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Within a systematic approach based on the dimensionally regularized nonrelativistic quantum electrodynam-
ics, we derive the complete result for the two-loop correction to order(α/π)2(Z α)4 for the g factor of an
electron bound in annS state of a hydrogenlike ion. The results obtained significantly improve the accuracy of
the theoretical predictions for the hydrogenlike carbon and oxygen ions and influence the value of the electron
mass inferred fromg factor measurements.
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I. INTRODUCTION

The g factor of a bound electron is the coupling constant
of the spin to an external, homogeneous magnetic field. In
natural units~ = c = ε0 = 1, it is defined by the relation

δE = −
e

2m

〈

~σ · ~B
〉 g

2
, (1)

whereδE is the energy shift of the electron due to the interac-
tion with the magnetic field~B, m is the mass of the electron,
ande is the physical electron charge (e < 0). The matrix~σ · ~B
contains the Pauli spin matrices~σ and has eigenvalues±| ~B|.

Studies of the free-electrong factor play an important role
in modern physics. Together with the discovery of the Lamb
shift in hydrogen, the observation of the electron magnetic
moment anomaly led to the development of quantum electro-
dynamics (QED). After decades of intensive theoretical and
experimental studies, the free-electrong factor provides one
of the most accurate and stringent tests of QED [1]. With the
increased experimental and theoretical precision, it presently
yields the most accurate determination of the fine-structure
constantα [2].

It has not been until recently that investigations of the
bound-electron g factor came into prominence. As was
demonstrated in Ref. [3], the theoretical value of the bound-
electrong factor can be used for the determination of the mass
of the electron when combined with an experimental value for
the ratio of the electronic Larmor precession frequencyωL and
the cyclotron frequency of the ion in the trapωc,

m = mion
g

2

|e|

q

ωc

ωL
, (2)

whereq is the charge of the ion andmion is its mass. The ac-
curacy of the best experimental results for light hydrogenlike
ions [4, 5] is already below the 1 part per billion level and is
likely to be improved in the future. According to the recent
adjustment of fundamental constants [2], these measurements
provide the most accurate method for the determination of the
electron mass.

In order to match the experimental precision achieved, vari-
ous binding and QED corrections to the bound-electrong fac-
tor have to be calculated. It has been found long ago [6] that
in a relativistic (Dirac) theory, theg factor of a bound elec-
tron differs from the valueg = 2 due to the so-called binding
corrections. For annS state, they are given by

g(0) =
2

3

(

1 + 2
E

m

)

= 2−
2

3

(Z α)2

n2
+

(

1

2n
−

2

3

)

(Z α)4

n3
+ . . . , (3)

whereE is the Dirac energy. Other corrections to the bound-
electrong factor arise from the QED theory. They were the
subject of extensive theoretical investigations during the last
decade. Accurate calculations of the one-loop self-energy
[7, 8, 9, 10, 11], vacuum-polarization [8, 9, 12, 13], nuclear-
recoil [14, 15, 16], and nuclear-polarizability [17] corrections
have been carried out. Detailedg factor investigations have
been performed also for other systems that could be of experi-
mental interest in the near future, in particular, for Li-like ions
[18] and hydrogenlike ions with a non-zero nuclear spin [19].

The subject of this work is the two-loop QED correction,
which is presently the main source of the uncertainty of the-
oretical predictions for theg factor of hydrogenlike ions. We
present a complete calculation of this correction up to the or-
der of (α/π)2 (Z α)4. This two-loop correction has already
been addressed to in our former work [20], where an incom-
plete calculation using a photon-mass regularization was pre-
sented and an estimate for the total contribution up to the or-
der (α/π)2 (Z α)4 was obtained. The present computational
method is based on the dimensionally-regularized nonrela-
tivistic quantum electrodynamics (NRQED), which is a rel-
atively new and very powerful approach for the calculation of
higher-order relativistic and radiative effects. It has already
been successfully applied to several challenging problems,
e.g., to the calculation of the positronium hyperfine split-
ting [21] and the ground-state energy of the helium atom [22].

http://arxiv.org/abs/physics/0506227v1
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II. DIMENSIONALLY REGULARIZED NRQED

As is customary in dimensionally regularized QED, we here
assume that the dimension of the space-time isD = 4 − 2 ε,
and that of the spaced = 3 − 2 ε. The parameterε is consid-
ered as small, but only on the level of matrix elements, where
an analytic continuation to a noninteger spatial dimensionis
allowed.

Let us briefly discuss the extension of the basic formulas
of NRQED to the case of an arbitrary number of dimensions.
The momentum-space representation of the photon propaga-
tor preserves its form, namelygµν/k2. The Coulomb interac-
tion is [21]

V (r) = −Z e2
∫

ddk

(2 π)d
ei

~k·~r

k2

= −
Z e2

4 π r1−2 ε

[

(4 π)ε
Γ(1− 2 ε)

Γ(1− ε)

]

≡ −
Zε α

r1−2 ε
, (4)

where the latter representation provides an implicit definition
of Zε, and we have used the formula for the surface area of a
d-dimensional unit sphere

Ωd =
2 πd/2

Γ(d/2)
. (5)

The nonrelativistic Hamiltonian of the hydrogenic system is

H0 =
~p 2

2m
−

Zε α

r1−2 ε
. (6)

The operator~p 2 is well defined in any integer dimension.
If we restrict our consideration to the spherically symmetric
states,~p 2 can be continued to an arbitrary real dimension by

~p 2 = −
1

rd−1

∂

∂r
rd−1 ∂

∂r
. (7)

In the following, we will not need the explicit (unknown) form
of the solution of the Schrödinger equation ind dimensions.
It will be sufficient to use instead its scaling properties, which
we obtain by introducing the dimensionless radial variableρ

ρ = (mα)
1

1+2 ε r . (8)

