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Spectral convexity for attractive SU(2N) fermions
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Abstract

We prove a general theorem on spectral convexity with respect to particle number for 2N de-

generate components of fermions. The number of spatial dimensions is arbitrary, and the system

may be uniform or constrained by an external potential. We assume only that the interactions are

governed by an SU(2N)-invariant two-body potential whose Fourier transform is negative definite.

The convexity result implies that the ground state is in a 2N -particle clustering phase. We discuss

implications for light nuclei as well as asymmetric nuclear matter in neutron stars.
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Interacting fermions with more than two components exhibit a variety of low tempera-

ture phenomena. Of particular interest are phenomena which appear in different quantum

systems and therefore could be characterized as universal. One example in three dimen-

sions is the Efimov effect, which predicts a geometric sequence of trimer bound states for

interactions in the limit of zero range and infinite scattering length [1, 2, 3, 4, 5, 6]. The

Efimov effect is forbidden for two-component fermions due to the Pauli exclusion principle

but can occur for more than two components. Efimov trimers have recently been observed

in ultracold cesium as indicated by a large three-body recombination loss near a Feshbach

resonance [7]. Once the binding energy of the trimer system is fixed for interactions at zero

range and large scattering length, the binding energy of the four-body system is also deter-

mined. This is in direct analogy with the Tjon line relating the nuclear binding energies of

3H and 4He [8, 9, 10]. In two dimensions a different geometric sequence has been predicted

for zero-range attractive interactions. In this case the geometric sequence describes the

binding energy of N -body clusters as a function of N in the large N limit [11, 12, 13, 14].

Several recent studies have investigated pairing and the superfluid properties of three-

component fermions [15, 16, 17, 18]. Systems involving four-component fermions are of

direct relevance to the low-energy effective theory of protons and neutrons. Due to an-

tisymmetry there are only two S-wave nucleon scattering lengths, corresponding with the

spin-singlet and spin-triplet channels. Some general properties of this low-energy effective

theory have been studied such as pairing, the fermion sign problem, and spectral inequalities

[19, 20, 21, 22]. Wu and collaborators [23, 24, 25] have pointed out that the effective theory

has an accidental SO(5) or Sp(4) symmetry, and several different phases such as quintet

Cooper pairing or four-fermion quartetting could be experimentally realized for different

scattering lengths with ultracold atoms in optical traps or lattices [26, 27]. When the

scattering lengths are equal the symmetry is expanded to SU(4). This symmetry was first

studied by Wigner [28] and arises naturally in the limit of large number of colors for quan-

tum chromodynamics [29, 30]. The fact that both the spin-singlet and spin-triplet nucleon

scattering lengths are unusually large means that the physics of low-energy nucleons is close

to the Wigner limit [31, 32].

In the following we prove a general theorem on spectral convexity with respect to particle

number for 2N degenerate components of fermions. The theorem holds for any number

of spatial dimensions, and the system may be either uniform or constrained by an external

2



2NK 2N(K+1)

E

A

2N(K+2)

2NK 2N(K+1) 2N(K+2)

E

A

weak attractive potential

strong attractive potential

FIG. 1: Illustration of the convexity constraints for the ground state energy E as a function of

particle number A. The line segments show the convexity lower bounds.

potential. We assume only that the interactions are governed by an SU(2N)-invariant two-

body potential whose Fourier transform is negative definite. The main result is that if the

ground state energy E is plotted as a function of the number of particles A, then the function

E(A) is convex for even A modulo 2N . Furthermore E(A) for odd A is bounded below by

the average of the two neighboring even values, E(A− 1) and E(A+1). This is illustrated

in Fig. 1 for both the weak attractive and strong attractive cases. This convexity pattern

could be regarded as an SU(2N) generalization of even-odd staggering for the ground state

energy in the attractive two-component system.

