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Hydrodynamic flow patterns and synchronization of beating cilia
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We calculate the hydrodynamic flow field generated far from a cilium which is attached to a
surface and beats periodically. In the case of two beating cilia, hydrodynamic interactions can lead
to synchronization of the cilia, which are nonlinear oscillators. We present a state diagram where
synchronized states occur as a function of distance of cilia and the relative orientation of their beat.
Synchronized states occur with different relative phases. In addition, asynchronous solutions exist.
Our work could be relevant for the synchronized motion of cilia generating hydrodynamic flows on
the surface of cells.
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Many eucaryotic cells possess cilia, which are motile,
whip-like structures on the cell surface [1, 2]. While cer-
tain cells such as sperm swim using a single cilium (in
this case called flagellum) other cells use several or a large
number of cilia for propulsion in a fluid. Epithelial cells
such as those in the respiratory tract use densely cili-
ated surfaces to transport fluids. Hydrodynamic flows
generated by cilia also play a key role during the mor-
phogenesis of higher organisms. In mammals, the left-
right symmetry of the embryo is broken with the help of
nodal cilia which generate a hydrodynamic flow to one
side which transports signaling molecules and breaks the
symmetry [3, 4, 5]. All these cilia are based on the same
structure, called the axoneme, which is built of a very
regular arrangement of protein filaments called micro-
tubules in a cylindrical geometry. Motility is achieved
by the action of a large number of dynein motor proteins
which generate forces in the cilium while consuming a
chemical fuel. As a consequence, the cilium produces
periodic deformations in three dimensional space.

Cilia in different organisms differ mainly by their
length and their pattern of beating. They typically mea-
sure few micrometers up to a few tens of micrometers in
length and around 150− 300 nm in diameter. While the
beat of sperm tails is typically a planar, sometimes heli-
cal wave, more complex, three dimensional, asymmetric
beating patterns occur typically in cells which propel flu-
ids along surfaces. In this case, the working cycle of a
cilium consists of a fast, upright, effective stroke and a
recovery stroke which brings the cilium more slowly back
to the original position on a path closer to the surface,
see Fig. 1a. Nodal cilia break the left-right symmetry of
developing embryos by generating rotatory motion in a
plane tilted with respect to the surface to which they are
attached [5].

In this letter, we discuss the hydrodynamic flow field
generated by a single cilium which beats in an asymmet-
ric pattern while attached to a surface. While the near
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FIG. 1: a) Beating pattern of a cilium. The effective stroke
and the recovery stroke are different (arrows) and a net flow
is generated. b) Simplified representation of the cilium by a
small sphere, moving on a tilted elliptical trajectory.

field of the hydrodynamic flow depends on the detailed
beating pattern and the whip-like geometry of the cil-
ium, the far field has general features which only depend
on a few parameters characterizing the symmetry of the
beat. Using the flow field generated by a beating cilium,
we study the hydrodynamic interaction between two cilia.
We discuss conditions that lead to synchronization of the
two cilia by hydrodynamic interactions.

Our minimal model of the ciliary beat (Fig. 1b) cap-
tures the essential features and symmetries - the differ-
ence between effective stroke and recovery stroke of whip-
like beating as well as the tilted rotatory motion of nodal
cilia. We replace the cilium by a small sphere of radius a
(essentially describing the center of mass position of the
cilium), which moves on a fixed trajectory in the vicinity
of a planar surface (defined as the plane z = 0). The tra-
jectory of the bead is elliptic, the phase of the oscillation
(the position along the trajectory) is described by an an-
gle φ. The asymmetry of the ciliary beat is reflected in
the fact that the two principal axes (denoted A and B)
are different, and that the ellipse is tilted with respect
to the surface as described by the parameter C. The
position of the sphere is given by

xi = x
0
i + x(φi) =





x0
i

y0i
0



+





A cosφi

B sinφi

D + C cosφi



 (1)
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here, x0
i and y0i describes the position on the surface at

which the cilium is attached. For more detailed descrip-
tions of the ciliary beat see, e.g., refs. [2, 6].
The viscous, over damped fluid around the cilium can

be described by the Stokes equation for the hydrody-
namic flow field v

η∇2
v = ∇P (2)

where the pressure P is a Lagrange multiplier to impose
the constraint of incompressibility, ∇ · v = 0. The far-
field generated by a moving sphere in the vicinity of a
surface can be calculated by studying the solution of the
Stokes equation to a delta-distributed force Fi at position

xi = (xi, yi, zi) which is of the form v(x) = G
↔
(xi,x)Fi.