In atomic units, i.e. expressed as a function of the dimension-
lessρ, the Schrödinger Hamiltonian takes the form

H0 = α
2

1+2 ε m
1−2 ε
1+2 ε

(

~p 2
ρ

2
−

Zε

ρ1−2 ε

)

. (9)

We now turn to relativistic corrections to the Schrödinger
Hamiltonian in an arbitrary number of dimensions. These cor-
rections can be obtained from the Dirac Hamiltonian by the
Foldy-Wouthuysen transformation. In order to incorporatea
part of radiative effects right from the beginning, we use an
effective Dirac Hamiltonian modified by the electromagnetic

form factorsF1 andF2 (see, e.g., Ch. 7 of [23])

H =~α ·
[

~p− e F1(~∇
2) ~A

]

+ β m+ e F1(~∇
2)A0

+ F2(~∇
2)

e

2m

(

i~γ · ~E −
β

2
Σij Bij

)

, (10)

where

Bij = ∇i Aj −∇j Ai , (11)

Σij =
i

2
[γi, γj ] . (12)

We use three-dimensional notations here, namely∇i ≡ ∂i =
∂/∂xi. Formulas for the electromagnetic form factorsF1,2

can be found in Appendix A.
Having the Foldy-Wouthuysen transformation defined by

the operatorS (see Ref. [24], andκ ≡ F2(0))

S =−
i

2m

{

β ~α · ~π −
1

3m2
β (~α · ~π)3

+
e(1 + κ)

2m
i ~α · ~E −

e κ

8m2
[~α · ~π, β Σij Bij ]

}

, (13)

the new Hamiltonian is obtained via

H ′ = eiS (H − i ∂t) e
−iS (14a)

and takes the form

H ′ =
~π 2

2m
+ e [1 + F ′

1(0) ~∇
2]A0 −

e

4m
(1 + κ)σij Bij

−
~π 4

8m3
−

e

8m2
(1 + 2 κ)

[

~∇ · ~E + σij {Ei, πj}
]

+
e

8m3

[

(1 + κ) p2 σij Bij + 2 κ pk σki Bij pj
]

−
e

8m2
[F ′

1(0) + 2F ′
2(0)]σ

ij {~∇2Ei, πj}+ . . . ,

(14b)

where by dots we denote the omitted higher-order terms,
{X,Y } ≡ X Y +Y X , andσij = [σi, σj ]/(2 i). The Hamil-
tonianH ′ is a generalization of the Foldy-Wouthuysen Hamil-
tonianHFW [24] to an arbitrary number of dimensions. The
electromagnetic field inH ′ is the sum of the external Coulomb
field, the external (constant) magnetic field, and a slowly vary-
ing field of the radiation. For practical calculations, it ismore
convenient to have a Hamiltonian expressed in terms of the
gauge-independent field strengths. To achieve this, we sep-
arate out the Coulomb field and perform the Power-Zienau
transformation of the HamiltonianH ′ with the operatorS′ of
the form [24]

S′ = −e

∫ 1

0

du~r · ~A(u~r, t) . (15)

After neglecting irrelevant spin-independent terms, the trans-
formed Hamiltonian becomes
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H ′′ =
p2

2m
+ V − e~r · ~E +

(1 + 2 κ)

8m2

V ′

r
σij Lij −

e

4m

[

Lij + (1 + κ)σij
]

Bij

+
e

8m3

[

(1 + κ) p2 σij Bij + 2 κ pk σki Bij pj
]

−
e (1 + 2 κ)

8m2

V ′

r
σij rj Bik rk

+
e2 (1 + 2 κ)

8m2
σij Ej Bik rk −

e (1 + κ)

4m
σij rk Bij

,k −
e (1 + 2 k)

4m2
σij Ei pj

+ F ′
1(0) 4 π Z α δd(r) −

e

8m2
[F ′

1(0) + 2F ′
2(0)]σ

ij ∇j [4 π Z α δd(r)]Bik rk . (16)

Here,Lij = ri pj − rj pi andB,k ≡ ∇kB. H ′′ is the gen-
eralization of the Power-Zienau HamiltonianHPZ [24] to an
arbitrary number of dimensions.

The HamiltonianH ′′ includes most of the radiative cor-
rections that are needed for our calculation, but not all of
them. First, the higher-order terms with the anomalous mag-
netic moment are omitted inH ′′. This contribution is more
conveniently calculated with the exact Dirac-Coulomb wave
functions, starting directly from the Hamiltonian (10). Fur-
thermore, there is an additional correction that cannot be ac-
counted for by theF1 andF2 form factors. It is represented
by an effective local operator that is quadratic in the field
strengths. This operator is derived separately by evaluating
a low-energy limit of the electron scattering amplitude offthe
Coulomb and the magnetic fields. Details of this calculation
are presented in Appendix B. The result is

δH =
e2

2m

[

2 σij Bik ∇jEk η + σijBij ∇kEk ξ
]

, (17)

whereB = const,E is an arbitrary electric field, and the func-
tionsη andξ are given by Eqs. (B16) and (B17), respectively.

III. ONE-LOOP SELF-ENERGY CORRECTION

The dimensionally regularized NRQED approach formu-
lated in the previous section will be first employed for a
derivation of the self-energy correction to order(α/π) (Z α)4

for the bound-electrong factor. This derivation will serve us
as a test of the new approach (as this result has been already
obtained in our previous work [20]) and also as a basis for the
two-loop calculation.

As in [20], we separate the one-loop self-energy correction
up to the order of(α/π) (Z α)4 into three parts,

g(1) = g
(1)
1 + g

(1)
2 + g

(1)
3 , (18)

where the first part is the the contribution due to the free-
electron form factorsF1 andF2, the second part is the con-
tribution induced by the additional Hamiltonian (17), and the
third part is the contribution coming from low-energy photons,
i.e. a Bethe-logarithm type contribution.

