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Abstract

A brief introduction into the properties of dense quark mais given. Re-
cently proposed gapless color superconducting phasesutfahend beta-
equilibrated dense quark matter are discussed. The cutans in the field is
described, and the promising directions of the future meseare outlined.

1 Introduction

At sufficiently high baryon density, matter is expected talbeonfined. The physical degrees of freedom
in a deconfined phase are quarks and gluons, rather than hesdr@ins. At present the theory cannot
predict reliably where in the QCD phase diagram the corneding deconfinement transition should
occur. The issue gets further complicated by the fact thattdéconfinement is not associated with a
symmetry-related order parameter and, thus, does not oeleel tnarked by any real phase transition.
Leaving aside this well-known conceptual difficulty, hem@igcuss the recent progress in the studies of
cold and dense matter which, owing in part to the properthefasymptotic freedom in QCD, allows a
relatively rigorous treatment.

It was suggested long time ago that quark matter may existartbe central regions of compact
stars[[1]. By making use of the property of asymptotic freedo QCD [Z], it was argued that quarks
interact weakly, and that realistic calculations takinty ficcount of strong interactions are possible for
sufficiently dense mattel|[3]. The argument of REF. [3] cetesd of the two main points: (i) the long-
range QCD interactions are screened in dense medium cangiingrared problems, and (ii) at short
distances, the interaction is weak enough to allow the usbkeoperturbation theory. As will become
clear below, the real situation in dense quark matter isidlignore subtle.

2 Color superconductivity

By assuming that very dense matter is made of weakly integaquarks, one could try to understand the
thermodynamic properties of the corresponding groune staffirst completely neglecting the interac-
tion between quarks. In order to construct the ground stasamportant to keep in mind that quarks are
fermions, i.e., particles with a half-integer spin—= 1/2. They should obey the Pauli exclusion principle
which prohibits for two identical fermions to occupy the sagquantum state.

In the ground state of non-interacting quark matter at zemperature, quarks occupy all available
guantum states with the lowest possible energies. Thisrisdlly described by the following quark
distribution function:

fF(k)ZH(:u_Ek)a at T'=0, 1)

wherey is the quark chemical potential, aiig = +/k2 + m? is the energy of a free quark (with mass
m) in the quantum state with the momentdntby definition,k = |k|). As one can seefr(k) = 1 for
the states withk < kr = /2 — m?2, indicating that all states with the momenta less than thenFe
momentumk are occupied. The states with the momenta greater than tnel Feomentumky are
empty, i.e.,fr(k) = 0for k > kp.

It appears that the perturbative ground state of quark mattaracterized by the distribution func-
tion in Eq. [1), is unstable when there is an attractive (emditrarily weak in magnitude!) interaction
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between quarks. This is because of the famous Cooper ilistgbj. The instability develops as a result

of the formation of Cooper pairgy ¢_x) made of quarks from around the highly degenerate Fermi sur-
face, i.e., quarks with the absolute value of moménta kr. Such Cooper pairs are bosonic states, and
they occupy the same lowest energy quantum stdfé-at0, producing a version of a Bose condensate.
The corresponding ground state of quark matter is then acopductor. This is similar to the ground
state of an electron system in the Bardeen-Cooper-Sari@@ICS) theory of low-temperature supercon-
ductivity [5]. Of course, some qualitative differencesoadsise because quarks, unlike electrons, come
in various flavors (e.g., up, down and strange) and carryAtaglian color charges. To emphasize the
difference, superconductivity in quark matter is caltmtior superconductivity. For recent review on
color superconductivity see Refl[6].

As in low-temperature superconductors in solid state misysine of the main consequences of
color superconductivity in dense quark matter is the a@res of a nonzero gap in the one-particle
energy spectrum. In the simplest case, the dispersionarlat gapped quasiparticles is given by

Ea(k) = /(B — u)® + A2, ®)

whereA is the gap. The presence of a nonzero gap affects kinetic ¢ermductivities and viscosities) as
well as thermodynamic (e.g., the specific heat and the emquafistate) properties of quark matter [6].

