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Within a systematic approach based on the dimensionallylagged nonrelativistic quantum electrodynam-
ics, we derive the complete result for the two-loop cormctio order(o/7)?(Z )* for the g factor of an
electron bound in ansS state of a hydrogenlike ion. The results obtained signiflgamprove the accuracy of
the theoretical predictions for the hydrogenlike carbod axygen ions and influence the value of the electron
mass inferred frong factor measurements.
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I. INTRODUCTION In order to match the experimental precision achieved; vari
ous binding and QED corrections to the bound-electréac-

The g factor of a bound electron is the coupling constant© have to be calculated. It has been found long ago [6] that

of the spin to an external, homogeneous magnetic field. I & relativistic (Dirac) theory, the factor of a bound elec-
natural unitsi = ¢ = £o = 1, it is defined by the relation tron differs from the valug = 2 due to the so-called binding

corrections. For an.S state, they are given by
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whered E is the energy shift of the electron due to the interac- 9~ =3 (1 +2—

tion V\_/lth the magneuc fieldB, m is the mass of the (_eltictlon, 2 (Za)? 1 2\ (Za)t

ande is the physical electron charge £ 0). The matrixs - B =2- 3 + 55,73 = T

contains the Pauli spin matric&sand has eigenvalueis| B|. " "

Studies of the free-electranfactor play an important role

in modern physics. Together with the discovery of the Lam.t\NhereE is the Dirac energy. Other corrections to the bound-

shift in hydrogen, the observation of the electron magnet'%lectrong factor arise from the QED theory. They were the
moment anomaly led to the development of quantum electrog e ot of extensive theoretical investigations durirg fest

dynamics (QED). _After decades of intensive thepretical aN%ecade. Accurate calculations of the one-loop self-energy
experimental studies, the free-electrpfactor provides one = [ [q 1b[1h], vacuum-polarization [€,[9 12] 13], nuclea
.Of the most accurate and stringent tests of Q.E:.D [11' With th ecoil [14, 15 16], and nuclear-polarizability '17] coctmns
increased experimental and theoretical precision, it 156 peen carried out. Detailgdfactor investigations have

yields the anOSt accurate determination of the fine-strectury oo, nerformed also for other systems that could be of experi
constanty [2]. mental interest in the near future, in particular, for lkieiions

It has not been until recently that investigations of the[g] and hydrogenlike ions with a non-zero nuclear shim [19]
boundelectrong factor came into prominence. As was

demonstrated in RefL|[3], the theoretical value of the beund The subject of this work is the two-loop QED correction,
electrong factor can be used for the determination of the masgvhich is presently the main source of the uncertainty of the-
of the electron when combined with an experimental value fooretical predictions for the factor of hydrogenlike ions. We
the ratio of the electronic Larmor precession frequencand  present a complete calculation of this correction up to the o
the cyclotron frequency of the ion in the trap, der of (a/m)? (Z a)*. This two-loop correction has already
been addressed to in our former worki[20], where an incom-
le] we 5 plete calculation using a photon-mass regularization wes p
q wr’ (2) sented and an estimate for the total contribution up to the or
der (a/7)? (Z )* was obtained. The present computational
whereq is the charge of the ion and,,,, is its mass. The ac- method is based on the dimensionally-regularized nonrela-
curacy of the best experimental results for light hydrotdeen! tivistic quantum electrodynamics (NRQED), which is a rel-
ions [4,15] is already below the 1 part per billion level and is atively new and very powerful approach for the calculatibn o
likely to be improved in the future. According to the recent higher-order relativistic and radiative effects. It hasatly
adjustment of fundamental constanis [2], these measuttemerbeen successfully applied to several challenging prohlems
provide the most accurate method for the determinationeof the.g., to the calculation of the positronium hyperfine split-
electron mass. ting [21] and the ground-state energy of the helium atorn.[22]
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II. DIMENSIONALLY REGULARIZED NRQED form factorsF; and 5 (see, e.g., Ch. 7 of [23])

As is customary in dimensionally regularized QED, we here H=a- {ﬁ— e F1(V?) /q +Bm+eFi(V?) A
assume that the dimension of the space-timRis- 4 — 2 ¢,