We start with the form-factor partg(1)1 . The anoma-
lous magnetic momentF2(0) in the modified Dirac-Coulomb

Hamiltonian (10) leads to the following energy shift linearin
the magnetic field (d = 3)

δE1A =
〈

−F
(1)
2 (0)

e

2m
β ~Σ · ~B

〉

+ 2

〈

F
(1)
2 (0)

i e

2m
~γ · ~E

1

(E −H)′
(−e) ~α · ~A

〉

, (19)

where ~A = ( ~B × ~r )/2, and we denote the one-loop com-
ponents of the form factors by the corresponding superscript.
The corresponding correction to theg factor is

g
(1)
1A = 2F

(1)
2 (0)

[

1+
(Z α)2

6n2
+

(

3

2
−

5

24n

)

(Z α)4

n3

]

. (20)

In obtaining this result, we used the closed-form expression
[25, 26] for the component of the Dirac wave function per-
turbed by the magnetic interaction, which has the same rela-
tivistic angular momentum, as the reference state.

For the remaining part of the form-factor contribution, we
employ the transformed Hamiltonian (16). The last term of
this Hamiltonian

−
e

8m2
[F ′

1(0) + 2F ′
2(0)]σ

ij ∇j [4 π Z α δd(r)]Bik rk

(21)
gives rise to a contribution

g
(1)
1B = −[F ′(1)

1 (0) + 2F ′(1)
2 (0)] 〈4 π Z α δd(r)〉 . (22)

The second-order correction to the energy

2

〈

F ′(1)
1 (0) 4 π Z α δd(r)

1

(E0 −H0)′
e

8m3
p2 σij Bij

〉

(23)
yields

g
(1)
1C = 2 (3− 8 ε)F ′(1)

1 (0) 〈4 π Z α δd(r)〉 . (24)

The other second-order correction to the energy

2

〈

F ′(1)
1 (0) ~∇2V

1

(E0 −H0)′
(−1)

e

8m2

V ′

r
σij rj Bik rk

〉

,

(25)
gives

g
(1)
1D = −(1− 4 ε)F ′(1)

1 (0) 〈4 π Z α δd(r)〉 . (26)
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The total form-factor contribution is

g
(1)
1 = g

(1)
1A + g

(1)
1B + g

(1)
1C + g

(1)
1D . (27)

The second part of Eq. (18), denoted byg(1)2 , is a high-
energy correction that is not accounted for by the form factors.
It is given by the effective Hamiltonian (17), withE being the
electric Coulomb field. The corresponding correction to theg
factor is

g
(1)
2 = 4

(

2

d
η(1) + ξ(1)

)

〈4 π Z α δd(r)〉

=
α

π

(

2

9 ε
+

19

27

)

〈4 π Z α δd(r)〉 , (28)

whereη(1) andξ(1) are the one-loop components of the coef-
ficient functions given below in Eqs. (B16) and (B17).

The third part of Eq. (18) is a low-energy contribution that
can be considered as a correction to the Bethe logarithm due
to the interaction with an external magnetic field. Let us first
derive the Bethe-logarithm correction to the hydrogen Lamb
shift within the dimensional regularization. The correction to
the energy is

δEL =e2
∫

ddk

(2 π)d 2 k
δijT

〈

pi

m

1

E0 − k −H0

pj

m

〉

=e2
∫

ddk

(2 π)d 2 k
δijT k2

〈

ri
1

E0 − k −H0
rj
〉

.

(29)

Here,δijT = δij−ki kj/k2 is the transverse delta function, and
k = |~k|. After performing the integration overk and dropping
a common overall factor of(4 π)ε Γ(1 + ε), δEL becomes

δEL =
α

π

1

6 ε

〈4 π Z α δd(r)〉

m2

+m
α

π

(Z α)4

n3

[

10

9
−

4

3
ln(Z α)2]−

4

3
ln k0

]

,

(30)

where the Bethe logarithmln k0 is given by

ln k0 =

〈

~p (H0 − E0) ln
[

2 (H0−E0)
m (Z α)2

]

~p
〉

〈~p (H0 − E0) ~p〉
. (31)

We now consider all corrections toδEL due to the presence
of the external magnetic field. The first one is induced by the
correction to the Hamiltonian [the fifth term on the right-hand
side of Eq. (16)]

δAH =
p2

8m3
e σij Bij . (32)

The corresponding energy shift is given by

δAE = e2
∫

ddk

(2 π)d 2 k
δijT k2 δA

〈

ri
1

E0 − k −H0
rj
〉

,

(33)

where byδA〈. . .〉 we denote the first-order correction to the
matrix element induced by the perturbing HamiltonianδAH .
This matrix element is calculated using the scaling properties
of the Schrödinger Hamiltonian given by Eq. (9), and the cor-
responding correction to theg factor is found to be

g
(1)
3A =

α

π

1

3 ε
〈4 π Z α δd(r)〉

−
α

π

(Z α)4

n3

[

8

3
ln(Z α)2 +

8

3
ln k0 +

100

9

]

. (34)

The second correction to the interaction with the magnetic
field is [sixth term in Eq. (16)]

δBH =−
e

8m2

V ′

r
σij rj Bik rk

=−
d− 2

d

e

8m2
V σij Bij , (35)

where the last part of the equation holds only for S-states. The
corresponding contribution to theg factor is

g
(1)
3B = −

α

π

2

9 ε
〈4 π Z α δd(r)〉

+
α

π

(Z α)4

n3

[

16

9
ln(Z α)2 +

16

9
ln k0 +

64

27

]

. (36)

The third correction is due to the coupling with the radiation
field, [seventh term in Eq. (16)],

δCH =
e2

8m2
σij Ej Bik rk = [−e~r · ~E]

[

−e σij Bij

8m2 d

]

.