The tensor G
↔

consists of a stokeslet G
↔

S , which describes
the velocity field around a small isolated particle, and an
image, required to satisfy the no-slip boundary condition
on the surface [7]. The image is located at the particle
position, mirrored over the boundary plane, x̄i = xi −
2ziêz, and consists of an anti-stokeslet, a source-doublet

GD and a stokes-doubletGSD, so thatG
↔
(xi,x) = G

↔
S(x−

xi)−G
↔

S(x− x̄i)+ 2z2iG
↔

D(x− x̄i)− 2ziG
↔

SD(x− x̄i) with

GS
αβ(x) =

1

8πη

(

δαβ
|x|

+
xαxβ

|x|
3

)

(3)

GD
αβ(x) =

1

8πη
(1 − 2δβz)

∂

∂xβ

(

xα

|x|3

)

(4)

GSD
αβ (x) = (1 − 2δβz)

∂

∂xβ

GS
αz(x) . (5)

The leading behavior of G which describes the far-field
(for r ≫ zi, z) can be written as

G
↔
(xi,x) ≈

3

2πη

ziz

r3





cos2 β sinβ cosβ 0
sinβ cosβ sin2 β 0

0 0 0



 (6)

where tanβ = (yi−y)/(xi−x) and r2 = (xi−x)2+(yi−
y)2. For constant height z, G decays as as G ∝ r−3.
We assume that the active mechanism in the cilium

generates a tangential force fi = fit̂i. In a simplified
model, it is a linear function of the velocity vi = vit̂i
described by fi = f0 − κvi. Here, t̂i is a normalized vec-
tor parallel to ti = dxi/dφi. Note that the total force
Fi acting on the sphere is in general not parallel to the
direction of motion since normal forces arise to estab-
lish the constraint which keeps the sphere moving on the
ellipsoidal track. The force Fi thus obeys

t̂i · Fi = f0 − κvi . (7)

This force is balanced by hydrodynamic friction Fi =
γ↔ivi, where the friction matrix is given by [8]

γ
↔

i = γ
↔
(xi) = γ0



I
↔
+

9

16

a

zi





1
1

2







 . (8)

Here γ0 = 6πηa denotes the Stokes friction of a small
sphere with radius a and the second term the corrections
due to proximity of the plane. The force-velocity relation
(7), balanced by the friction force leads to the equation
of motion for the phase of oscillation

dφi

dt
= f0

(

t̂i · γ
↔(xi)ti + κt̂i · ti

)−1
(9)

The resulting motion of the sphere is periodic in time. In
the limit of small radius a, the friction coefficient becomes
independent of the height over the surface and the period

is T = 2π
ω

≃ (κ+γ0)ℓ
f0

, where ℓ denotes the trajectory

length. The phase φ0 of the sphere as a function of time
can be written as

φ0(ωt) = ωt+K sin(ωt) + L sin(2ωt) + . . . (10)

The coefficient L is related to the eccentricity of the el-
lipse (if the particle moves at a constant speed, the pa-
rameter φ has a variable time derivative) and thus de-
pends on the geometry of the trajectory. The coefficient
K ∝ aC/D2, describes variations of the velocity due to
variations of the friction (8) resulting form varying dis-
tance of the particle from the surface.
We can now obtain the hydrodynamic far-field of a

beating cilium v(x, t) = G
↔
(xi(t),x)γ

↔
i(xi(t))vi(t). Av-

eraging over one period, we define the net flow v̄(x) =
1
T

∫ T

0
v(x, t)dt = 1

T

∮

G
↔
(xi,x)γ

↔
i(xi)dxi. It only depends

on the period and the shape of the trajectory, but not
on details in the phase φ0(t). Because the sphere causes
a stronger fluid motion when it is further away from the
surface (during the working stroke) than when it is closer
(recovery stroke), it causes a net fluid flow in y direction.
Examples of flux lines of the time-averaged fluid flow gen-
erated in this way are displayed in Fig. 2. Far from a
sphere moving around the center at x0

i = 0, y0i = 0, the
average velocity field is given by

v̄ =
9πaBC

T

yz

|x|
5





x
y
z



 (11)

