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New exact fronts for the nonlinear diffusion equation with quintic nonlinearities
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Casilla 306, Santiago 22, Chile

(November 21, 2018)

We consider travelling wave solutions of the reaction diffusion equation with quintic nonlinearities
ut = uxx+µu(1−u)(1+αu+βu2+γu3). If the parameters α, β and γ obey a special relation, then
the criterion for the existence of a strong heteroclinic connection can be expressed in terms of two
of these parameters. If an additional restriction is imposed, explicit front solutions can be obtained.
The approach used can be extended to polynomials whose highest degree is odd.

I. INTRODUCTION

The nonlinear diffusion equation ut = uxx + f(u) models phenomena in diverse fields such as population growth,
kinetics of phase transitions, chemical reactions and many others. Of special interest is the case when the function
f is such that there exist two steady states, one stable and one unstable. We shall assume that the equation has
been scaled so that the unstable state is uu = 0 and the stable state is us = 1, and we consider functions f which
are positive in (0, 1). Then sufficiently localized initial conditions evolve into a travelling front which joins the two
steady states [1]. The speed at which the front propagates, c∗ is equal or greater than the linear marginal stability

value cL = 2
√

f ′(0). In many cases the asymptotic speed of propagation is exactly the linear value cL = 2
√

f ′(0)
obtained by the linear marginal stability criteria [2,3]. There are cases however when the front propagates at a speed
greater than this value, case which is referred to as that in which a nonlinear speed selection mechanism [4–6] operates.
Explicit expressions for this special nonlinear front or strong heteroclinic connection and its speed have been obtained
for particular choices of f . All the known solutions correspond to functions f of the form f(u) = µu + un − u2n−1

which, for µ positive but smaller than a critical value µc, are strongly heteroclinic [7]. The purpose of this article
is to show, using as an example a quintic polynomial f , that the criterion for the existence of special fronts can
be formulated in many cases in a simpler way that enables one to decide whether for a certain f there is a strong
heteroclinic connection even if the exact solution for the front is not known. We find new exact fronts for this quintic
polynomial for f together with a criterion for strong heteroclinicity in terms of the parameters of the polynomial valid
even when no explicit solution for the front can be obtained. Similar results can be obtained for polynomials whose
highest degree is odd. The knowledge of exact solutions is of interest not only as a curiosity, they are also needed in
the framework of the recent proposal of structural stability [8], the knowledge of the speed for a specific form of f
enables the calculation of the speed for small perturbations to f using renormalization group techniques.
In section 2 we state the problem and reformulate already known results, and in section 3 we give the new results

for the quintic polynomial.

II. MONOTONIC FRONTS OF THE REACTION DIFFUSION EQUATION

We consider the reaction diffusion equation

ut = uxx + f(u)

with f(0) = 0, f(1) = 0, f ′(0) > 0 and f > 0 in (0, 1). Given these conditions on f then there exist fronts that
connect the unstable fixed point u = 0 to the stable fixed point u = 1. Travelling wave fronts u(x − ct) satisfy the
ordinary differential equation

uzz + cuz + f(u) = 0 lim
z→−∞

u = 1, lim
z→∞

u = 0, (1)

where z = x− ct and we assume that c is positive. A front joining the stable fixed point 1 to the unstable point 0 is
monotonic if in addition its derivative du/dz does not change sign. If we search for monotonic fronts it is convenient
to consider the dependence of z as a function of u, or rather the dependence of v(u) = −(dz/du)−1 as a function of
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u. For a monotonic solution of equation (1), u(z) decreases monotonically as z goes from −∞ to ∞, therefore the
function v(u) is well defined and is positive between 1 and 0 and vanishes at the fixed points. One readily finds that
the equation for v(u) is

v(u)
dv

du
− cv(u) + f(u) = 0, (2a)

with

v(0) = v(1) = 0, with v > 0. (2b)

Since the endpoints are singular we must determine the behavior near them analytically. If we consider functions f
analytic around 0 and with f ′(0) > 0, then near u = 0 we find

v(u) = a1u + a3/2u
3/2 + a2u

2 + a5/2u
5/2 + a3u

3 + . . .

where the first terms are given by

a21 − ca1 + f ′(0) = 0 (3a)

a3/2(
5

2
a1 − c) = 0 (3b)

a2(3a1 − c) +
1

2
f ′′(0) = 0 (3c)

a5/2(c−
7

2
a1)−

7

2
a3/2a2 = 0 (3d)

and so on. That the leading term in the expansion of v near zero is linear in u is due to the fact that the front in the
original coordinates u(z) approaches the fixed points exponentially. Since v must be positive between 0 and 1, a1 must

be real and positive. The two roots for a1 are given by a1P = (c+
√

c2 − 4f ′(0) )/2 and a1M = (c−
√

c2 − 4f ′(0) )/2.