and that of the spacé= 3 — 2. The parameter is consid- (V) = (W BBy Bij) . (10
ered as small, but only on the level of matrix elements, where 2m 2
an analytic continuation to a noninteger spatial dimengon where
allowed. g o o
Let us briefly discuss the extension of the basic formulas BY = V'Al -V A", (11)
of NRQED to the case of an arbitrary number of dimensions. i i[ i 9] (12)
The momentum-space representation of the photon propaga- = Tl
tor preserves its form, namedy,, /k*. The Coulomb interac- ) ] ) }
tion is [21] We use three-dimensional notations here, nariély= 0; =
0/0x*. Formulas for the electromagnetic form factdrs,
) Ak R can be found in Appendix A.
V(r)=-Ze /W NTn Having the Foldy-Wouthuysen transformation defined by
the operatof5 (see Ref.[[24], and = F»(0))
B Z e? ( )81"(1—25)  Z.a @)
- 4qmrl-2e rl—e) | ri-2e’ i L. 1 o w3
52—2— Ba-w—3 5 B(a-7)
where the latter representation provides an implicit dédini mn mn
of Z., and we have used the formula for the surface area of a +e(1 + ) ia-F_° ”2 @7 % Bij]} . (13)
d-dimensional unit sphere 2m 8m
9 /2 the new Hamiltonian is obtained via
Qq = (/2 (5) . .
H =% (H—id)e® (14a)
The nonrelativistic Hamiltonian of the hydrogenic systam i and takes the form
2
_pP° _ Zea 72 . o
Ho=o— — 557 ®) g e FL(0) A0 — - (14 k) 0¥ B
2m 4m
The operatorp’? is well defined in any integer dimension. _ i __% 149 V. .F 4o [E }
If we restrict our consideration to the spherically symrgetr 8m3  8m? (1+2x) +oV{E, )
statesp'? can be continued to an arbitrary real dimension by + s [(1+ &) p? 0 BY + 25 p* o™ B pJ]
m
1 0 0 € i (D2 i ]
q2=—ﬁ57°d_15- (7) Y [F'1(0) +2 F'3(0)] o {VZE", 7/} + ...,

14b
In the following, we will not need the explicit (unknown) for (140)
of the solution of the Schrodinger equationdrdimensions.  where by dots we denote the omitted higher-order terms,
It will be sufficient to use instead its scaling propertiebjeh ~ {X,Y} = XY +Y X, ando™ = [0?, 07]/(21). The Hamil-
we obtain by introducing the dimensionless radial varigble tonianH’ is a generalization of the Foldy-Wouthuysen Hamil-
tonian Hpyy [24] to an arbitrary number of dimensions. The
p=(ma) ey (8)  electromagneticfield if’ is the sum of the external Coulomb
field, the external (constant) magnetic field, and a slowtyva
In atomic units, i.e. expressed as a function of the dimemnsio ing field of the radiation. For practical calculations, ini®re

lessp, the Schrodinger Hamiltonian takes the form convenient to have a Hamiltonian expressed in terms of the
Y gauge-independent field strengths. To achieve this, we sep-
Hy = a7 mimse (P_p _ Ze > ©) arate out the Coulomb field and perform the Power-Zienau

2 pl-2e transformation of the HamiltoniaH’ with the operators” of

o . - theform [24]
We now turn to relativistic corrections to the Schrodinger

Hamiltonian in an arbitrary number of dimensions. These cor
rections can be obtained from the Dirac Hamiltonian by the
Foldy-Wouthuysen transformation. In order to incorpoiate
part of radiative effects right from the beginning, we use anAfter neglecting irrelevant spin-independent terms, thag-
effective Dirac Hamiltonian modified by the electromagoeti formed Hamiltonian becomes

1
S = —e/ dur- A(ur,t). (15)
0
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Here, L = rip/ —rJpi andB, = V¥B. H" is the gen-  Hamiltonian [ID) leads to the following energy shift linésar
eralization of the Power-Zienau Hamiltoni@hyz [24] to an  the magnetic fieldd = 3)
arbitrary number of dimensions.
The HamiltonianH” includes most of the radiative cor-  §E, 4, = <—F2(1)(0) £ 3%, §>
rections that are needed for our calculation, but not all of ) 2m
them. First, the highe_r-orderterms_with the_z an_omglous mag- 4 o <F2(1)(0) 27' B 1 (—e)d- g> . Q9)
netic moment are omitted iff”’. This contribution is more 2 (E—-H)
conveniently calculated with the exact Dirac-Coulomb wave
functions, starting directly from the Hamiltonia J10). rFu whered = (B x 7)/2, and we denote the one-loop com-
thermore, there is an additional correction that cannotdse a ponents of the form factors by the corresponding supetscrip
counted for by the; and F, form factors. It is represented The corresponding correction to thdactor is
by an effective local operator that is quadratic in the field
strengths. This operator is derived separately by evaigati (1) 2F(1)( 0) [1+ (Z)? N (§_i) (z 04)4] (20)
o . ; 9 .
a low-energy limit of the electron scattering amplitudetb 6n? 2 24n n3
Coulomb and the magnetic fields. Details of this calculation

are presented in Appendix B. The result is In obtaining this result, we used the_ closed-form ex_pressio
[25, 126] for the component of the Dirac wave function per-
e2 P . P turbed by the magnetic interaction, which has the same rela-
0H = o 20 B*VIE"n+0YBYV*EF €], (17)  tivistic angular momentum, as the reference state.