Note that it only depends on the sphere radius a, the
period T and the projected area of the trajectory to the
y-z plane, πBC. Corrections to this flow field can be ne-
glected in the far field since they decay at least as O(|x|3)
[9].
We now turn to the case of two beating cilia which in-

teract hydrodynamically. The force F2 the second sphere
exerts on the fluid at position x2 generates hydrodynamic
flows at position x1 and thus influences the force F1 ex-
erted by the first sphere:

F1 = γ↔1

(

v1 −G
↔
(x2,x1)F2

)

(12)

This equation can be used to define the dynamics of mo-
tion of both spheres along their ellipsoidal trajectories
in the following manner. We assume again that each
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FIG. 2: a) Flux lines describing the time averaged fluid flow
generated by a sphere moving on a tilted elliptical path shown
in the x − y plane for z/D = 2 (other parameters: A/D =
0.5, B/D = 1, C/D = 0.5, a/D = 0.1). The curves were
obtained numerically using the flow field based on Eqns. (3)-
(5). b) Same flow field displayed in the y-z plane, for x = 0.
Black lines correspond to low fluid velocity, yellow lines to
high velocity. The dashed lines indicate the projections of
the sphere trajectory.

sphere is driven by a force obeying Eq. (7). Eq. (12)
together with the corresponding equation for F2 then
uniquely determines the tangential velocities of both
spheres vi = t̂i · vi. This allows us to set up the equa-
tions of motion that determine the time derivatives φ̇1

and φ̇2 as functions of φ1 and φ2. The problem of two
coupled phase oscillators is equivalent to the Kuramoto
model [10], a classical model for describing synchroniza-
tion phenomena [11]. Performing numerical solutions to
these dynamic equations, we find that for certain param-
eter values, after long times the motion of both spheres
becomes periodic with the same frequency and the oscil-
lations thus synchronize. A synchronized state is charac-
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FIG. 3: a) Top view of the arrangement of two elliptical tra-
jectories which represent two beating cilia. The distance r and
the angle β are indicated. b) The state diagram as a function
of the distance vector x = x0

2 − x0
1, y = y0

2 − y0
1 , determined

from the numerical solution of the full model equations. Three
different regions are indicated. In the region of asynchronous
beat, two frequencies occur. Two synchronous states can be
distinguished with equal (Sync+) and opposite (Sync−) phase
of both cilia in the limit of large separation r.

terized by the phase lag δ = 〈φ2 − φ1〉, where the brack-
ets denote a time average over one period. Regions of
synchronous states and a region of asynchronous states
are indicated in the state diagram of Fig. 3b. The two
regions of synchronous states correspond to equal and
opposite phases in the limit of infinite separation r. The
values of δ are displayed in Fig. 4 as a function of the
angle β for different distances r = |x0

1 − x
0
2| between the

two cilia. For some intervals of β, no synchronized so-
lution occurs and the spheres rotate in an asynchronous
manner with two different frequencies. Note that even
if both cilia have identical properties, the arrangement
shown in Fig 3a breaks the symmetry and both cilia can
have different preferred frequencies when they interact.

