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Abstract

We present TaylUR, a Fortran 95 module to automatically compute the numerical
values of a complex-valued function’s derivatives with respect to several variables up
to an arbitrary order in each variable, but excluding mixed derivatives. Arithmetic
operators and Fortran intrinsics are overloaded to act correctly on objects of a
defined type taylor, which encodes a function along with its first few derivatives
with respect to the user-defined independent variables. Derivatives of products and
composite functions are computed using Leibniz’s rule and Faà di Bruno’s formula.
TaylUR makes heavy use of operator overloading and other Fortran 95 features such
as elemental functions.
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Operating system: Any system with a conforming Fortran 95 compiler
Keywords: automatic differentiation, higher derivatives, Fortran 95
PACS: 02.60.Jh, 02.30.Mv
Classification: 4.12 Other Numerical Methods, 4.14 Utility

Nature of problem:

Problems that require potentially high orders of derivatives with respect to some
variables, such as e.g. expansions of Feynman diagrams in particle masses in pertur-
bative Quantum Field Theory, and which cannot be treated using existing Fortran
modules for automatic differentiation [1-2].

Solution method:

Arithmetic operators and Fortran intrinsics are overloaded to act correctly on ob-
jects of a defined type taylor, which encodes a function along with its first few
derivatives with respect to the user-defined independent variables. Derivatives of
products and composite functions are computed using Leibniz’s rule and Fàa di
Bruno’s formula.

Restrictions:

Memory and CPU time constraints may restrict the number of variables and Taylor
expansion order that can be achieved. Loss of numerical accuracy due to cancella-
tion may become an issue at very high orders.

Unusual features:

No mixed higher-order derivatives are computed. The complex conjugation opera-
tion assumes all independent variables to be real.

Running time:

The running time of TaylUR operations depends linearly on the number of vari-
ables. Its dependence on the Taylor expansion order varies from linear (for linear
operations) through quadratic (for multiplication) to exponential (for elementary
function calls).
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LONG WRITE-UP

1 Introduction

There has recently been an increased interest in the physics literature in meth-
ods that allow to automatically compute the numerical values of the deriva-
tives of a function along with the function itself [1,2,3]. Since the need to do
this arises in different contexts, different methods have been proposed and
implemented. In many cases, such as in differential equation solvers, only the
first and possibly second derivatives are needed, a task for which a number of
tools exist [3,4,5]. There are, however, some cases, such as the expansion of
Feynman diagrams in external momenta or particle masses and other series
expansions in Quantum Field Theory, where at least some of the higher-order
derivatives up to some relatively large order are needed, and few tools to deal
with this situation were available so far. It is thus the purpose of this paper to
present TaylUR, a Fortran 95 module that addresses this need by providing a
mechanism to compute the values of the higher derivatives of a function along
with the function itself.

In the field of automatic differentiation [5], two different approaches are gen-
erally distinguished: Source transformation methods, which take an existing
code for the computation of a function as their input and produce a code
that computes its derivatives as output, and operator overloading methods,
which make use of operator overloading and other object-oriented features of
a language to encapsulate the task of computing derivatives within an object
that has the same “user interface” as a real or complex number. While source
transformation has the advantage of producing faster code, since it can take
full advantage of a compiler’s optimising features, operator overloading pro-
vides for an easier and more convenient user interface, in particular since no
additional step is inserted into the compile-link-run cycle. TaylUR uses an
operator overloading strategy to provide a new type taylor that acts like a
complex (or real) number while containing the values of the derivatives of the
function it represents along with that function’s value.

In order to emulate the behaviour of intrinsic numerical data types as closely
as possible, TaylUR makes significant use of the Fortran 95 features for pure
and elemental functions. Thus very few, if any, changes to existing user code
(apart from declaring objects to be of type taylor) will be necessary.

The intended area of application of TaylUR is fairly orthogonal to that of
other, existing systems like ADF95 [3] or auto deriv [4]: Where the latter are
aimed primarily at use in implicit differential equation solvers, where only first
and possibly second order derivatives are needed, but efficient handling of large
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numbers of variables with potentially sparse Jacobian and Hessian matrices is
a primary goal, TaylUR aims at cases such as Feynman diagram differentiation,
where the number of variables is usually limited, but an expansion to higher
orders is needed. TaylUR performs well with large numbers of variables, but
does not exploit any existing sparsity structure of the derivatives.