For the remaining part of the form-factor contribution, we
whereB = const,E is an arbitrary electric field, and the func- employ the transformed Hamiltonia {16). The last term of
tionsn and¢ are given by Eqs[{B16) and{Bl17), respectively. this Hamiltonian

~803 [F'1(0) + 2 F'5(0)] 0 V{47 Z a6%(r)] B ¥

I11. ONE-LOOP SELF-ENERGY CORRECTION (21)
gives rise to a contribution

The dimensionally regularized NRQED approach formu- ) ,(1) (1) J
lated in the previous section will be first employed for a 918 = —[F'770)+2F570))dr Zad(r)). (22)
derivation of the self-energy correction to ordey/ =) (Z a)*
for the bound-electrop factor. This derivation will serve us
as a test of the new approach (as this result has been already
obtained in our previous work [20]) and also as a basis for the 2 <F’§1)(0) 47 Z add(r)
two-loop calculation.

The second-order correction to the energy

As in [20], we separate the one-loop self-energy correction y|elds (23)

up to the order ofa/7) (Z «)?* into three parts,
W —23-8)FN0) (drZadi(r)). (24
gV = gV 4 gl 4 o) (18) g1c =2( ) E'7(0) ¢ (r)) (24)
The other second-order correction to the energy

where the first part is the the contribution due to the free-
electron form factord” and I, the second part is the con- (1) 9 1 e V’ i 1d gk
tribution induced by the additional Hamiltonig@17), ahe t 2 (F(0) ViV (Fo — Hy) Vgm0’ B ),
third part is the contribution coming from low-energy phugo (25)

i.e. a Bethe-logarithm type contribution. gives

We start with the form-factor parg%l). The anoma-
lous magnetic momerft,(0) in the modified Dirac-Coulomb g% =—(1—-4¢) F’gl)(o) (Am Zadl(r)).  (26)
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The total form-factor contribution is where byd4(...) we denote the first-order correction to the
) ) ) ) ) matrix element induced by the perturbing Hamiltondey¥7 .
91" = Giathst9ictdhp- (27)  This matrix element is calculated using the scaling prégert

- _ of the Schrodinger Hamiltonian given by ERl (9), and the cor
The second part of EGLT1L8), denoted y’, is a high-  responding correction to thefactor is found to be
energy correction that is not accounted for by the form facto

Itis given by the effective Hamiltoniab{IL7), withi being the g&) _al (47 Z as%(r))
electric Coulomb field. The corresponding correction to¢he T 3e y
i Z 8 8 100
factor is - % ( n?;) 5 In(Z a)? + 3 Inko+—=1 . (34)
O 4 (20 4 ™) (47 2 as(r) - teraction wi :
d e second correction to the interaction with the magnetic
92 g Th d tion to the interact th th t
w/2 19 field is [sixth term in Eq.[(T6)]
== (9—+§> (A7 Z a6 (r)), (28) . v
T c 5BH:—8 Q—Gijerikrk
m T
wheren™) and¢™) are the one-loop components of the coef- d—9 e I
ficient functions given below in Eq{_{BIL6) afd (B17). =g gV BY, (35)

The third part of Eq.[(JI8) is a low-energy contribution that )
can be considered as a correction to the Bethe logarithm duhere the last part of the equation holds only for S-states. T
to the interaction with an external magnetic field. Let ug firs COrresponding contribution to thefactor is

derive the Bethe-logarithm correction to the hydrogen Lamb ) a 2 J
shift within the dimensional regularization. The correatio 93p = —— gz U Zadi(r))
the energy is 4
Z 1 1 4
, Lol 2‘) —61n(za)2+—61nk0+6—] . (36)
SE 2/ Ak 5ii <p1 1 P > T n 9 9 27
—e R — e
. (2m)d2k " \m Ey—k— Ho m The third correction is due to the coupling with the radiatio
) dek iio /] 1 . field, [seventh term in EqL{16)],
(2m)?2k Eo—k — Ho 5 H e? ij pi gik .k 7B —eo' BY
(@9) o =g50 =l ][m}

o 37)
i fe : o _ _ _ (
Hered; = 6" —k* k7 /k is the transverse delta function, and Here, the last expression is obtainedbgimensional angular

ke = |k|. After performing the integration ovérand dropping  averaging. The corresponding energy shift is written as
a common overall factor dit ) T'(1 + ¢), 6 E, becomes

—ec' BY
55, 0 L (nZa ') bor =2 | ST |
LT 6e m2 ) dek 12 1 ,
4 xe' | ——=— 02k (r' =——— 7). (38
+mg(zz) {l—o—éln(Zoz)Q]—élnko], /(27T)d2k 7 Ey—k—Hy ) @8
T n 9 3 3 T _
(30)  The contribution to thg factor is
where the Bethe logarithin %, is given by gélc) =2 9_15 (47 Z a6%(r))
s
ﬂ - . Za)* [8 8 28
7 (Hy — Eo)In | 2Ho—Eo) | 5 o o4 2,9 _=2
lnk0=< (Ho — Bo)In |25 ) o Sl S mZap + 5 k- 22| (39)

(P'(Ho — Eo) p) Lo ,
_ _ The fourth contribution involves both the correction to the
We now consider all corrections t;, due to the presence coupling with the radiation field and the interaction witte th
of the external magnetic field. The first one is induced by thanagnetic field, [the fourth and the ninth term of Hgl(16)],
correction to the Hamiltonian [the fifth term on the rightrlala e e
side of Eq.[Ib)] opH =———= 0" E'p) — — LY BY (40)
4m?2 4m
2 .
p . (32) and is of the form
m

d%k y
_ 2 1] 1.2
SpE=2e /7(2ﬂ)d2k5;k

ec" BY .