(37)
Here, the last expression is obtained byd-dimensional angular
averaging. The corresponding energy shift is written as

δCE = 2

[

−e σij Bij

8m2 d

]

× e2
∫

ddk

(2 π)d 2 k
δijT k2

〈

ri
1

E0 − k −H0
rj
〉

. (38)

The contribution to theg factor is

g
(1)
3C =

α

π

1

9 ε
〈4 π Z α δd(r)〉

−
α

π

(Z α)4

n3

[

8

9
ln(Z α)2 +

8

9
ln k0 −

28

27

]

. (39)

The fourth contribution involves both the correction to the
coupling with the radiation field and the interaction with the
magnetic field, [the fourth and the ninth term of Eq. (16)],

δDH = −
e

4m2
σij Ei pj −

e

4m
Lij Bij (40)

and is of the form

δDE = 2 e2
∫

ddk

(2 π)d 2 k
δijT k2

×

〈

ri
1

E0 − k −H0

[

−e

4m
LabBab

]

1

E0 − k −H0

σjk pk

4m2

〉

.

(41)
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The corresponding correction to theg factor is

g
(1)
3D =

α

π

1

3 ε
〈4 π Z α δd(r)〉

−
α

π

(Z α)4

n3

[

8

3
ln(Z α)2 +

8

3
ln k0 −

20

9

]

. (42)

The fifth contribution is due to another correction to the cou-

pling with the radiation field and the same interaction with the
magnetic field,

δEH = −
e

4m
σij rk Bij

,k −
e

4m
Lij Bij , (43)

and is of the form

δEE =
4 e2

d

∫

ddk

(2 π)d 2 k
k2
〈

ri
1

E0 − k −H0

[

−
e

4m
LabBab

] 1

E0 − k −H0

i k σijrj

4m2

〉

. (44)

The corresponding correction to theg factor is

g
(1)
3E = −

α

π

4

9 ε
〈4 π Z α δd(r)〉 +

α

π

(Z α)4

n3

[

32

9
ln(Z α)2 +

32

9
ln k0 −

136

27

]

. (45)

The sixth and the last contribution is due to the spin-orbit interaction and the interaction to the magnetic field,

δFH =
1

8m2

V ′

r
σij Lij −

e

4m
Lij Bij . (46)

This correction involves a more complicated matrix elementwith three propagators,

δFE = 2 e2
∫

ddk

(2 π)d 2 k
δijT k2

〈

ri
1

E0 − k −H0

[

1

8m2

V ′

r
σij Lij

]

1

E0 − k −H0

[

−
e

4m
Lij Bij

] 1

E0 − k −H0
rj
〉

.

(47)

The corresponding correction to theg factor is

g
(1)
3F =

α

π

1

3 ε
〈4 π Z α δd(r)〉

−
α

π

(Z α)4

n3

[

8

3
ln(Z α)2 +

8

3
ln k3 −

20

9

]

, (48)

whereln k3 is implicitly defined by the relation
∫ ǫ

0

dk k2
〈

~r
1

E0 −H0 − k

1

r3
1

E0 −H0 − k
~r

〉

= ǫ

〈

1

r

〉

− 4
(Z α)3

n3

[

ln
2 ǫ

(Z α)2
− ln k3

]

, (49)

which holds in the limit of largeǫ.
Finally, the total Bethe-logarithm type contribution to theg

factor is a sum of calculated terms

g
(1)
3 = g

(1)
3A + g

(1)
3B + g

(1)
3C + g

(1)
3D + g

(1)
3E + g

(1)
3F . (50)

The complete one-loop self-energy correction to the bound-
electrong factor is then

g(1) =
α

π

{

1 +
(Zα)2

6n2
+

(Zα)4

n3

[

32

9
ln[(Zα)−2]

+
73

54
−

5

24n
−

8

9
ln k0 −

8

3
ln k3

]}

, (51)

in full agreement with the former result in Eq. (12) of
Ref. [20].

IV. TWO-LOOP CONTRIBUTION

The derivation of the two-loop corrections to the bound-
electrong factor is performed in full analogy to the one-
loop calculations. The total two-loop correction of the order
(α/π)2 (Z α)4 can be separated into four parts,

g(2) = g
(2)
1 + g

(2)
2 + g

(2)
3 + g

(2)
4 . (52)

The first partg(2)1 is a form-factor contribution. The sec-

ond partg(2)2 is an additional high-energy contribution not ac-
counted for by the form factors. The third part arises from a
contribution in which one of the two virtual photons is of low
energy. The second photon effectively modifies the vertex,
which can be accounted for by the anomalous magnetic mo-
ment. The fourth contributiong(2)4 involves the closed fermion
loops and is called the vacuum polarization part.

We start with the form-factor contribution. The two-loop
anomalous magnetic moment correction is obtained from the
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corresponding one-loop contribution, Eq. (20)

g
(2)
1A = 2F

(2)
2 (0)

[

1 +
(Z α)2

6n2
+

(

3

2
−

5

24n

)

(Z α)4

n3

]

.

(53)
The one-loop anomalous magnetic moment in the modified
Dirac-Coulomb Hamiltonian (10) leads to the following en-
ergy shift,

δE1B = [F
(1)
2 (0)]2

{〈

−e

2m
β ~Σ · ~B

1

(E −H)′
i e

2m
~γ · ~E

〉

+ 2

〈

i e

2m
~γ · ~E

1

(E −H)′
i e

2m
~γ · ~E

1

(E −H)′
(−e) ~α · ~A

〉

+

〈

i e

2m
~γ · ~E

1

(E −H)′
(−e) ~α · ~A

1

(E −H)′
i e

2m
~γ · ~E

〉

−
〈

−e ~α · ~A
〉

〈

i e

2m
~γ · ~E

1

(E −H)′ 2
i e

2m
~γ · ~E

〉

−2

〈

i e

2m
~γ · ~E

〉 〈

(−e) ~α · ~A
1

(E −H)′ 2
i e

2m
~γ · ~E

〉}

.