There are some areas of application, such as optimization problems or higher-
dimensional interpolation, which require mixed higher-order derivatives, some-
thing which neither TaylUR nor ADF95 or auto deriv provide.

Where it is acceptable to link a Fortran 95 program against code written
in C++, the C++ package ADOL-C [6,7] is available. ADOL-C uses a very
different approach internally than TaylUR, employing a sophisticated storage
allocation system to maintain a data structure that allows the computation of
higher derivative tensors, including mixed derivatives, for functions written in
C/C++. The advantage of computing mixed higher-order derivatives which
ADOL-C has over TaylUR is bought at the expense of numerous memory
accesses, which significantly slow down the code at runtime, although on the
other hand it allows for better scaling behaviour in the Taylor expansion order.
The beam dynamics simulation and analysis code COSY INFINITY [8] and
the general-purpose numerical Harwell Subroutine Library [9] also contain
arbitrary-order automatic differentiation code that computes mixed higher-
order derivatives and can be linked against Fortran 95 programs.

We believe that the straightforward interface and relatively small code size
(about a quarter the size of ADOL-C) of TaylUR, as well as the fact that it is
coded entirely in Fortran 95, offer a fair balance for the lack of mixed higher-
order derivatives, and make it very competitive with these larger libraries for
those applications where mixed higher-order derivatives are not required.

It should also be noted that the existing packages for automatic differentiation
using operator overloading have so far been restricted to use real-valued func-
tions only. TaylUR overcomes this limitation and provides a complex-valued
function type, which is commonly needed e.g. in the evaluation of Feynman
diagrams in high-energy physics.

2 Detailed description of program

2.1 Usage of the program

In order to employ the TaylUR module, the user must include a USE statement
for TaylUR at the beginning of his program. In addition to this, any variable
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for which the computation of derivatives is desired, as well as all variables
and user functions which feed into its computation over the course of the user
program, must be declared to be of TYPE(taylor).

Independent variables are created by the function INDEPENDENT, which takes
the index of the independent variable and its value as arguments, as in the
following example:

TYPE(taylor) :: x,y,f

x = independent(1,0.3)

y = independent(2,2)

f = y**2 -3*x

which declares x and y to be the independent variables with index 1 and 2,
respectively, and assigns them the values 0.3 and 2, before computing the
function f from them. The function value of f will be 3.1, its first derivative
with respect to (w.r.t.) the first independent variable will be -3. with all
higher derivatives w.r.t. this variable vanishing, and its first derivative w.r.t.
the second independent variable will be 4., the second derivative 2., all higher
derivatives w.r.t. this variable vanish again, as do any derivatives w.r.t. other
variables.

As a slightly more realistic example let us look at the computation of the
wavefunction renormalisation constant in Euclidean scalar φ3 theory. At the
one-loop level, we need to compute ∂2

∂p2
4

Π(p)|p4=im, where Π(p) is given by the

bubble diagram. A way to code this might be given by

FUNCTION bubble_diagram(k,p_,m_)

USE TaylUR

COMPLEX :: p_(4),bubble_diagram

REAL :: k(4),m_

TYPE(taylor) :: p(4),m,feynman

INTEGER :: mu

DO mu=1,4

p(mu) = independent(mu,p_(mu))

ENDDO

m = independent(5,m_)

k(4) = k(4) - 0.5*p(4) ! Shift k_4 countour

feynman = 1/(sum(k**2)+m**2)/(sum((k+p)**2)+m**2)
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bubble_diagram = derivative(feynman,4,2)/(2*Pi)**4

END FUNCTION bubble_diagram

This routine might then be passed to an integration routine which expects a
function with the given interface and performs an appropriately regularised
integration.

While in this case the derivative can be easily computed analytically, this is
no longer the case in e.g. lattice perturbation theory, where (especially for
improved actions [1]) the Feynman rules quickly become too complex to allow
analytical calculations to be performed easily. It should also be noted that
changing just the two last arguments of the DERIVATIVE function call will al-
low to compute the mass dependence of the mass renormalisation. With an
appropriately implemented integration method, it is even possible to numer-
ically integrate a taylor object-valued function for a taylor object-valued
result.