§AH:8

The corresponding energy shift is given by

ik .k

ddk id i 1 . Z; _—eLabBab 1 a’ p
5AE:€2/W5TJ’“Q5A<’°m’”>’ X<TEo—k—Ho Lm Bo—k—Hy dm? /-
(33) (42)
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The corresponding correction to thdactor is pling with the radiation field and the same interaction wfité t
) magnetic field,
(6%
g5p =— 32 (Am Zad'(r))
e e .. ..

Z 2 opH = —— 0" r* B — — LV BY 43
o (Za)! 8 n(za)? + §1k0——0 . (42) E im im TS
T nd 3 9

The fifth contribution is due to another correction to the-cou and is of the form

4 e? dk . 1 e 1 ikotiri
SnE = k2 i |:__Lab Bab:| ) 44
b d /(27r)d2k <T Eo—k—Hy Ll 4m Bo—k— Hy 4m? (44)
The corresponding correction to thdactor is
m_ a4 d a (Z a)* 32 g 136
93p =~ 9€<47TZOé§ (7‘))4—7T 3 5 In(Za)® + = Inko — =7 (45)
The sixth and the last contribution is due to the spin-oriigiaction and the interaction to the magnetic field,
1 v e
H=——+—0¢"YILY - —L"YBY. 46
OF smz 1 4m (46)
This correction involves a more complicated matrix elenveittt three propagators,
d?k y . 1 1 v 1 e . 1 ,
SpE =2 | ——— 64k (+ o LY 7[——13“3“ —_—— ),
F 6/(2w)d2kT <T Eo —k — Hy [8m2 r }Eo—k—Ho im Eo—k—Hy
(47)
|
The corresponding correction to thdactor is in full agreement with the former result in Eq. (12) of
Ref. [20].

1
9ip == o= (4m Zad'(r)

a(Zo) [gln(z) S k3_29—0}, (48)

T nd 3

IV. TWO-LOOP CONTRIBUTION

whereln k3 is implicitly defined by the relation
. The derivation of the two-loop corrections to the bound-
5 /. 1 1 1 A . )
dk k2 (7 - 7 electrong factor is performed in full analogy to the one-
0 Eo—Ho—Fk r® Ey— Ho—k loop calculations. The total two-loop correction of the erd

_. <l> .y (Z a)? [ln ( 26) ' ks}  (a9) (a/7)? (Z a)* can be separated into four parts,

r n3

. . - _ (2) (2) (2) (2)
which holds in the limit of large. 9® =g +9357 T 94 (52)
Finally, the total Bethe-logarithm type contribution t@th

factor is a sum of calculated terms The first partg\® is a form-factor contribution. The sec-
(1) (1) (1) (1)

=g + 9+ gD 4+ gD gDy g (50) ond partgS” is an additional high-energy contribution not ac-
. counted for by the form factors. The third part arises from a
The complete one-loop self-energy correction to the boundeontribution in which one of the two virtual photons is of low

electrong factor is then energy. The second photon effectively modifies the vertex,
1 (Za) (Za)* [32 _2 which can be accounted for by the anomalous magnet_lc mo-
g = 1+ — o2 + — 31n[(Zoz) ] ment. The fourth Contrlbut|0g14 involves the closed fermion
g n loops and is called the vacuum polarization part.
+E _5 §1n ko — §1n k3:| } , (51) We start with the form-factor contribution. The two-loop
54 24n 3 anomalous magnetic moment correction is obtained from the
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corresponding one-loop contribution, EG.1(20) induced by the effective Hamiltoniaiff in Eq. [II), withE
) A being the electric Coulomb field. The corresponding correc-
¢ = 2520) 1+ (Z o) L(3_ 5 (Za)"] tion to theg factor is
14 2 6n2 2 24n) nd

(53) (2) 2 2 d
The one-loop anomalous magnetic moment in the modified2z —4{ 7 N +€® ) (4 Zad(r)