The minimum speed c for which there may be a monotonic front is the linear marginal speed value cL = 2
√

f ′(0)
value at which the roots coincide a1P = a1M ≡ a1L. For speeds greater than this value a1M < a1L < a1P . Strong
heteroclinic solutions or special nonlinear front profiles are those associated with a1P . From the expansion at the origin
it follows from (3b) that either c = 5a1/2 or a3/2 = 0. In the first case we find that c = 5

√

f ′(0)/6 ≈ 2.041
√

f ′(0)

and a1 =
√

2f ′(0)/3 = a1M . As it is known, these solutions are not a preferred asymptotic state. Strong heteroclinic
connections can be achieved only if a3/2 = 0, all half integer coefficients vanish then and v(u) = a1u+ a2u

2 + . . ..
Near u = 1, assuming f ′(1) < 0,

v(1 − u) = b1(1 − u) + b2(1 − u)2 + b3(1 − u)3 + . . .

where b1 is the positive solution of

b21 + cb1 + f ′(1) = 0.

There is only one positive solution for b1, the rest of the coefficients follow easily.
It is convenient to introduce a new parameter λ defined by c = λa1. It is not difficult to realize that whenever

1 < λ < 2 then the solution for v is strongly heteroclinic, that is, associated with a1P and when λ > 2 it becomes
associated with a1M ; hence for λ > 2 the linear marginal speed is selected. If c = λa1 then

c = λ

√

f ′(0)

λ− 1
, a1 =

√

f ′(0)

λ− 1
. (4)

At λ = 2, the speed attains its linear value cL = 2
√

f ′(0). The problem then is to determine the value of λ. This
transition value λ = 2 is not associated with any specific nonlinearity, it is valid for any f which satisfies the conditions
given above.
All exact front solutions given in the literature, [4,9,10,6,7] correspond to functions f for which an exact solution

for v is of the form
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vn(u) = a1u(1 − un−1)

which is an exact solution of equation (2) for

fn(u) = f ′(0)

(

u+
(1 + n− λ)

λ− 1
un −

n

λ− 1
u2n−1

)

(5)

We observe that for λ = n+ 1 we recover the solutions of Kaliappan [9]; since n > 1, λ is greater than 2, so none of
them are strongly heteroclinic. The front corresponding to vn is given implicitly by

z = −

∫

du

vn(u)
. (6)

and explicitly by [7,11]

un(z) =
e−za1

(1 + e−(n−1)za1)
1

n−1

The criterion for the existence of strongly heteroclinic fronts together with their exact expression has been given
[7] for functions f of the form f(u) = µu + un − u2n−1. The critical value for µ given in [7] for the transition from
a strong heteroclinic connection to a simple nongeneric connection (a solution associated with a1M ) is equivalent to
the value λ = 2 after suitable rescaling. It is perhaps convenient to see it in the example given by Van Saarloos [6]

φt = φxx + φ + dφ3 − φ5

which has a strongly heteroclinic connection for d > 2/
√
3, of speed

v† =
−2 + 2

√
4 + d2

√
3

.

To identify the value of λ from equation (5) we must scale the equation for φ so that the stable point is at 1. To
do so we let u = Kφ, u satisfies ut = uxx + u+K2du3 −K4u5 and the stable state is u = 1 if

K2 =
d+

√
4 + d2

2

where the positive sign is chosen to obtain a real K. Now we compare with equation (5) with n = 3. We see that
f ′(0) = 1 and that

λ = 4 −
3d

K2

or, in terms of d,

λ =
4
√
4 + d2 − 2d

d+
√
4 + d2

.

It is straightforward to see that the critical value d = 2/
√
3 is exactly λ = 2 and that the speed

c =
λ

√
λ− 1

= v†.