Historically, it has been known for a rather long time thahsk quark matter should be a color
superconductor [4,18]. In many studies in the past this faat wommonly ignored, however. Only
recently, the potential importance of this phenomenon vpgseziated. To large extent, this has been
triggered by the observationl[9] that the value of the colgresconducting gag\ can be as large as
100 MeV at baryon densities existing in the central regions ofpact stars, i.e., at densities which are a
few times larger than the normal nuclear density~ 0.15 fm~—3. A posteriori, of course, this estimate
is hardly surprising within the framework of QCD, in whicletnergy scale is set ycp ~ 200 MeV.

Yet this observation was very important because the preseha large energy gap in the quasiparticle
spectrum may allow to extract signatures of color supergocimgg matter in observational data from
compact stars.

3 Two-flavor color superconductivity (N, = 2)

The simplest color superconducting phase is the two-flagtmr superconductor (2SC). This is a color
superconducting phase in quark matter made of up and dowkgjua

In weakly interacting regime of QCD at asymptotic densjtthe 2SC phase of matter was studied
from first principles in Ref.[[10]. It should be mentionedweaver, even at the highest densities existing
in the central regions of compact stars{10n() quark matter is unlikely to be truly weakly interacting.
In such a situation, the use of the microscopic theory ofhgtiateractions is very limited, and one has
to rely on various effective models of QCD. A very simple tydesuch a model, used for the description
of color superconducting matter, is the Nambu-Jona-LasfhMJL) model with a local four-fermion
interaction (for a review see, e.g., Ref.]11]). One of im@iest versions is defined by the following
Lagrangian density [12]:

Lo = B (170 + 21 = m?) 0 + G [(91)? + (ir570)?]
+ Gp(i e y59) (iecy59 ), (3)

wherey© = CyT is the charge-conjugate spinor afid= i2+" is the charge conjugation matrix. The
matrix C' is defined so thaf'y,C~' = —y!. Regarding the other notatiofi= (', 72,7%) are the Pauli
matrices in the flavor space, whife)** = ¢ and (%)’ = €% are the antisymmetric tensors in the
flavor and in the color spaces, respectively. The dimensiatdupling constan@s = 5.01 GeV~2 and
the momentum integration cutoff parameter= 0.65 GeV (which appears only in loop calculations) are



adjusted so that the values of the pion decay constant an¢athe of the chiral condensate take their
standard values in vacuum QCB; = 93 MeV and (au) = (dd) = (—250MeV)? [12]. Without loss

of generality, the strength of the coupling constéfy is taken to be proportional to the value Gk:

Gp = nGg wheren is a dimensionless parameter of order 1. It is important ghatpositive, which
corresponds to an attraction in the color-antisymmetriuaik channel. This property is suggested by
the microscopic interaction in QCD at high density, as welbg the instanton-induced interaction at
low density [9].

The color-flavor structure of the condensate of spin-0 Coppés in the 2SC phase reads

((#9)4P) ~ eggete. (4)

In a fixed gauge, the color orientation of this condensatebsanhosen arbitrarily. It is conventional
to point the condensate in the third (blue) color directié(w ) v wb> ~ €;;¢"*3. Then, the Cooper
pairs in the 2SC phase are made of the red and green quarksr\xtmig blue quarks do not participate
in pairing at all. These unpaired blue quarks give rise toappgd quasiparticles in the low-energy
spectrum of the theory.