_ AOUS ! d
eD:g;llcs-ﬁ?tulomb Hamiltonian[{10) leads to the following en- i . 5455 . 833 , 31, . 31 )
’ “\Toe o2 T1206" T 9 " 6
— — — 1 ie =3 d
Eip=[FY2{—Css. B~ 5 F x (47 Zad(r)). (62)
Y E 2y NENES Y S - (—e)a-A The third part of Eq.[52) ” is obtained from the formu-
2m (E—H)2m (E—H) las for the one-loop Bethe-logarithm corrections. The aler
ie . 1 | ie - coefficients in these formulas are modified by the presence of
+ <2— y-E E_ay (—e)a-A E—HY 2m - E> the anomalous magnetic momentin accordance with the
) ) corresponding terms in the effective Hamiltonian (16). The
a <—e&-/f> <£?'E 1 i?'ﬁ> resulting corrections to the Hamiltonian describing thierin
2 (BE—-H)?22 action with the magnetic field are given by (for S-states)
ie |, = R 1 ie |, =
-2 <%7E> <(-8)O{Am %7E>} . 6542)H:8€/n::3 I:pQO_lJBz.]_szko,leZ]p]}
&9 @=2] 7
. . . =|k——=| ——=ec” BY, (63a)
The corresponding correction to thdactor is d 8m3
d—2 e L
2 Z o) SPH =2k [ -—= Vo' B 63b
o3 = 2o Zok. ) On H=RA( -~ gE Vet BY ) (63b)
The other contributions due to the two-loop form factors are 6(02)H =[2k] % ol B Bk pk (63c)
immediately obtained from the corresponding one-loop ex- m
pressions in EqsC22[(P4) ardl26) §OH =p2k] (oo By ) - S LU B (63d)
b 4m?2 4m ’
@ — PP 0)+2F(0) (47 Zas? 56 Ty i
91c [ 1 ( ) , 2 ( )]< T4 (7’)>a ( ) 6(EQ)H :[H] (_iaz] Tk Bll_i) _ LLZ] B”, (638)
93 =2(3-8¢) F'P(0) (47 Z as%(r)), (57) 4m v) o 4Am
2 () gy _ V' i i € rij pij
gin=—01-4e) FP(0) (4r Zao'(r)). (68)  Op H=[2n]g—5 —oYL7——LYBY. (63

The second-order corrections involving the slope of the-one,o resulting two-loop corrections to theactor are
loop form factors and the one-loop anomalous magnetic mo-

ment vanish. It becomes clear if we notice that the coupling @) d-2)7
of the anomalous magnetic moment to the magnetic field, as g3A4 = [ T} 934 > (64a)
obtained from the HamiltoniaB{IL6), is ) .
gég = 2&9&5, (64b)
eR 9 i nij k ki pij g
5V:8m3 [p* 0 BY +2p* o™ BY p g§2c) _ 2/@9&10) (64c)
re . 2 1
—2m v o'yl B Tk:| (59) gé[% =2 “9;,1% 3 (64d)
' 957 = Kgip (64e)
and forS-states
957 = 2rg5p. (641)

5V = (60)

d  4m2 2m  rl-2e The total two-loop Bethe-logarithm contribution is

d—2 ek il Bii [ﬁ Zea]'
All other possible two-loop corrections, which involve ene (2 _ (2 (2) (2) (2) (2) (2)

; > . 93" =93a T 935 + 93¢ + 950 + 938 + 957 (69)
loop form-factors, are of higher order in ttiea expansion. 3 84 3B A8 DD Isk T ARk
Therefore, the total form-factor contribution is given et

sum The last part of Eq.ECBZ)gff) involves the vacuum-

polarization correction. The contribution of the diagrams
2 2 2 2 2 2 i i - i -
g§ ) _ 95,4) + g% + gic) + 98 + 9513 . (61) with the closed fermion loop on the self-energy photon_|s ac
counted for by the corresponding parts of the electromagnet

The second part of EQ_{b2) is a high-energy correction thatorm factorsFy, F» andn, £. The two-loop vacuum polar-
is not accounted for by the form factors. This contributisn i ization correction can be obtained from the correction due t



Fl’(Q) (0) by the replacement The corresponding contribution to tpdactor is

@) a\’/ 82 1 @ (a1

/ @ (2) (22 2 2) _ (a)" L d

F(0) = v (77) ( a1 4). (66) 9i5 (77) T An Z ad®(r)). (69)
The corresponding contribution to thdactor is The total vacuum-polarization contribution beyond the acie
9 counted for by the form factors angd ¢ is
@ _ _(a) 8 d
9ih = (ﬂ_) a1 AnZad(r)). (67)
97 = gl + 9 (70)

The mixed self-energy and vacuum-polarization correction

can be obtained in a similar way by the replacement Finally, the complete two-loop correction to the bound-

o 1 electrong factor is given by the sum of four parts in EGY52),
£20) = F20)0® = F?(0) = (_E) . (68)  whichyields

2
Za)t (28 258917 4 8 113
g = (g) ﬂ{— In[(Za)™?] + — —Inko— = Inks + — 7°

s n3 9 19440 9 3 810
379 379 1] 98 5 o, 5 , 5
50 " In2+ 60 C(3)+n[ 7798 " Taa” T In2 16<(3)]}' (71)

