, because of a possible reduction in the free energy from converting non-
strange quarks into strange quarks, one may even speculate that strange quark matter is the true ground
state of baryonic matter [17].

The constituent strange quark mass in vacuum QCD is estimated to be of order500MeV. Its
current mass is about100MeV. In dense baryonic matter in stars, therefore, the strange quark mass
should be somewhere in the range between the two limits,100MeV and500MeV. It is possible then
that strange quarks also participate in Cooper pairing.

Let me first discuss an idealized version of three-flavor quark matter, in which all quarks are
assumed to be massless. A more realistic case of a nonzero strange quark mass will be discussed briefly
in Secs. 6 and 7. In the massless case, the quark model possesses the global SU(3)L×SU(3)R chiral
symmetry and the global U(1)B symmetry connected with the baryon number conservation. This is in
addition to SU(3)c color gauge symmetry. Note that the generatorQ = diagflavor(

2
3 ,−1

3 ,−1
3) of the

U(1)em symmetry of electromagnetism is traceless, and therefore it coincides with one of the vector-like
generators of the SU(3)L×SU(3)R chiral group.

To large extent, the color and flavor structure of the spin-0 diquark condensate of Cooper pairs
in the three-flavor quark matter is fixed by the symmetry of theattractive diquark channel and the Pauli
exclusion principle. In particular, this is given by the following ground state expectation value [18]:

〈(

ψ̄C
)a

i
γ5ψb

j

〉

∼
3
∑

I,J=1

cIJεijIǫ
abJ + · · · , (7)

which is antisymmetric in the color and flavor indices of the constituent quarks, cf. Eq. (4). The3 × 3
matrix cIJ is determined by the global minimum of the free energy. It appears thatcIJ = δIJ . The
ellipsis on the right hand side stand for a contribution which is symmetric in color and flavor. A small
contribution of this type is always induced in the ground state, despite the fact that it corresponds to a
repulsive diquark channel [18, 19]. This is not surprising after noting that the symmetric condensate, i.e.,
〈(

ψ̄C
)a

i
γ5ψb

j

〉

∼ δai δ
b
j + δaj δ

b
i , does not break any additional symmetries [18].

In the ground state, determined by the condensate (7), the chiral symmetry is broken down to its
vector-like subgroup. The mechanism of this symmetry breaking is rather unusual, however. To see this
clearly, it is helpful to rewrite the condensate as follows:

〈

ψa,α
L,i ǫαβψ

b,β
L,j

〉

= −
〈

ψa,α̇
R,i ǫα̇β̇ψ

b,β̇
R,j

〉

∼
3
∑

I=1

εijIǫ
abI + · · · , (8)

whereα, β, α̇, β̇ = 1, 2 are the spinor indices. The condensate of left-handed fields, 〈ψa,α
L,i ǫαβψ

b,β
L,j〉,

breaks the SU(3)c color symmetry and the SU(3)L chiral symmetry, but leaves the diagonal SU(3)L+c

subgroup unbroken. Indeed, as one can check, this condensate remains invariant under a flavor trans-
formation (gL) and a properly chosen compensating color transformation (gc = g−1

L ). Similarly, the

condensate of right-handed fields,〈ψa,α̇
R,i ǫα̇β̇ψ

b,β̇
R,j〉, leaves the SU(3)R+c subgroup unbroken.

When both condensates are present, the symmetry of the ground state is given by the diagonal
subgroup SU(3)L+R+c. This is because one has no freedom to use two different compensating color
transformations. At the level of global symmetries, the original SU(3)L×SU(3)R symmetry of the model
is broken down to the vector-like SU(3)L+R, just like in vacuum. (Note, however, that the CFL phase
is superfluid because the globalU(1)B symmetry is broken by the diquark condensate in the ground
state.) Unlike in vacuum, the chiral symmetry breaking doesnot result from any condensate mixing left-
and right-handed fields. Instead, it results primarily fromtwo separate condensates, made of left-handed
fields and of right-handed fields only. The flavor orientations of the two condensates are “locked” to each
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other by color transformations. This mechanism is called locking, and the corresponding phase of matter
is called color-flavor-locked (CFL) phase [18].