2.2 Structure and handling of taylor objects

The taylor type is defined internally as

TYPE taylor

COMPLEX(kind=dc_kind) :: drv(1:N_taylor_vars,0:Max_taylor_order)

END TYPE taylor

where dc kind is defined as the kind parameter of a double precision complex.
The field drv(i,n) holds the n-th derivative w.r.t. the i-th independent vari-
able, where any zeroth derivative is defined as equal to the function value.

The maximal order of the Taylor expansion is determined by the module
parameter Max taylor order, the total number of variables by the module
parameter N taylor vars. Where needed, these parameters can be changed
to provide for higher orders or more variables, or to speed up code by reducing
the numbers. 2

2 Memory constraints may impose an upper limit of both Max taylor order and
N taylor vars, as may compiler restrictions (at least some versions of the Intel
Fortran compiler will cause a segmentation fault if Max taylor order exceeds about
12, and some Sun compilers experience arithmetic exceptions at about the same
order).
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Where a specific portion of a program does not need the full Taylor expan-
sion up to order Max taylor order, it is possible to set the module variable
Taylor order to a lower value in order to compute only derivatives up to that
order.

Independent variables are created by the function INDEPENDENT, which takes
the index of the independent variable and its value as arguments. It is the
user’s responsibility to make sure that no two taylor objects are declared
to share the same independent variable index, since it is not possible for the
TaylUR module to keep track of this.

There are a number of user-defined functions for accessing the value and
derivatives of the function encoded by a taylor object. VALUE(t) returns
the value of the taylor object t, whereas DERIVATIVE(t,i,n) gives the n-th
partial derivative of the taylor object t w.r.t. the i-th independent variable.
The expansion (f, ∂xi

f, ∂2
xi
f, . . .) w.r.t. can be obtained as an array by using

EXPANSION(t,i).

It is also possible to obtain the vector of first partial derivatives as an array
by using the function GRADIENT(t), and the Laplacian as LAPLACIAN(t).

2.3 Overloaded operations on taylor objects

The assignment operator = has been overloaded to allow assignment of intrinsic
types to taylor objects and vice versa. It should be noted that, in accordance
with the standard behaviour of Fortran 95 intrinsic types, assignment to a
REAL will result in the real part of the right-hand side being taken implictly.

All standard Fortran 95 arithmetic operators (+,-,*, /,**) have been over-
loaded to act on taylor objects. Numbers of both double and default preci-
sion real and complex type as well as integers can be combined with taylor

objects by addition, subtraction, multiplication and division in any order, and
taylor objects can be raised to integer powers. All these operations are de-
fined with the elemental attribute and therefore can be used with arrays of
taylor objects using the usual Fortran 95 array syntax.

All comparison operators have been overloaded to allow comparison of taylor
objects with both double and default precision reals and integers as well as
with complex numbers, where this makes sense. The comparison operators
compare the value of the taylor objects only, neglecting their derivatives.
In addition to these intrinsic operations, two user-defined comparison opera-
tors .IDENT. and .NIDENT. exist, which check for identity and non-identity
of the complete taylor series, as opposed to the comparison of values only
carried out by the intrinsic operators == and /=. All comparison operators are
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elemental.

2.4 Overloaded intrinsic functions of taylor objects

All Fortran 95 intrinsics which make sense on a Taylor-expanded quantity and
which can be fully implemented as user-defined functions, have been over-
loaded to work correctly on taylor objects. Specifically, the functions ABS,
ACOS, AIMAG, ASIN, ATAN, ATAN2, CONJG, COS, COSH, DIM, EXP, LOG, LOG10,
MOD, MODULO, SIGN, SIN, SINH, SQRT, TAN, TANH accept taylor objects as their
arguments, and MATMUL and DOT PRODUCT accept arrays of taylor objects as
their arguments.