The numerical values fdn &y andln k3 for the first 75 states ~ which are important from an experimental point of view. For
are two of them, carbon and oxygen, accurate experimental re-
sults are presently available [4, 5], whereas the expettioren
Inko(LS) = 2.984 128556, lnks(LS) = 3.272806545, oo o1 igplanneﬁ et ta e 327]_ P
(72a) The errors of the point-nucleus Dirac value and of the free
In ko(2S) = 2.811 769 893, Ink3(2S) = 3.546 018 666, part of the one-loop QED correction _indicated in the table
(72b) originate from the uncertainty of the fine-structure consta
a~! = 137.035999 11(46) [2]. The finite-nuclear-size cor-
In ko (3S5) = 2.767 663 612, Ink3(3S) = 3.881 960 979, rection was re-evaluated in this work using the most recent
(72c)  values for the root-mean-square (rms) nuclear radii [28 T
error ascribed to this correction originates both from the u
Inko(45) = 2.749 811 840, Inks(4S) = 4.178 190 961, certainty of the rms radius and from the estimated model de-
(72d) pendence for the nuclear-charge distribution.
The one-loop QED correction up to the order(@fa)? is
Inko(55) = 2.740 823 727, Inks(5S5) = 4.433 243 55782 , given by the sum of the self-energy part [EE]((Sl)])an d the
(72€) vacuum-polarization parit [29],

In ko (65) = 2.735 664 206, In ks(65) = 4.654 608 237, . y
(72) M=z (-1 73)
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Inko(75) = 2.732429 129, Inks(7S) = 4.849 173 615,
(72g)  Thehigher-order one-loop self-energy correction wasefé
] o _ fromthe results of the all-order numerical calculation, [19)].
The total numerical value of the nonlogarithmic term in For carbon and oxygen, the results presented in the tabke wer
Eq. (Z1) for thelS state is—16.436 842. All terms involving  gptained in Ref[[20] by an extrapolation of the numerical re
th_e closed fe_rmlon Ioop_ cor_1tnbut_ei_3.27_8 177 to this result,  gts [10] forZ > 8, after subtracting the known terms of
with the dominant contribution originating from the twoslp  the 7 expansion. The one-loop vacuum-polarization correc-
vacuum-polarization correcticyﬁ. tion consists of two parts, the electric-loop contributtbat
is due to the vacuum-polarization insertion into the etattr
line and the magnetic-loop contribution, which correspond
V. RESULTSAND DISCUSSION to the insertion of the vacuum-polarization loop into the in
teraction with the external magnetic field. The values fer th
In Tablell, we collect all contributions available for thg higher-order electric-loop contribution presented in thigle
bound-electrory factor in three specific hydrogenlike ions were inferred from the all-order numerical results of R&€l]|



TABLE I[: Individual contributions to thels bound-electrory factor. The abbreviations used are as follows: “h.0.” stand
for a higher-order contribution, “SE” — for the self-energgrrection, “VP-EL" — for the electric-loop vacuum-polzation
correction, “VP-ML" — for the magnetic-loop vacuum-polzation correction, “TW" indicates the results obtainedhis work.
(r?)1/2 is the root-mean-square nuclear charge radius.

1205+ lGO7+ 4OCa19+ Ref.
(r2)1/2[fm] 2.4703(22) 2.7013 (55) 3.4764(10) [28]
Dirac value (point nucleus) 1.998 721 354 39 (1) 1.997 726 003 06 (2) 1.9857232037 (1)
Finite nuclear size 0.000 000 000 41 0.000 000 001 55 (1) 0.0000001130 (1)
1-loop QED (Z a)® 0.002 32281947 (1) 0.002 322 81947 (1) 0.0023228195
(Z a)? 0.000 000 742 16 0.000 001 319 40 0.000 008 246 2 [31]
(Z a)* 0.000 000 093 42 0.000 000 240 07 0.000 002510 6 [20]
h.o., SE 0.000 000 008 28 0.000 000 034 43 (1) 0.000003 107 7 (2) [10]+[20]
h.o., VP-EL 0.000 000 000 56 0.000 000 002 24 0.0000001727 [30]
h.o., VP-ML 0.000 000 000 04 0.000 000 000 16 0.000 000 014 6 [13]
>2-loop QED (Z a)® —0.000003 515 10 —0.000003 515 10 —0.000003 5151 2]
(Z a)? —0.000 000 001 12 —0.000 000 002 00 —0.000 0000125 [31]
(Z a)* 0.000 000 000 06 0.000 000 000 08 —0.000 0000109 ™
h.o. 0.000 000 000 00 (3) 0.000 000 000 00 (11) 0.000 000 000 0 (100)
Recoil m/M 0.000 000 087 70 0.000 000 11707 0.000 000 297 3 [16]
h.o. —0.000 000 000 08 —0.000 000 000 10 —0.000 000 000 3 [15]
Total 2.001 041 590 18 (3) 2.000 047 020 32 (11) 1.988 056 946 6 (100)

whereas the magnetic-loop contribution was taken from thé¢he bound-electrol factor in calcium is performed on the

recent evaluation [13]. same level of accuracy as for carbon, namely?, a com-
The (Z a)° and (Z «)? parts of the two- and more-loop parison of the theoretical and experimental results wolild a