A weaker form of this inequality was proven for A ≤ 2N and zero-range attractive

interactions [21]. Here we extend the proof to any A and any SU(2N)-invariant potential

with a negative-definite Fourier transform. Another difference between this and the previous

analysis is that we use a fixed particle number formalism rather than the grand canonical

formalism. This is essential for strongly-attractive interactions and the requirement of

keeping the physics in the low-energy regime. By limiting the number of particles we avoid

a collapse towards high densities and the need for hard core repulsion for stability.

We start by considering 2N degenerate components of nonrelativistic fermions in d spatial

dimensions. We assume the interactions are governed by an SU(2N)-invariant two-body

potential V (~r) whose Fourier transform Ṽ (~p) is strictly negative. We also allow an SU(2N)-
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invariant external potential U(~r) whose properties are not restricted. The general form of

the Hamiltonian is

H = −
1

2m

∑

i=1,··· ,2N

∫

dd~r a†i (~r)
~∇2ai(~r) +

∫

dd~r U(~r)ρ(~r)

+
1

2

∫

dd~rdd~r′ : ρ(~r)V (~r − ~r′)ρ(~r′) : , (1)

where ρ(~r) is the SU(2N)-invariant density,

ρ(~r) =
∑

i=1,··· ,2N

a†i (~r)ai(~r). (2)

The : symbols denote normal ordering. We consider the system on a hypercubic lattice

using a transfer matrix formalism. We let ~n = (~ns, nt) represent (d+1)-dimensional lattice

vectors. The subscript s on ~ns denotes a d-dimensional spatial lattice vector. We write

the d-dimensional spatial lattice unit vectors as 1̂, · · · , d̂. Throughout our discussion of

the lattice system we use dimensionless parameters and operators which correspond with

physical values multiplied by the appropriate power of the spatial lattice spacing a. We let

at be the temporal lattice spacing and αt be the ratio at/a. L denotes the spatial length of

the periodic hypercubic lattice.

We use the notation Ṽ (2π~ks/L) for the Fourier transform of the lattice potential V (~ns),

Ṽ (2π~ks/L) =
∑

~ns

V (~ns)e
i2π~ns·~ks/L. (3)

By assumption Ṽ (2π~ks/L) is strictly negative. LetM be the normal-ordered transfer matrix

operator

M =: exp



−αtHfree − αt

∑

~ns

U(~ns)ρ(~ns)−
αt

2

∑

~ns,~n′

s

ρ(~ns)V (~ns − ~n′
s)ρ(~n

′
s)



 : , (4)

where Hfree is the free lattice Hamiltonian,

Hfree = −
1

2m

∑

~ns

∑

l̂s=1̂,··· ,d̂

∑

i=1,··· ,2N

{

a†i(~ns)
[

ai(~ns + l̂s) + ai(~ns − l̂s)− 2ai(~ns)
]}

. (5)

Let V −1(~ns) be the inverse of V (~ns),

V −1(~ns) =
1

Ld

∑

~ks

e−i2π~ns·~ks/L

Ṽ (2π~ks/L)
. (6)
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We now rewrite powers of M using an auxiliary field φ,

MLt =

∫

Dφ e−S(φ) MLt−1(φ)× · · · ×M0(φ), (7)

where

S(φ) = −
αt

2

∑

nt

∑

~ns,~n′

s

φ(~ns, nt)V
−1(~ns − ~n′

s)φ(~n
′
s, nt), (8)

Mnt
(φ) ≡ : exp

[

−αtHfree − αt

∑

~ns

U(~ns)ρ(~ns) + αt

∑

~ns

φ(~ns, nt)ρ(~ns)

]

: , (9)

Dφ =
∏

~ks

[

−Ṽ (2π~ks/L)
]−Lt/2

×
∏

~ns,nt

dφ(~ns, nt)
√

2π/αt

. (10)

Let f (1)(~ns), f
(2)(~ns), · · · be a complete set of orthonormal real-valued functions of the

spatial lattice sites ~ns. We refer to these functions as orbitals. We take f (1)(~ns) to be

strictly positive but otherwise regard the form for the orbitals to be arbitrary. If the total

number of lattice sites is Ld then we have a total of Ld orbitals. We denote a one-particle

state with component i in the kth orbital as
∣

∣

∣
f
(k)
i

〉

.