The flavor antisymmetric structure in Efjl (4) corresponds $inglet representation of the global
SU(2);, xSU(2)r chiral group. This means that the (approximate) chiral sgtmynis not broken in the
2SC ground state. In fact, there are no other global contimwsymmetries which are broken in the
2SC phase. There exist, however, several approximate symamghich are broken. One of them
is the approximate U(l) symmetry which is a good symmetry at high density when th&aimens
are screened_[13]. Its breaking in the 2SC phase results seadp-Nambu-Goldstone bosanli[14].
Additional four pseudo-Nambu-Goldstone states may apaga result of a less obvious approximate
axial color symmetry discussed in Ref. [15].

In the ground state, the vector-like SU(®plor gauge group is broken down to the SU(&)b-
group. Therefore, five out of total eight gluons of SU(Bgcome massive due to the Anderson-Higgs
mechanism. The other three gluons, which correspond to rtheoken SU(2), do not interact with
the gapless blue quasiparticles. They give rise to lowggn8tJ(2). gluodynamics. The red and green
guasiparticles decouple from this low-energy SU@yodynamics because they are gapped [16].

The gap equation in the NJL model in the mean field approxondboks as follows:

(5)

m NCEATLEY

This gap equation is analogous to the Schwinger-Dyson eouigt QCD [10] in which the gluon long-
range interaction is replaced by a local interaction.

The approximate solution to the gap equation in El. (5) reads

2 A2 — 342
A 2y/A2 — pZexp [ —— . 6
VA e (< 4 A ®

This is very similar to the BCS solution in the case of low temgiure superconductivity in solid state
physics[[5]. Asin the BCS theory, it has the same type noyo@ependence on the coupling constant
and the same type dependence on the density of quasipatatés at the Fermi surface. (Note that in
QCD at asymptotic density, in contrast, the long-rangeréttiion leads to a qualitatively different non-
analytic dependence of the gap on the coupling constant, ,uozs_5/2 exp (—C/ /a;5) whereC =
3(m/2)%/2 [@Q)).

When the quark chemical potentijaltakes a value in the range betwet#® MeV and500 MeV,
and the strength of the diquark pairing(s, = nGg with n between0.7 and 1, the value of the gap
appears to be of ordén0 MeV. In essence, this is the result that was obtained in Rgf. [




4 Color-flavor locked phase (N = 3)

It may happen that dense baryonic matter is made not onlyeolightest up and down quarks, but of

strange quarks as well. In fact, because of a possible rieductthe free energy from converting non-

strange quarks into strange quarks, one may even speduatstiange quark matter is the true ground
state of baryonic matter [17].

The constituent strange quark mass in vacuum QCD is estihtatbe of order500 MeV. Its
current mass is abouid0 MeV. In dense baryonic matter in stars, therefore, the gaguark mass
should be somewhere in the range between the two limisMeV and 500 MeV. It is possible then
that strange quarks also participate in Cooper pairing.

Let me first discuss an idealized version of three-flavor kjumatter, in which all quarks are
assumed to be massless. A more realistic case of a nonzangestquark mass will be discussed briefly
in Secs[b an@l7. In the massless case, the quark model pEsseesglobal SU(3)x SU(3); chiral
symmetry and the global U(3)symmetry connected with the baryon number conservatioris i§hn
addition to SU(3) color gauge symmetry. Note that the generagor= diag,,. (3, —1, —3) of the
U(Q)em Symmetry of electromagnetism is traceless, and therefamaricides with one of the vector-like

generators of the SU(Bk SU(3)r chiral group.

To large extent, the color and flavor structure of the spineuatk condensate of Cooper pairs
in the three-flavor quark matter is fixed by the symmetry ofdtieactive diquark channel and the Pauli
exclusion principle. In particular, this is given by thelfoVing ground state expectation valliel[18]:

(FO) )~ 3 chegre™ +--. ™

)

which is antisymmetric in the color and flavor indices of tlmstituent quarks, cf. Eq1(4). Ttex 3
matrix ¢/, is determined by the global minimum of the free energy. Itegpp thate!, = &. The
ellipsis on the right hand side stand for a contribution whi symmetric in color and flavor. A small
contribution of this type is always induced in the groundestdespite the fact that it corresponds to a
repulsive diquark channgl[ll8,119]. This is not surprisiftgranoting that the symmetric condensate, i.e.,

<(z/70)j 751/1§?> ~ 628% + 6247, does not break any additional symmetries [18].