In the case of the functions REAL and AIMAG, a conscious decision was made
to have them behave differently from their intrinsic counterparts in that they
do not convert to real type, but return an result of type taylor (with the
real/imaginary part of each derivative taken) instead. This was done so that
the mathematical functions ℜ (real part) and ℑ (imaginary part) are available
on taylor objects, and since assignment of a taylor object to a real variable
will convert it to a real anyway, no functionality is lost. In the case where it
is necessary to assign the value of one taylor object to another taylor object
as a constant, or where the value of a taylor object has to be passed to an
external function that accepts only a complex or real argument, the user-
defined VALUE function may be used instead. A pair of user-defined functions
REALVALUE and IMAGVALUE, which return the real and imaginary part of the
value of a taylor object, respectively, are also provided.

The following Fortran 95 intrinsics cannot be fully emulated by user-defined
functions, since they return results of different kinds depending on the value
of an argument, which is impossible to achieve with a function written in For-
tran 95: AINT, ANINT, CEILING, FLOOR, INT, NINT, REAL. These functions accept
taylor objects as their arguments only when the optional kind argument is
absent.

The Fortran 95 intrinsics MAX and MIN that accept arbitrary variable numbers
of arguments (which a function written in Fortran 95 cannot emulate) accept
taylor objects as their arguments in their two-argument form only.

The Fortran 95 array reduction intrinsics MAXLOC, MAXVAL, MINLOC, MINVAL,
PRODUCT and SUM accept arguments of variable rank along with an optional
argument dim to denote the dimension along which reduction is to be per-
formed. This behaviour, too, cannot be emulated by a Fortran 95 function;
these functions accept taylor object arrays of rank one only. Otherwise they
act as their intrinsic counterparts, including the existence of the optional mask
argument.
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The taylor functions are elemental where their intrinsic counterparts are. 3

Those functions whose intrinsic counterparts are restricted to real or inte-
ger arguments (ACOS, AINT, ANINT, ASIN, ATAN, ATAN2, CEILING, DIM, FLOOR,
INT, LOG10, MAX, MAXLOC, MAXVAL, MIN, MINLOC, MINVAL, MOD, MODULO, NINT,
SIGN) will take the real part of a taylor object first and should be applied
to real-valued taylor objects only, just like their intrinsic counterparts would
be applied to real numbers only. Depending on the value of the variable
Real args warn, which defaults to .TRUE., these functions will warn about
a complex argument (with imaginary part greater than Real args tol) be-
ing passed by returning a NaN (not a number) value, or ±HUGE in the case of
integer functions; this behaviour can be turned off where desired by setting
Real args warn to .FALSE. in the user’s code.

On the other hand, COSH, SINH, TAN and TANH work correctly with complex-
valued taylor objects, although their intrinsic counterparts are (somewhat
arbitrarily) restricted to real arguments.

It should be noted that, while TaylUR accepts complex-valued independent
variables, the CONJG function assumes that all independent variables are real.
In particular, no attempt is made to implement any features of Wirtinger
calculus.

In those cases where the derivative of a function becomes undefined at certain
points (as for ABS, AINT, ANINT, MAX, MIN, MOD, MODULO and SQRT), while the
value is well defined, the derivative fields will be filled with NaN (not a number)
values by assigning them to be 0./0. Depending on the compiler and system
settings, this may cause the program to stop.

Examples of the usage of all routines can be found in the test program dis-
tributed with TaylUR.

2.5 Mathematical details of implementation

The derivatives of products of taylor objects are computed using Leibniz’s
rule

∂n

∂xn
i

(fg) =
n
∑

k=0

(

n

k

)(

∂kf

∂xk
i

)(

∂n−kg

∂xn−k
i

)

(1)

3 As a reminder, an elemental function is one which can be called with an array
instead of a scalar passed as its argument, and will return an array contain the
result of its application to each element of the passed array in turn.
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Leibniz’s rule is also employed to compute derivatives of quotients and square
roots by using the equalities

0 =
∂n

∂xn
i

(1) =
∂n

∂xn
i

(ff−1) =
n
∑

k=0

(

n

k

)(

∂kf

∂xk
i

)(

∂n−kf−1

∂xn−k
i

)

(2)

∂n

∂xn
i

f =
∂n

∂xn
i

(
√

f)2 =
n
∑

k=0

(

n

k

)(

∂k
√
f

∂xk
i

)(

∂n−k
√
f

∂xn−k
i

)

(3)

and solving for the n-the derivative of f−1 or
√
f , respectively.