Let B and C be any finite subsets of the orbital indices, B, C ⊂ {1, 2, · · · , Ld}. From these

we define
∣

∣BjC2N−j
〉

as the quantum state where each of j components fill orbitals B and

each of the remaining 2N − j components fill the orbitals C. The order of the component

labels is irrelevant, and so we assume that the first j components fill orbitals B and last

2N − j components fill orbitals C. The total number of fermions in state
∣

∣BjC2N−j
〉

is

j |B| + (2N − j) |C| , where |B| and |C| are the number of elements in B and C respectively.

We define EBjC2N−j as the energy of the lowest energy eigenstate with nonzero inner

product with
∣

∣BjC2N−j
〉

. We let ZLt

BjC2N−j be the expectation value of MLt for
∣

∣BjC2N−j
〉

,

ZLt

BjC2N−j =
〈

BjC2N−j
∣

∣MLt
∣

∣BjC2N−j
〉

. (11)

In the limit of large Lt the contribution from the lowest energy eigenstate dominates and

therefore

EBjC2N−j = − lim
Lt→∞

ln
(

ZLt

BjC2N−j

)

αtLt
. (12)

We can write ZLt

BjC2N−j using the auxiliary field φ,

ZLt

BjC2N−j =

∫

Dφ e−S(φ)
〈

BjC2N−j
∣

∣MLt−1(φ)× · · · ×M0(φ)
∣

∣BjC2N−j
〉

. (13)
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At this point we define matrix elements for the one particle states,

Mk′,k(φ) =
〈

f
(k′)
i

∣

∣

∣
MLt−1(φ)× · · · ×M0(φ)

∣

∣

∣
f
(k)
i

〉

. (14)

The component index i in (14) does not matter due to the SU(2N) symmetry. Each entry

of the matrix Mk′,k(φ) is real. We let MB(φ) be the |B| × |B| submatrix consisting of the

rows and columns in B and let MC(φ) be the |C| × |C| submatrix for C.

Each normal-ordered transfer matrix operatorMnt
(φ) has only single-particle interactions

with the auxiliary field and no direct interactions between particles. Therefore it follows

that

ZLt

BjC2N−j =

∫

Dφ e−S(φ) [detMB(φ)]
j [detMC(φ)]

2N−j . (15)

This result is perhaps more transparent if we pretend for the moment that each of the j |B|+

(2N − j) |C| particles carries an extra quantum number which makes them distinguishable.

We label the extra quantum number asX. So long as the initial and final state wavefunctions

are completely antisymmetric in X for particles of the same component then this error in

quantum statistics has no effect on the final amplitude. So we can factorize the transfer

matrices Mnt
(φ) as a product of transfer matrices for each X . This then leads directly to

(15).

Let n1 and n2 be integers such that 0 ≤ 2n1 < j < 2n2 ≤ 2N. Let us define the new

positive-definite measure

D̃φ = Dφ e−S(φ) [detMB(φ)]
2n1 [detMC(φ)]

2N−2n2 , (16)

so that

ZLt

BjC2N−j =

∫

D̃φ [detMB(φ)]
j−2n1 [detMC(φ)]

2n2−j . (17)

Then by the Hölder inequality
∣

∣ZLt

BjC2N−j

∣

∣ is bounded above by

[
∫

D̃φ |detMB(φ)|
2n2−2n1

]

j−2n1

2n2−2n1

[
∫

D̃φ |detMC(φ)|
2n2−2n1

]

2n2−j

2n2−2n1

=
(

ZLt

B2n2C2N−2n2

)

j−2n1

2n2−2n1

(

ZLt

B2n1C2N−2n1

)

2n2−j

2n2−2n1 . (18)

Taking the limit Lt → ∞ we deduce that the energies satisfy the inequality

EBjC2N−j ≥ j−2n1

2n2−2n1

EB2n2C2N−2n2 +
2n2−j

2n2−2n1

EB2n1C2N−2n1 . (19)
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This is a statement of convexity for EBjC2N−j as a function of j between even endpoints

j = 2n1 and j = 2n2. If we now take |B| = K + 1 and |C| = K, then the total particle

number is A = 2NK + j and A lies between 2NK and 2N(K + 1). The inequality in (19)

is precisely the convexity pattern in Fig. 1 for E(A) as a function of particle number.