(54)

The corresponding correction to theg factor is

g
(2)
1B = −

2

3
[F

(1)
2 (0)]2

(Z α)4

n3
. (55)

The other contributions due to the two-loop form factors are
immediately obtained from the corresponding one-loop ex-
pressions in Eqs. (22), (24) and (26)

g
(2)
1C =− [F ′(2)

1 (0) + 2F ′(2)
2 (0)] 〈4 π Z α δd(r)〉 , (56)

g
(2)
1D =2 (3− 8 ε)F ′(2)

1 (0) 〈4 π Z α δd(r)〉 , (57)

g
(2)
1E =− (1 − 4 ε)F ′(2)

1 (0) 〈4 π Z α δd(r)〉 . (58)

The second-order corrections involving the slope of the one-
loop form factors and the one-loop anomalous magnetic mo-
ment vanish. It becomes clear if we notice that the coupling
of the anomalous magnetic moment to the magnetic field, as
obtained from the Hamiltonian (16), is

δV =
e κ

8m3

[

p2 σij Bij + 2 pk σki Bij pj

−2m
V ′

r
σij rj Bik rk

]

(59)

and forS-states

δV =
d− 2

d

e κ

4m2
σij Bij

[

~p 2

2m
−

Zǫ α

r1−2 ǫ

]

. (60)

All other possible two-loop corrections, which involve one-
loop form-factors, are of higher order in theZ α expansion.
Therefore, the total form-factor contribution is given by the
sum

g
(2)
1 = g

(2)
1A + g

(2)
1B + g

(2)
1C + g

(2)
1D + g

(2)
1E . (61)

The second part of Eq. (52) is a high-energy correction that
is not accounted for by the form factors. This contribution is

induced by the effective HamiltonianδH in Eq. (17), withE
being the electric Coulomb field. The corresponding correc-
tion to theg factor is

g
(2)
2 =4

(

2

d
η(2) + ξ(2)

)

〈4 π Z α δd(r)〉

=

(

−
5

9 ε
+

5455

972
+

833

1296
π2 −

31

9
π2 ln 2 +

31

6
ζ(3)

)

× 〈4 π Z α δd(r)〉 . (62)

The third part of Eq. (52)g(2)3 is obtained from the formu-
las for the one-loop Bethe-logarithm corrections. The overall
coefficients in these formulas are modified by the presence of
the anomalous magnetic momentκ, in accordance with the
corresponding terms in the effective Hamiltonian (16). The
resulting corrections to the Hamiltonian describing the inter-
action with the magnetic field are given by (for S-states)

δ
(2)
A H =

e κ

8m3

[

p2 σij Bij + 2 pk σki Bij pj
]

=

[

κ
(d− 2)

d

]

p2

8m3
e σij Bij , (63a)

δ
(2)
B H =[2 κ]

(

−
d− 2

d

e

8m2
V σij Bij

)

, (63b)

δ
(2)
C H =[2 κ]

e2

8m2
σij Ej Bik rk , (63c)

δ
(2)
D H =[2 κ]

(

−
e

4m2
σij Ei pj

)

−
e

4m
Lij Bij , (63d)

δ
(2)
E H =[κ]

(

−
e

4m
σij rk Bij

,k

)

−
e

4m
Lij Bij , (63e)

δ
(2)
F H =[2 κ]

1

8m2

V ′

r
σij Lij −

e

4m
Lij Bij . (63f)

The resulting two-loop corrections to theg factor are

g
(2)
3A =

[

κ
(d− 2)

d

]

g
(1)
3A , (64a)

g
(2)
3B = 2 κ g

(1)
3B , (64b)

g
(2)
3C = 2 κ g

(1)
3C , (64c)

g
(2)
3D = 2 κ g

(1)
3D , (64d)

g
(2)
3E = κ g

(1)
3E , (64e)

g
(2)
3F = 2 κ g

(1)
3F . (64f)

The total two-loop Bethe-logarithm contribution is

g
(2)
3 = g

(2)
3A + g

(2)
3B + g

(2)
3C + g

(2)
3D + g

(2)
3E + g

(2)
3F . (65)

The last part of Eq. (52)g(2)4 involves the vacuum-
polarization correction. The contribution of the diagrams
with the closed fermion loop on the self-energy photon is ac-
counted for by the corresponding parts of the electromagnetic
form factorsF1, F2 andη, ξ. The two-loop vacuum polar-
ization correction can be obtained from the correction due to
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F
′(2)
1 (0) by the replacement

F
′(2)
1 (0) → v(2) =

(

α

π

)2(

−
82

81
×

1

4

)

. (66)

The corresponding contribution to theg factor is

g
(2)
4A = −

(

α

π

)2
82

81
〈4 π Z α δd(r)〉 . (67)

The mixed self-energy and vacuum-polarization correction
can be obtained in a similar way by the replacement

F
′(2)
2 (0) → F

(2)
2 (0) v(1) = F

(2)
2 (0)

α

π

(

−
1

15

)

. (68)

The corresponding contribution to theg factor is

g
(2)
4B =

(

α

π

)2
1

15
〈4 π Z α δd(r)〉 . (69)

The total vacuum-polarizationcontribution beyond the oneac-
counted for by the form factors andη, ξ is

g
(2)
4 = g

(2)
4A + g

(2)
4B . (70)

Finally, the complete two-loop correction to the bound-
electrong factor is given by the sum of four parts in Eq. (52),
which yields

g(2) =

(

α

π

)2
(Z α)4

n3

{

28

9
ln[(Z α)−2] +

258917

19440
−

4

9
ln k0 −

8

3
ln k3 +

113

810
π2

−
379

90
π2 ln 2 +

379

60
ζ(3) +

1

n

[

−
985

1728
−

5

144
π2 +

5

24
π2 ln 2−

5

16
ζ(3)