TaylUR differs significantly from similar tools such as auto deriv [4] or
ADF95 [3] that use hard-coded chain rule expressions for the derivatives of
intrinsics. Such an approach is obviously unsuitable for the arbitrary-order
case. TaylUR instead uses Faà di Bruno’s formula [10,11] for the n-th derivative
of a composite function:

∂n

∂xn
i

F (y(x)) =
∑

{k}

n!
∏

ν kν !ν!kν
d|k|F

dy|k|

n
∏

µ=1

(

∂µy

∂xµ
i

)kµ

(4)

where |k| = ∑

µ kµ, and the sum runs over all integer vectors k that satisfy the
conditions 0 ≤ kµ ≤ n and

∑

µ µkµ = n.

A subroutine FDB GENERATE that generates and stores the needed vectors k
along with the precomputed weight of each term F (m)∏

µ(y
(µ))kµ is called

from within the INDEPENDENT function. Those functions requiring the com-
putation of derivatives via Faà di Bruno’s formula call another function FDB

which returns these precomputed values. This separation allows to compute
the vectors only once and store them for better performance, while maintain-
ing the elemental status of the overloaded intrinsics (which requires them to
be pure, prohibiting any side-effects such as manipulating external data or
save variables).

2.6 Typical running time and memory usage

The runtime memory and CPU requirements of the TaylUR package are de-
termined by the N taylor vars, Max taylor order parameters and, to some
extent, the Taylor order variable.

A taylor object requires N taylor vars× Max taylor order times the mem-
ory that a complex variable of kind dc kind requires, and this size is fixed at
compilation time.
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The time taken to perform operations on taylor objects depends on the
operation, the compiled value of N taylor vars and the run-time value of
Taylor order. All operations scale approximately linearly in the number of
variables, although this partially depends on the CPU and compiler, since the
dependence on N taylor vars is through array assignments alone. The run-
time of linear operations, such as assignment, addition, multiplication with a
constant or comparison for identity, as well as some of the simpler mathemati-
cal functions like MOD, will scale approximately linearly with Max taylor order

(again through array assignment), while being independent of Taylor order.
Multiplication and division of taylor objects, as well as the SQRT function, will
have a run-time scaling quadratically with Taylor order, while the run-time
of the EXP function, logarithms, trigonometric, hyperbolic and inverse trigono-
metric functions will scale approximately exponentially with Taylor order,
due to the increase in the number of terms combining different lower-order
derivatives of their arguments that need to be combined.

2.7 Limitations on the complexity of the problem

Besides the limits on the number of variables and maximal expansion order
that memory and CPU time constraints may impose, there are limits on the
expansion order that may be achieved due to the finite precision of floating-
point operations taken in conjunction with the large number of potentially
large terms that need to be added to obtain the value of high-order derivatives.

This becomes a problem in particular when functions whose n-th derivatives
are large are combined to form a function with a small n-th derivative, or
when contributions from different orders combine in a product of quotient to
yield a small result for some higher-order derivative of the result. In these
cases, the resulting value for the derivative can be many orders of magnitude
less accurate than the value obtained for the function value or lower-order
derivatives.

In order to avoid a potential total loss of precision, users interested in high-
order derivatives should monitor the derivatives of intermediate results and
compare them to the derivatives of the final answer. If the derivatives of the
final result become insignificant when compared to those of the intermediate
steps that entered its computation, the final result is likely to be dominated
by numerical noise.
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2.8 Unusual features of the program

Apart from any language-imposed limitations in the emulation of the be-
haviour of certain Fortran 95 intrinsics mentioned in section 2.1, TaylUR is
limited in that it does not attempt to compute any mixed second or higher-
order derivatives. This limitation is imposed for a number of reasons: Firstly,
the memory and time needed for the storage and computation of mixed higher-
order derivatives gets out of hand very quickly as one goes up to higher orders.
Secondly, the computation of mixed derivatives of arbitrary order involves a
programming effort that is rather disproportionate to the use that is likely to
be made of them in most applications.