QED correction comprise the two-, three-, and four-loop-con low one to identify the contribution of the non-perturbat{in

tributions to the free-electrom factor, multiplied by a kine- 7 «) two-loop QED effects with a 10% accuracy.

matic factor of the electron [31]. TheZ a)* part of the two-

loop QED contribution was derived in the present work. Thefo

uncertainty due to higher-order two-loop contributionswa-

The comparison of the theoretical and experimental results
r the 1.5 bound-electrorny factor in carbon and oxygen
yields the presently most accurate method for determinatio

timated as of the electron massl[2]. Based on the theoretjdalktor val-
@ ) gD[(Z a)?] ues presented in Tablk I, we obtain the following values for
Iho. = 2o, O(Za)]’ (74)  the electron mass derived from the experiments on catbon [4]

and oxygenl]5] (in atomic mass units):

Whereg}(ﬁ_ is then-loop higher-order QED contribution and

g™ |[(Z a)?] is then-loop (Z a)?> QED contribution. m(*2C5T) = 0.00054857990932(29),  (75)
The nuclear recoil correction to first order in the mass ratio m(*07+) = 0.000548 579909 60 (41). (76)
m/M but to all order inZ o was calculated in Refs. [14.,]16].
The leading recoil corrections to order./M)? andam/M
were derived in Refs|[32, B3] for a nuclear spin= 1/2and  The uncertainty of these results originates from the experi
recently generalized for an arbitrary nuclear spin in RE3]]  mental value for the ratio of the electronic Larmor precassi
Based on the data presented in Téble |, we conclude that ofitequency and the cyclotron frequency of the ion in the trap;
evaluation of the one- and two-loop QED corrections to ordethe uncertainty due to the theoretical prediction is moeath
(Z a)* improves the accuracy of the theoretical prediction forby an order of magnitude smaller and thus negligible.
carbon by an order of magnitude, as compared to the previous
compilation [10]. The resulting QED contribution to order
(Z a)* turns out to be rather small for carbon and oxygen,
as a result of a cancellation between the logarithmic and the
nonlogarithmic parts of this correction [see Hql(71)]. Ealr
cium, to the contrary, the numerical contribution of the two
loop (Z a)* correction is large and of the same order as the
(Z a)? correction. This indicates that the perturbatie- Valuable discussions with W. Quint are gratefully acknowl-
expansion approach is no longer effective in this regio@ of edged. This work was supported by EU grant No. HPRI-
and a direct all-order numerical evaluation would be highlyCT-2001-50034 and by RFBR grant No. 04-02-17574. C.A.
desirable. acknowledges the support by the Natural Sciences and En-
Itis remarkable that among different sources of the theoretgineering Research Canada. V.A.Y. acknowledges support
ical uncertainty for calcium, the error due to the highedesr by the foundation “Dynasty”. U.D.J. acknowledges support
two-loop QED correction is by far the dominant one. Thisfrom the Deutsche Forschungsgemeinschaft via the Heisen-
means that, if the prospective experimental investigatibn berg program.
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APPENDIX A: ELECTROMAGNETIC FORM FACTORS where the superscript corresponds to the loop order, iteeto
power of. The results for the form factors expanded into
We consider the form factors defined by powers ofg> up tog* read (inD = 4 — 2¢):

= T = AP+ =Bl (5 ) o (8D

whereq is the outgoing photon momentum. The form factors
are expanded in up to second order,

Fi(¢®) = 1+ V() + FP (¢,

B = B (@) + (@), (A2)
|
FO(g?) = %{(f (—é—G—lg—%a>+q4 (—%—ﬁ—%aﬂ, (A3a)
FV () = % B +2 4 (1—12 + 15—2a> +q! <% + %aﬂ , (A3b)
@) = (5) | (T + 1me®), 575 + 3¢ 2 - 1) - ) (A30)
Tt (—1%0 T %C@))Vp by e 1 C(2) 2 Lo ((2) %C(Sﬂ } ,
) - () {(F-xw) -5 3@ mef+ o
| (55— 560) .~ 50~ 3z~ 15 2+ 2+ <]
wot | (T~ 706) om0 ~ e 142 2+ g <) + 32| |- (A3d)

The subscript VP denotes the contribution to the two-loopcedure removes the part that is already accounted for by the
form factors which involves a closed fermion loop. Hamiltonian [I6) and leads to a simple polynomial expressio
for the resulting amplitude.