III. NEW SOLUTIONS

Now consider fronts for f being a quintic polynomial in u. This problem was considered in [10] but no explicit
solutions were found and no attempt to examine the conditions for the transition from the linear to the nonlinear
regime were made. Here we show under which conditions a closed form can be obtained, together with some examples
and the condition for strong heteroclinicity λ < 2 in terms of the parameters of the function f . Evidently the value
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of the parameter λ can be determined analytically only if an exact solution for v is known. The most general form of
a quintic polynomial that vanishes at 0 and 1 is

f(x) = µx(1 − x)(1 + αx+ βx2 + γx3) (7)

where µ, α, β and γ are four arbitrary parameters whose only restriction is given by the requirement f ′(0) > 0 and
f > 0 in (0, 1). On the other hand, the most general closed form solution for v given a quintic f is given by

v(u) = a1u(1− u)(1 + bu) (8)

where b > −1. Introducing again the parameter λ given above, so that a1 and c are given by equation (4), equation
(8) is the exact solution of equation (2) with

f(u) = f ′(0)u(1− u)

(

1 +
(2 + λb − 3b)

λ− 1
u+

b(5− 2b)

λ− 1
u2 +

3b2

λ− 1
u4

)

. (9)

In the solution for v we have three adjustable parameters, λ, b, f ′(0) whereas in the most general form for f , four
adjustable parameters exist. Hence, an exact solution for v can be found chosing three parameters of f arbitrarily
and the fourth one in terms of them. Choosing µ, β and γ arbitrarily, we identify

f ′(0) = µ

λ = 1 +
75γ

(3β + 2γ)2

and

b =
5γ

3β + 2γ

and the exact solution exists if

α =
(2 + λb − 3b)

λ− 1

For any other value of α a closed form solution does not exist and we cannot determine the value of λ. The criterion
for the solution to be strongly heteroclinic 1 < λ < 2 is expressed now in terms of the free parameters β and γ.
Now we show that an explicit solution for the front in the original coordinates exists only if an additional condition

on b, hence a relation between the free parameters β and γ is satisfied. Proceeding as above in equation (6) we find
that u(z) is the solution of

e−(b+1) a1 z =
u1+b

(1− u)(1 + bu)b
. (10)

Writing b = n/p the equation for u is

e−(n+p) a1 z =
un+p

(1 − u)p(1 + bu)n
. (11)

This can be inverted to obtain the explicit solution for u(z) if n+p = 2, 3, 4. The detailed inversion of all the solvable
cases is not instructive, here we give one example. Choose n = 2, p = 1, then b = 2, and the front is a solution of the
cubic equation

u3(1 + 4e−3a1z)− 3ue−3a1z − e−3a1z = 0. (12)

This cubic has two complex roots and a single real positive root which is the desired front, given by

u(z) =
2

1

3

√
4 + e3 a1 z

(

e
3 a1 z

2 +
√
4 + e3 a1 z

)
1

3

+

(

e
3 a1 z

2 +
√
4 + e3 a1 z

)
1

3

2
1

3

√
4 + e3 a1 z

(13)
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Again this is an exact front for f of the form given by equation (7). It corresponds to a strongly heteroclinic
connection for λ < 2. If one chooses the case n + p = 4 the quartic equation that arises has a pair of complex
conjugate solutions, a negative solution and a positive solution which is the desired front. For values of b which do
not allow the obtention of the explicit form of the front u(z) we still have the speed selection criteria in terms of the
free parameters of the polynomial.
Closed form solutions v(u) for polynomial f ′s can be obtained only if f is an odd polynomial. In general, if f is a

polynomial of degree 2k+1 that vanishes at 0 and 1, there are 2k free parameters (restricted only by the requirement
of positivity of f), whereas the corresponding closed form solution for v has k + 1 parameters, which implies that a
closed form for v, and an explicit expression for λ is possible if k − 1 parameters of f are chosen adequately in terms
of the k + 1 remaining free parameters.

IV. CONCLUSION

We have studied the existence of exact strongly heteroclinic fronts for the reaction diffusion with quintic nonlin-
earities. We find that the use of phase space enables one to characterize the transition from strongly heteroclinic
to simple nongeneric fronts in terms of a single parameter λ which is the ratio between the speed and the rate of
decay at infinity. The introduction of this parameter gives a unified way in which to describe the type of solutions
which is independent of the nature of the nonlinearities. The exact value of this parameter cannot be determined
analytically when the highest nonlinearity is even, if the highest derivatives are odd it can be determined for special
choices of parameters. In the case studied here, quintic nonlinearities, the value of λ can be determined exactly if
a special relation betwen the parameters of the equation is satisfied. It is not necessary to know the exact solution
u(x − ct) in order to determine whether a strong heteroclinic connection exists. If an additional restriction on the
parameters is imposed, new exact solutions can be found. We have illustrated this situation for one particular choice,
a whole family of exact solutions can be constructed. The use of phase space is not only useful as an aid to find exact
solutions, it can be used to obtain a lower bound on the speed, valid for all f , which allows one to determine the
range of parameters for which strongly heteroclinic connections exist [12].
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