]}

. (71)

The numerical values forln k0 andln k3 for the first 7S states
are

ln k0(1S) = 2.984 128 556 , ln k3(1S) = 3.272 806 545 ,
(72a)

ln k0(2S) = 2.811 769 893 , ln k3(2S) = 3.546 018 666 ,
(72b)

ln k0(3S) = 2.767 663 612 , ln k3(3S) = 3.881 960 979 ,
(72c)

ln k0(4S) = 2.749 811 840 , ln k3(4S) = 4.178 190 961 ,
(72d)

ln k0(5S) = 2.740 823 727 , ln k3(5S) = 4.433 243 558 ,
(72e)

ln k0(6S) = 2.735 664 206 , ln k3(6S) = 4.654 608 237 ,
(72f)

ln k0(7S) = 2.732 429 129 , ln k3(7S) = 4.849 173 615 ,
(72g)

The total numerical value of the nonlogarithmic term in
Eq. (71) for the1S state is−16.436 842. All terms involving
the closed fermion loop contribute−3.278 177 to this result,
with the dominant contribution originating from the two-loop
vacuum-polarization correctiong(2)4A .

V. RESULTS AND DISCUSSION

In Table I, we collect all contributions available for the1S
bound-electrong factor in three specific hydrogenlike ions

which are important from an experimental point of view. For
two of them, carbon and oxygen, accurate experimental re-
sults are presently available [4, 5], whereas the experiment on
calcium is planned for the future [27].

The errors of the point-nucleus Dirac value and of the free
part of the one-loop QED correction indicated in the table
originate from the uncertainty of the fine-structure constant,
α−1 = 137.035 999 11(46) [2]. The finite-nuclear-size cor-
rection was re-evaluated in this work using the most recent
values for the root-mean-square (rms) nuclear radii [28]. The
error ascribed to this correction originates both from the un-
certainty of the rms radius and from the estimated model de-
pendence for the nuclear-charge distribution.

The one-loop QED correction up to the order of(Z α)4 is
given by the sum of the self-energy part [Eq. (51)] and the
vacuum-polarization part [29],

g
(1)
VP =

α

π
(Z α)4

(

−
16

15

)

. (73)

The higher-order one-loop self-energy correction was inferred
from the results of the all-order numerical calculation [10, 11].
For carbon and oxygen, the results presented in the table were
obtained in Ref. [20] by an extrapolation of the numerical re-
sults [10] forZ > 8, after subtracting the known terms of
theZα expansion. The one-loop vacuum-polarization correc-
tion consists of two parts, the electric-loop contributionthat
is due to the vacuum-polarization insertion into the electron
line and the magnetic-loop contribution, which corresponds
to the insertion of the vacuum-polarization loop into the in-
teraction with the external magnetic field. The values for the
higher-order electric-loop contribution presented in thetable
were inferred from the all-order numerical results of Ref. [30],
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TABLE I: Individual contributions to the1s bound-electrong factor. The abbreviations used are as follows: “h.o.” stands
for a higher-order contribution, “SE” – for the self-energycorrection, “VP-EL” – for the electric-loop vacuum-polarization
correction, “VP-ML” – for the magnetic-loop vacuum-polarization correction, “TW” indicates the results obtained in this work.
〈r2〉1/2 is the root-mean-square nuclear charge radius.

12C5+ 16O7+ 40Ca19+ Ref.
〈r2〉1/2[fm] 2.4703 (22) 2.7013 (55) 3.4764 (10) [28]
Dirac value (point nucleus) 1.998 721 354 39 (1) 1.997 726 003 06 (2) 1.985 723 203 7 (1)
Finite nuclear size 0.000 000 000 41 0.000 000 001 55 (1) 0.000 000 113 0 (1)
1-loop QED (Z α)0 0.002 322 819 47 (1) 0.002 322 819 47 (1) 0.002 322 819 5

(Z α)2 0.000 000 742 16 0.000 001 319 40 0.000 008 246 2 [31]
(Z α)4 0.000 000 093 42 0.000 000 240 07 0.000 002 510 6 [20]
h.o., SE 0.000 000 008 28 0.000 000 034 43 (1) 0.000 003 107 7 (2) [10]+[20]
h.o., VP-EL 0.000 000 000 56 0.000 000 002 24 0.000 000 172 7 [30]
h.o., VP-ML 0.000 000 000 04 0.000 000 000 16 0.000 000 014 6 [13]

≥2-loop QED (Z α)0 −0.000 003 515 10 −0.000 003 515 10 −0.000 003 515 1 [2]
(Z α)2 −0.000 000 001 12 −0.000 000 002 00 −0.000 000 012 5 [31]
(Z α)4 0.000 000 000 06 0.000 000 000 08 −0.000 000 010 9 TW
h.o. 0.000 000 000 00 (3) 0.000 000 000 00 (11) 0.000 000 000 0 (100)

Recoil m/M 0.000 000 087 70 0.000 000 117 07 0.000 000 297 3 [16]
h.o. −0.000 000 000 08 −0.000 000 000 10 −0.000 000 000 3 [15]

Total 2.001 041 590 18 (3) 2.000 047 020 32 (11) 1.988 056 946 6 (100)

whereas the magnetic-loop contribution was taken from the
recent evaluation [13].

The (Z α)0 and (Z α)2 parts of the two- and more-loop
QED correction comprise the two-, three-, and four-loop con-
tributions to the free-electrong factor, multiplied by a kine-
matic factor of the electron [31]. The(Z α)4 part of the two-
loop QED contribution was derived in the present work. The
uncertainty due to higher-order two-loop contributions was es-
timated as

g
(2)
h.o. = 2 g

(1)
h.o.

g(2)[(Z α)2]

g(1)[(Z α)2]
, (74)

whereg(n)h.o. is then-loop higher-order QED contribution and
g(n)[(Z α)2] is then-loop(Z α)2 QED contribution.