In the ground state, determined by the condengate (7), frel shmmetry is broken down to its
vector-like subgroup. The mechanism of this symmetry brepis rather unusual, however. To see this
clearly, it is helpful to rewrite the condensate as follows:

. 3
b b7 7. b7
(Uieasthl) = = (Vheasotl ) ~ S e+, ©
I=1

wherea, 8, ¢, 8 = 1,2 are the spinor indices. The condensate of left-handed Iie@?eaﬁw%@,
breaks the SU(3)color symmetry and the SU(8)chiral symmetry, but leaves the diagonal SY(3)
subgroup unbroken. Indeed, as one can check, this condemresaains invariant under a flavor trans-
formation ;) and a properly chosen compensating color transformagpn=( ggl). Similarly, the

condensate of right-handed fielqsg“R’j?edng’%g), leaves the SU(3).. subgroup unbroken.

When both condensates are present, the symmetry of thedysiate is given by the diagonal
subgroup SU(3)+r+.. This is because one has no freedom to use two different awsafing color
transformations. At the level of global symmetries, thgioial SU(3), x SU(3)r symmetry of the model
is broken down to the vector-like SU@B)r, just like in vacuum. (Note, however, that the CFL phase
is superfluid because the globdl1) 5 symmetry is broken by the diquark condensate in the ground
state.) Unlike in vacuum, the chiral symmetry breaking dumsesult from any condensate mixing left-
and right-handed fields. Instead, it results primarily friovo separate condensates, made of left-handed
fields and of right-handed fields only. The flavor orientagiofithe two condensates are “locked” to each



other by color transformations. This mechanism is callettiltg, and the corresponding phase of matter
is called color-flavor-locked (CFL) phade [18].

The gap equation in the three-flavor quark matter is queddtigtthe same as in the two-flavor case.
The differences come only from a slightly more complicatetbcflavor structure of the off-diagonal
part of the inverse quark propagator (gap matiix) [18, 19],

g 1 . -
Al =ir° 3 (A1 + A2) 6,0, — A2by0s | 9)

where two parameterd; and A, determine the values of the gaps in the quasiparticles repdct the
ground state, which is invariant under the SY(33 . symmetry, the original nine quark states give rise
to a singlet and an octet of quasiparticles with differetti®a of the gaps in their spectra. When a small
color-symmetric diquark condensate is neglected, one fimaisthe gap of the singlety;) is twice as
large as the gap of the octek§), i.e.,A; = 2A,. In general, however, this relation is only approximate.
In QCD at asymptotic density, the dependence of the gapseoquiiirk chemical potential was calculated
in Refs. [19[20].

5 Dense matter inside stars

As discussed in Seds. 1 aid 2, it is natural to expect that safwerconducting phases may exist in the
interior of compact stars. The estimated central densitfesuch stars might be sufficiently large for
producing deconfined quark matter. Then, such matter desdle Cooper instability and becomes a
color superconductor. It should also be noted that type@peratures inside compact stars are so low
that a spin-0 diquark condensate, if produced, would not.r@F course, this may not apply to a short
period of the stellar evolution immediately after the smoea explosion.)

In the preceding sections, only idealized versions of demsser, in which the Fermi momenta of
pairing quarks were equal, were discussed. These cannatdatiydapplied to a realistic situation that
is thought to occur inside compact stars. The reason is tattemn the bulk of a compact star should be
neutral (at least, on average) with respect to electric disaweolor charges. Also, matter should remain
in 8 (chemical) equilibrium, i.e., th@ processed — u + e~ + v, andu + e~ — d + v, (as well as
s = u+e +v.andu+e” — s+, in the presence of strange quarks) should go with equal riitese
it is assumed that there is no neutrino trapping in stellatendn the presence of neutrino trapping, the
situation changes$.[21]. Also, the situation changes in tieegnce of a very strong magnetic fieldl[22],
but the discussion of its effect is outside the scope of thistseview.)