The gap equation in the three-flavor quark matter is qualitatively the same as in the two-flavor case.
The differences come only from a slightly more complicated color-flavor structure of the off-diagonal
part of the inverse quark propagator (gap matrix) [18, 19],

∆ij
ab = iγ5

[

1

3
(∆1 +∆2) δ

i
aδ

j
b −∆2δ

i
bδ

j
a

]

, (9)

where two parameters∆1 and∆2 determine the values of the gaps in the quasiparticles spectra. In the
ground state, which is invariant under the SU(3)L+R+c symmetry, the original nine quark states give rise
to a singlet and an octet of quasiparticles with different values of the gaps in their spectra. When a small
color-symmetric diquark condensate is neglected, one findsthat the gap of the singlet (∆1) is twice as
large as the gap of the octet (∆2), i.e.,∆1 = 2∆2. In general, however, this relation is only approximate.
In QCD at asymptotic density, the dependence of the gaps on the quark chemical potential was calculated
in Refs. [19, 20].

5 Dense matter inside stars

As discussed in Secs. 1 and 2, it is natural to expect that color superconducting phases may exist in the
interior of compact stars. The estimated central densitiesof such stars might be sufficiently large for
producing deconfined quark matter. Then, such matter develops the Cooper instability and becomes a
color superconductor. It should also be noted that typical temperatures inside compact stars are so low
that a spin-0 diquark condensate, if produced, would not melt. (Of course, this may not apply to a short
period of the stellar evolution immediately after the supernova explosion.)

In the preceding sections, only idealized versions of densematter, in which the Fermi momenta of
pairing quarks were equal, were discussed. These cannot be directly applied to a realistic situation that
is thought to occur inside compact stars. The reason is that matter in the bulk of a compact star should be
neutral (at least, on average) with respect to electric as well as color charges. Also, matter should remain
in β (chemical) equilibrium, i.e., theβ processesd → u + e− + ν̄e andu + e− → d + νe (as well as
s→ u+e−+ν̄e andu+e− → s+νe in the presence of strange quarks) should go with equal rates. (Here
it is assumed that there is no neutrino trapping in stellar matter. In the presence of neutrino trapping, the
situation changes [21]. Also, the situation changes in the presence of a very strong magnetic field [22],
but the discussion of its effect is outside the scope of this short review.)

Formally,β equilibrium is enforced by introducing a set of chemical potentials (µi) in the partition
function of quark matter,

Z = Tr exp
(

−H +
∑

i µiQi

T

)

. (10)

The total number of independent chemical potentialsµi is equal to the number of conserved charges
Qi in the model. For example, in two-flavor quark matter, it suffices to consider only three relevant
conserved charges: the baryon numbernB, the electric chargenQ, and the color chargen8. (Note that
these may not be sufficient in a general case [23].) Then, the matrix of quark chemical potentials is given
in terms of the baryon chemical potential (by definition,µB ≡ 3µ), the electron chemical potential (µe)
and the color chemical potential (µ8) [24, 25, 26],

µ̂ij,αβ = (µδij − µeQij)δαβ +
2√
3
µ8δij(T8)αβ , (11)

whereQ andT8 are the generators of U(1)em of electromagnetism and the U(1)8 subgroup of the gauge
group SU(3)c.

The other important condition in stellar matter is that of charge neutrality. In order to get an
impression regarding the importance of charge neutrality in a large macroscopic chunk of matter, such
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as a core of a compact star, one can estimate the corresponding Coulomb energy. A simple calculation
leads to the following result:

ECoulomb ∼ n2QR
5 ∼ 1026M⊙c

2

(

nQ

10−2e/fm3

)2 (
R

1 km

)5

, (12)

hereR is the radius of the quark matter core, whose charge density is denoted bynQ. It is easy to see
that this energy is not an extensive quantity: the value of the correspondingenergy density increases
with the size of the system asR2. By taking a typical value of the charge density in the 2SC phase,
nQ ∼ 10−2e/fm3, the energy in Eq. (12) becomes a factor of1026 larger than the rest mass energy of
the Sun! To avoid such an incredibly large energy price, the charge neutralitynQ = 0 should be satisfied
with a very high precision.

In the case of two-flavor quark matter, one can argue that the neutrality is achieved if the number
density of down quarks is approximately twice as large as number density of up quarks,nd ≈ 2nu.
This follows from the fact that the negative charge of the down quark (Qd = −1/3) is twice as small
as the positive charge of the up quark (Qu = 2/3). Whennd ≈ 2nu, the total electric charge density is
vanishing in absence of electrons,nQ ≈ Qdnd +Qunu ≈ 0. It turns out that even a nonzero density of
electrons, required by theβ equilibrium condition, could not change this relation much.