The nuclear recoil correction to first order in the mass ratio
m/M but to all order inZ α was calculated in Refs. [14, 16].
The leading recoil corrections to order(m/M)2 andαm/M
were derived in Refs. [32, 33] for a nuclear spinI = 1/2 and
recently generalized for an arbitrary nuclear spin in Ref. [15].

Based on the data presented in Table I, we conclude that our
evaluation of the one- and two-loop QED corrections to order
(Z α)4 improves the accuracy of the theoretical prediction for
carbon by an order of magnitude, as compared to the previous
compilation [10]. The resulting QED contribution to order
(Z α)4 turns out to be rather small for carbon and oxygen,
as a result of a cancellation between the logarithmic and the
nonlogarithmic parts of this correction [see Eq. (71)]. Forcal-
cium, to the contrary, the numerical contribution of the two-
loop (Z α)4 correction is large and of the same order as the
(Z α)2 correction. This indicates that the perturbativeZ α-
expansion approach is no longer effective in this region ofZ,
and a direct all-order numerical evaluation would be highly
desirable.

It is remarkable that among different sources of the theoret-
ical uncertainty for calcium, the error due to the higher-order
two-loop QED correction is by far the dominant one. This
means that, if the prospective experimental investigationof

the bound-electrong factor in calcium is performed on the
same level of accuracy as for carbon, namely10−9, a com-
parison of the theoretical and experimental results would al-
low one to identify the contribution of the non-perturbative (in
Z α) two-loop QED effects with a 10% accuracy.

The comparison of the theoretical and experimental results
for the 1S bound-electrong factor in carbon and oxygen
yields the presently most accurate method for determination
of the electron mass [2]. Based on the theoreticalg factor val-
ues presented in Table I, we obtain the following values for
the electron mass derived from the experiments on carbon [4]
and oxygen [5] (in atomic mass units):

m(12C5+) = 0.000 548 579 909 32 (29) , (75)

m(16O7+) = 0.000 548 579 909 60 (41) . (76)

The uncertainty of these results originates from the experi-
mental value for the ratio of the electronic Larmor precession
frequency and the cyclotron frequency of the ion in the trap;
the uncertainty due to the theoretical prediction is more than
by an order of magnitude smaller and thus negligible.
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APPENDIX A: ELECTROMAGNETIC FORM FACTORS

We consider the form factors defined by

γµ → Γµ = F1(q
2)γµ +

i

2m
F2(q

2)

(

i

2

)

[q/, γµ] , (A1)

whereq is the outgoing photon momentum. The form factors
are expanded inα up to second order,

F1(q
2) = 1 + F

(1)
1 (q2) + F

(2)
1 (q2) ,

F2(q
2) = F

(1)
2 (q2) + F

(2)
2 (q2), (A2)

where the superscript corresponds to the loop order, i.e. tothe
power ofα. The results for the form factors expanded into
powers ofq2 up toq4 read (inD = 4− 2ε):

F
(1)
1 (q2) =

α

π

[

q2
(

−
1

8
−

1

6ε
−

1

2
ε

)

+ q4
(

−
11

240
−

1

40ε
−

5

48
ε

)]

, (A3a)

F
(1)
2 (q2) =

α

π

[

1

2
+ 2ε+ q2

(

1

12
+

5

12
ε

)

+ q4
(

1

60
+

11

120
ε

)]

, (A3b)

F
(2)
1 (q2) =

(α

π

)2
{

q2
[(

−
1099

1296
+

77

144
ζ(2)

)

VP

−
47

576
+ 3 ζ(2) ln 2−

175

144
ζ(2)−

3

4
ζ(3)

]

(A3c)

+q4
[(

−
491

1440
+

5

24
ζ(2)

)

VP

+
1721

12960
+

1

72 ε2
+

1

48 ε
+

11

10
ζ(2) ln 2−

14731

28800
ζ(2)−

11

40
ζ(3)

]}

,

F
(2)
2 (q2) =

(α

π

)2
{(

119

36
− 2ζ(2)

)

VP

−
31

16
− 3 ζ(2) ln 2 +

5

2
ζ(2) +

3

4
ζ(3)

+q2
[(

311

216
−

7

8
ζ(2)

)

VP

−
77

80
−

1

12 ε
−

23

10
ζ(2) ln 2 +

61

40
ζ(2) +

23

40
ζ(3)

]

+q4
[(

533

1080
−

3

10
ζ(2)

)

VP

−
1637

5040
−

19

720 ε
−

15

14
ζ(2) ln 2 +

689

1050
ζ(2) +

15

56
ζ(3)

]}

. (A3d)

The subscript VP denotes the contribution to the two-loop
form factors which involves a closed fermion loop.

APPENDIX B: THE LOW-ENERGY LIMIT OF THE
SCATTERING AMPLITUDE

In this section we describe the evaluation of the low-energy
limit of the spin-dependent part of the scattering amplitude
that gives rise to the effective Hamiltonian (17). The scatter-
ing amplitude under consideration is schematically depicted
in Fig. 1, where the leftmost graph is the “tree” diagram and
the remaining graphs represent the tree diagram “dressed” by
a self-energy photon. The two-loop diagrams are not shown
explicitly; they can be obtained from the one-photon ones in
a standard way. Each graph contains two interactions with
the external field, one of which is the interaction with the ho-
mogeneous magnetic field (aγi vertex) and the other is the
interaction with the Coulomb field of the nucleus (aγ0 ver-
tex). From the one- and two-loop scattering amplitudes we
additionally subtract a tree amplitude with the vertices modi-
fied by the electromagnetic form factorsF1 andF2. This pro-

cedure removes the part that is already accounted for by the
Hamiltonian (16) and leads to a simple polynomial expression
for the resulting amplitude.