Formally, 8 equilibrium is enforced by introducing a set of chemicalgmtials («;) in the partition
function of quark matter,

(10)

T
The total number of independent chemical potentiglss equal to the number of conserved charges
Q); in the model. For example, in two-flavor quark matter, it £ to consider only three relevant
conserved charges: the baryon numbgs the electric chargeg, and the color charges. (Note that
these may not be sufficient in a general caseé [23].) Then, gigxmof quark chemical potentials is given
in terms of the baryon chemical potential (by definitipi; = 31), the electron chemical potential)

and the color chemical potentiatd) [24,[25,26],

. 9
frijap = (10i5 — peQij)dap + %us%’(T 8)ag (11)

where@ andTg are the generators of U) of electromagnetism and the Ug1ubgroup of the gauge
group SU(3).

The other important condition in stellar matter is that oaigje neutrality. In order to get an
impression regarding the importance of charge neutrality large macroscopic chunk of matter, such



as a core of a compact star, one can estimate the corresgo@diiomb energy. A simple calculation
leads to the following result:

2
Ecoulomb ~ ’I’L2 R5 ~ 1026M®62 o < R >5 (12)
@ 10-2¢/fm3 ) \1km/ ~

hereR is the radius of the quark matter core, whose charge derssdgnoted by:.. It is easy to see
that this energy is not an extensive quantity: the value efdbrrespondingenergy density increases
with the size of the system a?. By taking a typical value of the charge density in the 2SCspha
ng ~ 10~2e/fm?, the energy in EqLT12) becomes a factor16f® larger than the rest mass energy of
the Sun! To avoid such an incredibly large energy price, Hegge neutrality:p = 0 should be satisfied
with a very high precision.

In the case of two-flavor quark matter, one can argue thateb&ality is achieved if the number
density of down quarks is approximately twice as large asbmindensity of up quarks;y =~ 2n,.
This follows from the fact that the negative charge of the dawark ; = —1/3) is twice as small
as the positive charge of the up qua€k,(= 2/3). Whenn, ~ 2n,, the total electric charge density is
vanishing in absence of electrong; ~ Qnq + Qun, ~ 0. It turns out that even a nonzero density of
electrons, required by the equilibrium condition, could not change this relation much

The argument goes as follows. One considers noninteraotagsless quarks. I equilibrium,
the chemical potentials of the up quark and the down quarkand .4, should satisfy the relation; =
1y + e Whereyp, is the chemical potential of electrons (i.e., up to a siga,dhemical potential of the
electric charge). By assuming thaf ~ 2'/3,, i.e.,ng ~ 2n, as required by the neutrality in absence
of electrons, one obtains the following result for the et@eichemical potentiali. = pg— ity &= 0.26,, .
The corresponding density of electronsijs~ 6 - 10~3n,,, i.e.,n. < n, which is in agreement with the
original assumption that; ~ 2n,, in neutral matter.

While the approximate relation; ~ 2n, may be slightly modified in an interacting system, the
main conclusion remains qualitatively the same. The Feromenta of up and down quarks, whose
pairing is responsible for color superconductivity, areeyally non-equal when neutrality amdequi-
librium are imposed. This affects the dynamics of Cooperipgiand, as a consequence, some color
superconducting phases may become less favored than.dtoeesxample, it is argued in Ref.[24], that
a mixture of unpaired strange quarks and the non-strangep®8€e, made of up and down quarks, is
less favorable than the CFL phase after the charge newtcalitdition is enforced. In addition, it was
found that neutrality and@ equilibrium may give rise to new unconventional pairingteats [25] 217].