We would also like to repeat that TaylUR allows for complex-valued functions
and variables, while those functions that are only defined for real arguments (in
particular those that refer to ordering relations) will silently take the real parts
of their arguments. It also bears repeating that the CONJG function assumes
that all independent variables are real-valued, and that no attempt is made
to implement Wirtinger calculus.

2.9 Testing and verification

The TaylUR package has been tested on a range of computer systems (Linux/
Intel, Linux/Alpha and SunOS/Sparc) with a number of different compilers
(Intel, Compaq and Sun).

The test suite used to test TaylUR for potential bugs and errors consists of
both testing the derivatives computed for a number of functions with known
derivative expansions against their analytically determined values and of vari-
ous sanity checks such as that f/f is equal to one with all derivatives vanishing
to within a reasonable accuracy.

TaylUR has evolved out of similar, more restricted codes used by the author
in the automatic differentiation of Feynman diagrams in perturbative lattice
QCD [1] and chiral perturbation theory on the lattice. These codes had been
tested and used in practice and have been found to work correctly, giving
results in agreement with analytical results whenever those were available.
While TaylUR contains some significant extensions compared to these codes,
in particular the intrinsic functions whose derivative expansion is based of Faà
di Bruno’s formula, these extensions have been well tested and found to be
stable.
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As an example, let us consider the function

f(x) = exp
(

− sin2(5
√
x)/

√
x
)

(5)

whose derivative expansion involves recourse to Faà di Bruno’s formula twice
at each order, as well as usage of the expansion of the square root, power
and multiplicative inverse functions. Fig. 1 shows plots of the analytical form
(as given by a computer algebra program) and numerical evaluations using
TaylUR of f(x) and it first three derivatives. Excellent agreement can be
seen, with the largest relative errors of order 10−14.

As a further test, a comparison was run between TaylUR and ADOL-C. The
example powexam included with ADOL-C, which computes the Taylor series
coefficients for the monomial xn, was used as a test case. Complete agreement
between TaylUR and ADOL-C was found. For low orders of n < 10, TaylUR
was about 2-3 times faster than ADOL-C, whereas for larger orders, ADOL-C
began to take over quickly. As a further comparison point, the speelpenning
example program, which computes the function value and gradient of the
product Πn−1

i=0 xi, was used. Again, agreement (to within floating point accu-
racy) was found between TaylUR and ADOL-C. In this case, TaylUR was
about 5-10 times faster than ADOL-C for all dimensions in the range 2. . .100
tested. These timings suggest that TaylUR is very competitive for relatively
low Taylor expansion orders (less than about 10), but falls behind for higher
orders. The TaylUR versions were the most direct possible translations of the
ADOL-C examples, and the timing tests were run on a 2.8 GHz Intel Pen-
tium 4 using the Intel Fortran compiler and GCC to compile the TaylUR and
ADOL-C versions, respectively.

3 Summary

TaylUR provides a much needed high-order automatic differentiation package
for Fortran 95 that is particularly useful for expansion of Feynman diagrams
in external momenta or particle masses, but is expected to be applicable to
other fields of computational physics as well.
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Test Run Output

To verify that the TaylUR package has been installed and compiled correctly,
the user should build the included verification program by performing a make

verify in the installation directory. When run, ./verify should produce the
following output:

Taylor eval. Analytic eval. Error

0.333333333333 0.333333333333 0.000000000000E+00

-0.888888888889 -0.888888888889 0.000000000000E+00

1.185185185185 1.185185185185 0.000000000000E+00

-2.370370370370 -2.370370370370 0.000000000000E+00

6.320987654321 6.320987654321 0.000000000000E+00

-21.069958847737 -21.069958847737 0.355271367880E-14

84.279835390946 84.279835390947 0.142108547152E-13

The less significant digits and errors may depend on the specific floating-
point implementation of the system used, but the two columns headed Taylor

eval. and Analytic eval. should agree to the accuracy shown (in double
precision arithmetic).

If this verification passes, a number of additional tests can be performed by
performing make test and running ./test, which should print

All tests passed!

Any other output, in particular complaints about failed tests, is indicative of
a compilation error or a problem with the floating-point system used, such as
a lack of precision in the results of some of the intrinsic functions.
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