The argument goes as follows. One considers noninteractingmassless quarks. Inβ equilibrium,
the chemical potentials of the up quark and the down quark,µu andµd, should satisfy the relationµd =
µu + µe whereµe is the chemical potential of electrons (i.e., up to a sign, the chemical potential of the
electric charge). By assuming thatµd ≈ 21/3µu, i.e.,nd ≈ 2nu as required by the neutrality in absence
of electrons, one obtains the following result for the electron chemical potential:µe = µd−µu ≈ 0.26µu.
The corresponding density of electrons isne ≈ 6 · 10−3nu, i.e.,ne ≪ nu which is in agreement with the
original assumption thatnd ≈ 2nu in neutral matter.

While the approximate relationnd ≈ 2nu may be slightly modified in an interacting system, the
main conclusion remains qualitatively the same. The Fermi momenta of up and down quarks, whose
pairing is responsible for color superconductivity, are generally non-equal when neutrality andβ equi-
librium are imposed. This affects the dynamics of Cooper pairing and, as a consequence, some color
superconducting phases may become less favored than others. For example, it is argued in Ref. [24], that
a mixture of unpaired strange quarks and the non-strange 2SCphase, made of up and down quarks, is
less favorable than the CFL phase after the charge neutrality condition is enforced. In addition, it was
found that neutrality andβ equilibrium may give rise to new unconventional pairing patterns [25, 27].

6 Different dynamical regimes in neutral matter

By studying neutral two-flavor quark matter, it was found that there exist three qualitatively different
dynamical regimes, defined by the (largely unknown) strength of diquark coupling [25]. Similar regimes
were also suggested to exist in three-flavor quark matter when the strange quark mass is not negligibly
small [27, 28]. (Other effects due to a non-zero strange quark mass are discussed in Ref. [29].)

The simplest regime corresponds to weak diquark coupling. In this case, cross-flavor Cooper
pairing of quarks with non-equal Fermi momenta is energetically unfavorable. The ground state of
neutral matter corresponds to the normal phase. This would be precisely the case in QCD at asymptotic
density if there existed only up and down quark flavors. (Formally, this is also the case when there are six
quark flavors as in the Standard Model!) One should note, however, that a much weaker spin-1 pairing
between quarks of same flavor is not forbidden in such neutralmatter. In fact, spin-1 condensates would
be inevitable if the temperature is sufficiently low.

The other limiting case is the strongly coupled regime. It isclear that, if the value of the diquark
coupling is sufficiently large, the color condensation could be made as strong as needed to overcome a
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finite mismatch between the Fermi surfaces of pairing quarks. In this regime, the ground state is in the
2SC/CFL phase becauseβ-equilibrium and charge neutrality have little effect.

It turns out that there also exists an intermediate regime, in which the diquark coupling is neither
too weak nor too strong. It was proposed that the ground statein this regime is given by the so-called
gapless superconductor [25, 27], briefly discussed in the next section.

7 Gapless 2SC and CFL phases

Without going into details, the characteristic feature of agapless superconducting phase is the existence
of gapless quasiparticle excitations in its low-energy spectrum. The simplest examples are the gapless
2SC (g2SC) [25] and gapless CFL (gCFL) [27] phases. In the g2SC case, for example, there exists a
doublet of quasiparticles with the following dispersion relation [25]:

E∆(k) =
√

(Ek − µ̄)2 +∆2 − δµ, (13)

where∆ is the value of the gap parameter,µ̄ ≡ (µ1 + µ2)/2 is the average chemical potential and
δµ ≡ (µ1 − µ2)/2 is the mismatch between the chemical potentials of pairing quarks. When∆ < δµ,
it takes vanishingly small amount of energy to excite quasiparticles with momenta in the vicinity of
k± ≡ µ̄±

√

(δµ)2 −∆2. Similar quasiparticles also exist in gCFL phase as well.

When the g2SC and gCFL phases were suggested, it was argued that their thermodynamic stability
was enforced by the charge neutrality condition [25]. In a homogeneous macroscopic system, such a
condition is necessary in order to avoid a huge energy price due to the Coulomb long-range interaction.
Remarkably, this condition has no analogue in solid state physics. Thus, one argued that the known
problems of the so-called Sarma [30] phase may not apply to the g2SC/gCFL phases.

8 Chromomagnetic instability and suggested alternatives

Rather quickly, it was discovered that the gapless phases have problems of their own [31]. Namely, the
screening Meissner masses of several gauge bosons are imaginary in the ground state, indicating a new
type (chromomagnetic) instability in quark matter. The original calculation was performed for the g2SC
phase [31], but a similar observation regarding the gCFL phase was also made soon [32, 33].