6 Different dynamical regimes in neutral matter

By studying neutral two-flavor quark matter, it was foundtttigere exist three qualitatively different
dynamical regimes, defined by the (largely unknown) stieofdiquark couplinglI25]. Similar regimes
were also suggested to exist in three-flavor quark mattenwle strange quark mass is not negligibly
small [27[28]. (Other effects due to a non-zero strangekgomass are discussed in Reéf.][29].)

The simplest regime corresponds to weak diquark couplimgthis case, cross-flavor Cooper
pairing of quarks with non-equal Fermi momenta is energlyicunfavorable. The ground state of
neutral matter corresponds to the normal phase. This waufatdcisely the case in QCD at asymptotic
density if there existed only up and down quark flavors. (Flynthis is also the case when there are six
quark flavors as in the Standard Model!) One should note, hexvéhat a much weaker spin-1 pairing
between quarks of same flavor is not forbidden in such neuotadier. In fact, spin-1 condensates would
be inevitable if the temperature is sufficiently low.

The other limiting case is the strongly coupled regime. tlésar that, if the value of the diquark
coupling is sufficiently large, the color condensation ddoé made as strong as needed to overcome a



finite mismatch between the Fermi surfaces of pairing qudrkshis regime, the ground state is in the
2SC/CFL phase becaugeequilibrium and charge neutrality have little effect.

It turns out that there also exists an intermediate regimeshich the diquark coupling is neither
too weak nor too strong. It was proposed that the ground stdtes regime is given by the so-called
gapless superconductbr [25] 27], briefly discussed in theseetion.

7 Gapless 2SC and CFL phases

Without going into details, the characteristic feature gapless superconducting phase is the existence
of gapless quasiparticle excitations in its low-energycspen. The simplest examples are the gapless
2SC (g2SC)[[25] and gapless CFL (gCFL)I[27] phases. In theCg@&se, for example, there exists a
doublet of quasiparticles with the following dispersiotatmn [25]:

Ea(k) = /(B — 1)> + A2 — oy, (13)

where A is the value of the gap parameter,= (u1 + u2)/2 is the average chemical potential and
op = (u1 — pe2)/2 is the mismatch between the chemical potentials of pairireyks. WhemA < oy,

it takes vanishingly small amount of energy to excite quasigdles with momenta in the vicinity of
ky = p+/(6u)? — AZ. Similar quasiparticles also exist in gCFL phase as well.

When the g2SC and gCFL phases were suggested, it was argai¢ukiin thermodynamic stability
was enforced by the charge neutrality conditibnl [25]. In enbgeneous macroscopic system, such a
condition is necessary in order to avoid a huge energy priecta the Coulomb long-range interaction.
Remarkably, this condition has no analogue in solid statsiph. Thus, one argued that the known
problems of the so-called Sarmal30] phase may not applyetg2$C/gCFL phases.

8 Chromomagnetic instability and suggested alternatives

Rather quickly, it was discovered that the gapless phasespgrablems of their owri [31]. Namely, the
screening Meissner masses of several gauge bosons araamaingi the ground state, indicating a new
type (chromomagnetic) instability in quark matter. Theyoral calculation was performed for the g2SC
phasell3l], but a similar observation regarding the gCFlseheas also made sodn[32] 33].

In the case of the g2SC phase, e.g., it was found that thersege®eissner masses for five out
of total eight bosons are imaginary whenr< A/éu < 1. In addition and most surprisingly, it was also
found that four gauge bosons have imaginary masses evee gagped 2SC phase wheh < A/ju <
v/2. The most natural interpretation of these results is thairibtability might be resolved through the
formation of a gluon condensate in the ground sfaté [31% fiir to note, however, that the exact nature
of the instability (and in the case af < A/§u < /2, in particular) is still poorly understood. The
presence of the imaginary masses even irgdpped phase (i.e., wheih < A/éu < /2), may suggest
that the gapless superconductivity is not the only reasoihfo instability. While there remain many
open guestions, a partial progress in resolving the problasralready been made[34] 35].