We point out that for the special case K = 0, we can take B to be the first orbital

and C to be the empty set. In this case MB(φ) is simply a number. Furthermore since

f (1)(~ns) is strictly positive, MB(φ) is also positive so long as the temporal lattice step at

is not excessively large. Since detMB(φ) = MB(φ) > 0 it is no longer necessary that the

power of detMB(φ) be even to insure positivity. Therefore E(A) is actually convex for all

A between 0 and 2N and not just even A.

These convexity relations could be checked using any number of attractive SU(2N) mod-

els in various dimensions. This will be checked in future studies. Here we instead examine

actual nuclear physics data to investigate Wigner’s approximate SU(4) symmetry in light

nuclei. It is by no means clear that the interactions of nucleons in light nuclei can be

approximately described by an attractive SU(4)-symmetric potential. Recent results from

nuclear lattice simulations hint that this might be possible [33, 34], however there are forces

even at lowest order in chiral effective field theory which break SU(4) invariance in addition

to being repulsive. Nevertheless all of the SU(4) convexity constraints are in fact satisfied

for the most stable light nuclei with up to 16 nucleons as can be seen in Fig. 2. The line

segments drawn show all of the convexity lower bounds.

There have been several recent studies of alpha clustering in nuclear matter [35, 36, 37,

38, 39, 40] as well as multiparticle clustering in other systems [24, 25, 26, 27, 41, 42]. The

results presented here give sufficient conditions for the onset of this multiparticle clustering

phase. One can also make a definite prediction about the j-component quasiparticle energy

gaps. Starting from a 2NK-fermion SU(2N)-symmetric state, let δj be the extra energy

required per fermion to add j fermions, all of different components. The ground state energy

for 2NK + j fermions is a convex function for even j in the interval from j = 0 to j = 2N .

Therefore it follows that δ2 ≥ δ4 ≥ · · · ≥ δ2N . Since the ground state energy for 2NK + j

fermions is also convex for j = 0, 1, 2, we conclude furthermore that δ1 ≥ δ2 ≥ δ4 · · · ≥ δ2N .

We note that for the strongly attractive case these energy gaps are negative, and it is more

natural to speak of energy gaps per missing fermion for the corresponding j-component

quasiholes, δhj . In this case we find again δh1 ≥ δh2 ≥ δh4 · · · ≥ δh2N .
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FIG. 2: Plot of the energy versus particle number for the most stable light nuclei with up to 16

nucleons. The line segments show the convexity lower bounds.

In summary we have derived a general result on spectral convexity with respect to particle

number for 2N degenerate components of fermions. We assume only that the interactions

are governed by an SU(2N)-invariant two-body potential whose Fourier transform is neg-

ative definite. The ground state energy E as a function of the number of particles A is

convex for even A modulo 2N . Also E(A) for odd A is bounded below by the average of

the two neighboring even values, E(A − 1) and E(A + 1). When applied to light nuclei

for A ≤ 16 all of the convexity bounds for SU(4) are satisfied. These results give further

evidence that an approximate description of light nuclei may be possible using an attractive

SU(4)-symmetric potential. This would be a direction worth pursuing since the same theory

could then be applied to dilute neutron-rich matter with a finite number of protons. The

residual SU(2)×SU(2) symmetry for proton spins and neutron spins would guarantee that

the Monte Carlo simulation could be done without fermion sign oscillations. The physics of

this quantum system would be helpful in understanding the superfluid properties of dilute

neutron-rich matter in the inner crust of neutron stars.
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