APPENDIX B: THE LOW-ENERGY LIMIT OF THE v bs
SCATTERING AMPLITUDE q1§ qgé
In this section we describe the evaluation of the low-energy | 1. Feynman diagrams representing the scattering ardpliof

limit of the spin-dependent part of the scattering ampttud  free electron on both the Coulomb and the magnetic fieldeat t
that gives rise to the effective Hamiltonidn117). The smatt tree and the one-loop level.

ing amplitude under consideration is schematically depict

'?1 Fig.O, where thehleftmost graphh IS thed_tree dl‘%gram ‘;Td In order to extract the spin dependent part of the scattering
the remaining graphs represent the tree diagram “dresse thmplitude, we construct the projection operator. Let u$ firs
a se_If—_energy photon. The_two—loop diagrams are not ShOYVEonsider a general non-relativistic operafr

explicitly; they can be obtained from the one-photon ones in

a standard way. Each graph contains two interactions with _ o i i

the external field, one of which is the interaction with the ho @=Q + Q. (B1)
mogeneous magnetic field (& vertex) and the other is the 144 spin-dependent part 6f can be retrieved by the follow-
interaction with the Coulomb field of the nucleus+& ver- ing projection operator:

tex). From the one- and two-loop scattering amplitudes we

additionally subtract a tree amplitude with the verticeslino ] .

fied by the electromagnetic form factafs and F». This pro- Q' =5 TrQa]. (B2)
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In d dimensions, the nonrelativistic expansion of the Hamil-The other one- and two-loop contributions are obtainedén th
tonian involvess” = [0*,07]/(21). The extension of the analogous way. From the resulting amplitude we subtract the
spin-projection operator to an arbitrary number of dimensi  tree amplitude)’.”” with verticesy* replaced by,

is

Q7 = Qo). B3 Q=
with Q = Q% . We assume here the following properties x Tr (g + 1) T%q1) v T (q2) (# + 1) X¥°
of the trace to hold: 16 bt d2—1
7 1 v
Trio®] = 0, FU DT ) S ) O+ D5
T =2, 1 (B13)
Trfoi ok] = 2 (5t 5L — 5ik 571 (B4)

We now consider the operat@ sandwiched between the
positive-energy solutions of the free Dirac equation ndrma
ized byu v = 1. The following identity holds,

wherel'® is defined in Eq.[{AlL). The final expression for the

total amplitude@*** is obtained by the expansion in small

momentgp; , pr and the subsequent integration over the loop
u(ps, s£) Qu(ps, s1) = Tr[Q u(ps, si) aps, s¢)] - (B5) momenta. The result fap#*? can be written in the form

Since our aim is to calculate the low-energy limit of the am-
litude only, we can use an approximate form4dp, s), 1
p y pp mp ) Qp,l/p — [n ]_‘;Llfp + 5 g;tl/p] , (814)

o(s) 2
u(p, s) ~ ( ) , (B6)

1z.5
20 70s) where the functiong**# andG*** are orthogonal tg} (due
where¢ is a nonrelativistic spinor. Using a replacement thatto the gauge invariance) and antisymmetriezjp. Their ex-

extracts the spin dependence plicit expressions are
O'ij
o(si) o7 (st) = —, (B7)
- 4 Frr = gy (afas — aiay) + a1 - a2 (9"°ar — 9""at)
the projection operator becomes (in uniis= 1) G = @ (g" g5 — g" ) . (B15)
- 1 i _lgijg. 5

ulpi, si) alpr, se) = 4 (i&.ﬁaij _lg.ﬁ? Zug.if )

) 2 o4 ! £ The results for the coefficient functionsand¢ read
~ s (B DS (B + 1) (B8)
Therefore, n=— a2 (2)2 2528 169 ,

N 1 B 47 3¢ 47 81 54 VP
QV=1Tr[(+1DQU+1EY] . (BY) 23,169 5 4 50420 16]
-t 7" - =7 - - =1,
We now turn to the scattering amplitude of the free electron 10~ 120 15 5 3¢
on the Coulomb and magnetic fields. The spin-dependent part (B16)
of this amplitude is written as a 2 aN2[/2674 91 ,
SOOI S
Q = Q'L“/p eAO(ql) eA#(qQ) Oup s (B]_O) 47 3e 47 81 27 VP

whereg; andg, denote the exchange momenta. The ampli- _152 319 5 68 5y o 102 3 + i}
tude corresponding to the tree diagram in Elg. 1 is given by 15 45 5 5 3]’

nvp 1 0 1 i 4 (817)

Y= _—Tr Ny — L+ 1) %Y

0 16 (B + 1) 17514—;12—17(%4_)

1 0 . where the subscript VP denotes the contribution involving
+(#e + 1)7“m7 (i +1)% p} , (B11) 3 closed fermion loop. The effective local opera@rin

Eq. (BI0) becomes
where the momentg;, pr are on the mass shell, and the ex-

change momenta are spatigl,= ¢9 = 0.
) - . ) 1
As an example of one-photon contributions, we give an ex Q= =[nF" +€G""] e Ao(qr) e Au(qz) o,

pression for the rightmost diagram in Fig. 1,
2

— —— [20% B*VIE* 4 0¥ BY V*EF¢] | (B18)

d°k 1 1
wp 2 N 1) ~°
1 0 1 1 : : o
> v A which corresponds to the effective Hamiltonian in Hql (17).
pi— k-1 " pitd—Kk-1" p— k-1
X Yo (#i + 1) Z¥P| + symmetrization . (B12)
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