In the gCFL phase, the instability is seen only for three gabgsons[]33]. The corresponding
screening Meissner masses have a dependence on the migraedofeter which is similar to the that
for the 8th gluon in the g2SC phase. The fate of such an idgyabas not been clarified completely.
At asymptotic density, however, it was suggested that #iglestyround state might be given by a phase
with an additional p-wave meson condensate [36]. Whethém#as phase also exists in two-flavor
quark matter is unclear because the situation is furthempdoated there by (i) the absence of a natural
mesonic state among the low-energy excitations and (iiptimet of the “abnormal” chromomagnetic
instability for the quonsAﬁ, Ai, Ag, and AZ. Instead of a p-wave meson condensate, the so-called
“gluonic” phase may be realized 135].

The presence of the chromomagnetic instability in g2SC aiELgphases indicates that these
phases cannot be stable ground states of matter. It showddhpbhasized, however, that this does not



mean that, in nature, gapless phases are ruled out conypl&liest of all, there is an indication from
studies in non-relativistic models that similar insta@k may not appear under some special conditions
[37,[38]. In addition, most of the alternatives to the g258] [@2nd gCFL [2¥7] phases, that have been
suggested[[34, 3%, B6], share the same qualitative feathesr spectra of low-energy quasiparticles
possess gapless modes. In fact, this seems to be not aetidenthe most natural outcome of a very
simple observation: the ordinary “gapped” versions of sopeductivity are hardly consistent with the
unconventional Cooper pairing, required in neutral Areluilibrated quark matter.

9 Discussion

In conclusion, there has been a tremendous progress intretcelies of dense baryonic matter. This
started from a seemingly innocuous observation that treedithe gap in the energy spectrum of color
superconducting quark matter, under conditions realinesiars, could be of the same order as the QCD
scale [9]. This opened a whole new chapter in studies of natesif dense matter that could exist
inside compact stars. In addition to a phenomenologica#olational interest, the recent studies in
color superconductivity in neutral artdequilibrated matter revealed a wide range of fundameniesiv
possibilities stemming from unconventional Cooper pairirt is plausible that in the future a cross-
disciplinary importance of this finding may even overshadkswole in physics of compact stars.

If color superconducting quark matter indeed exists in titerior of compact stars, it should
affect some important transport and thermodynamic pragsendf stellar matter which may, in turn,
affect some observational data from stars. Among the mashiging signals are the cooling rates
[39,[40] and the rotational slowing down of starsi[41]. Aleey states of matter could affect the stellar
mass-radius relation_[42], and even lead to the existeneenafiv family of compact star5 [43]. Color
superconductivity can also affect directly as well as iecily many other observed properties of stars.
In some cases, for example, superconductivity may be acaoieg by baryon superfluidity and/or the
electromagnetic Meissner effect. If matter is superfluitiational vortices would be formed in the stellar
core, and they would carry a portion of the angular momentittmeostar. Because of the Meissner effect,
the star interior could become threaded with magnetic flbesu In either case, the star evolution may
be affected. While some studies on possible effects of lperconductivity in stars have already been
attempted, the systematic study remains to be done in theefut

The development in the field also resulted in obtaining bédianonperturbative solutions in QCD
at asymptotic densities [110,]19,120] 29], shedding somédiglhe structure of the QCD phase diagram in
the regime inaccessible by lattice calculations. By itdis has a fundamental theoretical importance.
Also, this may provide valuable insights into the theory wbsg interactions. One of the examples
might be the idea of duality between the hadronic and quaskrggion of QCD[[44]. In the future, the
structure of the QCD phase diagram and the properties afusigolor superconducting phases should
be studied in more detail. While many different phases oflquaatter have been proposed, there is no
certainty that all possibilities have already been exrelist
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