�

pi

q1

pf

q2

����

FIG. 1: Feynman diagrams representing the scattering amplitude of
a free electron on both the Coulomb and the magnetic field, at the
tree and the one-loop level.

In order to extract the spin dependent part of the scattering
amplitude, we construct the projection operator. Let us first
consider a general non-relativistic operatorQ,

Q = Q0 +Qi σi . (B1)

The spin-dependent part ofQ can be retrieved by the follow-
ing projection operator:

Qi =
1

2
Tr[Qσi] . (B2)
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In d dimensions, the nonrelativistic expansion of the Hamil-
tonian involvesσij = [σi , σj ]/(2 i). The extension of the
spin-projection operator to an arbitrary number of dimensions
is

Qij =
1

4
Tr[Qσij ] , (B3)

with Q = Qij σij . We assume here the following properties
of the trace to hold:

Tr[σij ] = 0 ,

Tr[I] = 2 ,

Tr[σij σkl] = 2 (δik δjl − δjk δil) . (B4)

We now consider the operatorQ sandwiched between the
positive-energy solutions of the free Dirac equation normal-
ized byū u = 1. The following identity holds,

ū(pf , sf)Qu(pi, si) = Tr[Qu(pi, si) ū(pf , sf)] . (B5)

Since our aim is to calculate the low-energy limit of the am-
plitude only, we can use an approximate form foru(p, s),

u(p, s) ≈

(

φ(s)

1
2 ~σ · ~pφ(s)

)

, (B6)

whereφ is a nonrelativistic spinor. Using a replacement that
extracts the spin dependence

φ(si)φ
+(sf) →

σij

4
, (B7)

the projection operator becomes (in unitsm = 1)

u(pi, si) ū(pf , sf) →
1

4

(

σij , − 1
2 σ

ij ~σ · ~pf
1
2 ~σ · ~pi σ

ij , − 1
4 ~σ · ~pi σ

ij ~σ · ~pf

)

≈
1

16
(6pi + 1)Σij (6pf + 1) . (B8)

Therefore,

Qij =
1

16
Tr
[

(6pf + 1)Q (6pi + 1)Σij
]

. (B9)

We now turn to the scattering amplitude of the free electron
on the Coulomb and magnetic fields. The spin-dependent part
of this amplitude is written as

Q = Qµνρ eA0(q1) eAµ(q2)σνρ , (B10)

whereq1 andq2 denote the exchange momenta. The ampli-
tude corresponding to the tree diagram in Fig. 1 is given by

Qµνρ
0 =

1

16
Tr

[

(6pf + 1) γ0 1

6pi+ 6q2 − 1
γµ (6pi + 1)Σνρ

+(6pf + 1) γµ 1

6pi+ 6q1 − 1
γ0 (6pi + 1)Σνρ

]

, (B11)

where the momentapi, pf are on the mass shell, and the ex-
change momenta are spatial,q01 = q02 = 0.

As an example of one-photon contributions, we give an ex-
pression for the rightmost diagram in Fig. 1,

Qµνρ
1 = −i e2

∫

dDk

(2 π)D
1

k2
1

16
Tr

[

(6pf + 1) γσ

×
1

6pf− 6k − 1
γ0 1

6pi+ 6q2− 6k − 1
γµ 1

6pi− 6k − 1

× γσ(6pi + 1)Σνρ

]

+ symmetrization . (B12)

The other one- and two-loop contributions are obtained in the
analogous way. From the resulting amplitude we subtract the
tree amplitudeQµνρ

F with verticesγα replaced byΓα,

Qµνρ
F =

1

16
Tr

[

(6pf + 1)Γ0(q1)
1

6pi+ 6q2 − 1
Γµ(q2) (6pi + 1)Σνρ

+(6pf + 1)Γµ(q2)
1

6pi+ 6q1 − 1
Γ0(q1) (6pi + 1)Σνρ

]

,

(B13)

whereΓα is defined in Eq. (A1). The final expression for the
total amplitudeQµνρ is obtained by the expansion in small
momenta~pi , ~pf and the subsequent integration over the loop
momenta. The result forQµνρ can be written in the form

Qµνρ =
1

2
[η Fµνρ + ξ Gµνρ] , (B14)

where the functionsFµνρ andGµνρ are orthogonal toqµ2 (due
to the gauge invariance) and antisymmetric inν, ρ. Their ex-
plicit expressions are

Fµνρ = qµ1 (qρ1q
ν
2 − qν1q

ρ
2) + q1 · q2 (g

µρqν1 − gµνqρ1) ,

Gµνρ = q21 (g
µρqν2 − gµνqρ2) . (B15)

The results for the coefficient functionsη andξ read

η =−
α

4π

2

3ε
+
( α

4π

)2
[(

2528

81
−

169

54
π2

)

VP

−
283

10
+

169

120
π2 −

4

15
π2 ln 2 +

2

5
ζ(3)−

16

3ε

]

,

(B16)

ξ =
α

4π

(

1 +
2

3ε

)

+
( α

4π

)2
[(

2674

81
−

91

27
π2

)

VP

−
152

15
+

319

45
π2 −

68

5
π2 ln 2 +

102

5
ζ(3) +

4

3ε

]

,

(B17)

where the subscript VP denotes the contribution involving
a closed fermion loop. The effective local operatorQ in
Eq. (B10) becomes

Q =
1

2
[η Fµνρ + ξ Gµνρ] eA0(q1) eAµ(q2)σνρ

→
e2

2m

[

2 σij Bik ∇jEk η + σijBij ∇kEk ξ
]

, (B18)

which corresponds to the effective Hamiltonian in Eq. (17).



11

[1] V. W. Hughes and T. Kinoshita, Rev. Mod. Phys.71, 133
(1999).

[2] P. J. Mohr and B. N. Taylor, Rev. Mod. Phys.77, 1 (2005).
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