In the case of the g2SC phase, e.g., it was found that the screening Meissner masses for five out
of total eight bosons are imaginary when0 < ∆/δµ < 1. In addition and most surprisingly, it was also
found that four gauge bosons have imaginary masses even in the gapped 2SC phase when1 < ∆/δµ <√
2. The most natural interpretation of these results is that the instability might be resolved through the

formation of a gluon condensate in the ground state [31]. It is fair to note, however, that the exact nature
of the instability (and in the case of1 < ∆/δµ <

√
2, in particular) is still poorly understood. The

presence of the imaginary masses even in thegapped phase (i.e., when1 < ∆/δµ <
√
2), may suggest

that the gapless superconductivity is not the only reason for the instability. While there remain many
open questions, a partial progress in resolving the problemhas already been made [34, 35].

In the gCFL phase, the instability is seen only for three gauge bosons [33]. The corresponding
screening Meissner masses have a dependence on the mismatchparameter which is similar to the that
for the 8th gluon in the g2SC phase. The fate of such an instability has not been clarified completely.
At asymptotic density, however, it was suggested that the stable ground state might be given by a phase
with an additional p-wave meson condensate [36]. Whether a similar phase also exists in two-flavor
quark matter is unclear because the situation is further complicated there by (i) the absence of a natural
mesonic state among the low-energy excitations and (ii) theonset of the “abnormal” chromomagnetic
instability for the gluonsA4

µ, A
5
µ, A

6
µ, andA7

µ. Instead of a p-wave meson condensate, the so-called
“gluonic” phase may be realized [35].

The presence of the chromomagnetic instability in g2SC and gCFL phases indicates that these
phases cannot be stable ground states of matter. It should beemphasized, however, that this does not
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mean that, in nature, gapless phases are ruled out completely. First of all, there is an indication from
studies in non-relativistic models that similar instabilities may not appear under some special conditions
[37, 38]. In addition, most of the alternatives to the g2SC [25] and gCFL [27] phases, that have been
suggested [34, 35, 36], share the same qualitative feature:their spectra of low-energy quasiparticles
possess gapless modes. In fact, this seems to be not accidental but the most natural outcome of a very
simple observation: the ordinary “gapped” versions of superconductivity are hardly consistent with the
unconventional Cooper pairing, required in neutral andβ-equilibrated quark matter.

9 Discussion

In conclusion, there has been a tremendous progress in recent studies of dense baryonic matter. This
started from a seemingly innocuous observation that the size of the gap in the energy spectrum of color
superconducting quark matter, under conditions realized in stars, could be of the same order as the QCD
scale [9]. This opened a whole new chapter in studies of new states of dense matter that could exist
inside compact stars. In addition to a phenomenological/observational interest, the recent studies in
color superconductivity in neutral andβ-equilibrated matter revealed a wide range of fundamentally new
possibilities stemming from unconventional Cooper pairing. It is plausible that in the future a cross-
disciplinary importance of this finding may even overshadowits role in physics of compact stars.

If color superconducting quark matter indeed exists in the interior of compact stars, it should
affect some important transport and thermodynamic properties of stellar matter which may, in turn,
affect some observational data from stars. Among the most promising signals are the cooling rates
[39, 40] and the rotational slowing down of stars [41]. Also,new states of matter could affect the stellar
mass-radius relation [42], and even lead to the existence ofa new family of compact stars [43]. Color
superconductivity can also affect directly as well as indirectly many other observed properties of stars.
In some cases, for example, superconductivity may be accompanied by baryon superfluidity and/or the
electromagnetic Meissner effect. If matter is superfluid, rotational vortices would be formed in the stellar
core, and they would carry a portion of the angular momentum of the star. Because of the Meissner effect,
the star interior could become threaded with magnetic flux tubes. In either case, the star evolution may
be affected. While some studies on possible effects of colorsuperconductivity in stars have already been
attempted, the systematic study remains to be done in the future.

The development in the field also resulted in obtaining reliable nonperturbative solutions in QCD
at asymptotic densities [10, 19, 20, 29], shedding some light on the structure of the QCD phase diagram in
the regime inaccessible by lattice calculations. By itself, this has a fundamental theoretical importance.
Also, this may provide valuable insights into the theory of strong interactions. One of the examples
might be the idea of duality between the hadronic and quark description of QCD [44]. In the future, the
structure of the QCD phase diagram and the properties of various color superconducting phases should
be studied in more detail. While many different phases of quark matter have been proposed, there is no
certainty that all possibilities have already been exhausted.
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