The existence and stability of synchronous states can
be studied analytically. First, using Eq. (12), we find for
large r ≫ a

f0 = t̂1 · (γ
↔(x1) + κI

↔
)v1 − t̂1 · γ

↔(x1)G
↔
(x2,x1)γ

↔(x2)v2

+O

(

f0a
2D4

r6

)

(13)

Here, we have used the fact that for large r ≫ a, the
interactions decay as G ∝ r−3, while the friction terms
scale with the sphere size, γ ∝ a. Using this relation
between the tangential velocities, we can study synchro-
nization. For an isolated sphere, the phase as a function
of time is denoted φ0(t) (10). We denote by φ1(t) the
phase of a sphere 1 when interacting with sphere 2. The
variation ∆T of the oscillation period T of sphere 1 can
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FIG. 4: The phase difference δ between two spheres on elliptic
trajectories in the stable stationary state as a function of their
relative position in polar coordinates (angle β, distance r) ob-
tained by numerical solutions to the full dynamic equations.
In the limit r → ∞ analytic far-field calculations show that
only equal and opposite phases (δ = 0 and ±π, respectively)
occur. For smaller r, nontrivial angles δ occur. Synchronous
states become unstable where the lines end (black dots). Be-
tween these points motion is asynchronous.

then be written as

∆T =

∫ 2π

0

(

1

φ̇1(φ)
−

1

φ̇0(φ)

)

dφ =

∫ T0

0

v0 − v1
v0

dt

≈ −
1

f0

∫ T0

0

t̂1 · γ
↔(x1)G

↔
(x2,x1)γ

↔(x2)t̂2 v2 dt (14)

where the last expression becomes correct in the limit
of large r/a. In this limit, the variation ∆T can be
calculated using the Ansatz x1 = x

0
1 + x(φ0(ωt)) and

x2 = x
0
2+x(φ0(ωt+δ)) resulting in a function ∆T (r, β, δ).

A synchronized steady state exists if the change in pe-
riod due to interactions is the same for both spheres,
i.e., ∆T (r, β, δ) = ∆T (r, β+π,−δ), where we have taken
into account that exchanging both spheres corresponds
to β → β + π and δ → −δ, see Fig. 3a. Further-
more, a synchronized steady state is locally stable if
∂/∂δ[∆T (r, β, δ) − ∆T (r, β + π,−δ)] < 0. In order to
find explicit expressions for ∆T , we perform a system-
atic expansion in the small parameter K. In the limit of
vanishing radius a, the friction matrix γ↔ becomes inde-
pendent of the height z. The velocity of a single sphere
then becomes constant along the trajectory (K = 0). As
a consequence, the corresponding variation ∆T0 of the
period, resulting from Eq. (14), becomes symmetric with
respect to δ → −δ as well as with respect to β → β + π
and the condition that both particles have the same pe-
riod is satisfied trivially, regardless of the phase lag δ. In
order to find nontrivial synchronized states, we have to
go to first order in K where

∆T = ∆Ts − T0
9π2γ0aABCDK

2(γ0 + κ)ℓ2r3
sin 2β sin δ (15)

(∆Ts(δ) ≡ ∆Ts(−δ) represents symmetric terms that are
irrelevant for synchronization). At this order in a and r,
the condition for a stable synchronized steady state is
fulfilled with δ = 0 for 0 < β < π/2 and π < β < 3π/2
and with δ = π for π/2 < β < π and 3π/2 < β < 2π.
This is consistent with our numerical solutions in the
limit of large r, see Fig. 4. For smaller distance r, the
contribution of terms proportional r−4 becomes relevant.
To conclude, we have shown that the hydrodynamic

far field around a periodically beating cilium has generic
properties which do not depend on the detailed beat-
ing pattern. Its main features can thus be generated by
a sphere moving on a tilted elliptical trajectory. This
captures the asymmetry of the ciliary beat. As a con-
sequence, the resulting flow is a time periodic pattern
superimposed on a time-independent net flow. If the
beating cilium is perturbed by external forces, this in-
terferes with the internal force generating process and
affects the instantaneous angular velocity of oscillations.
We capture this effect by a linear relationship between
external force and the velocity v of the sphere. The force
exerted on one cilium by the hydrodynamic flow gener-
ated by the other couples both oscillators. The result-
ing synchronization phenomena depend on the distance
r between cilia but also the parameters a/D and a/C
which characterize the difference of effective and recov-
ery strokes. No synchronization occurs if the motion is
rotationally symmetric or helical [12, 13].
A natural extension of our study is the generalization

to a periodic lattice of cilia attached to a surface. Such
situations correspond to some epithelial cells which gen-
erate fluid flows on their surface and to microorganisms
such as paramecium. In all these cases, the ciliary beat is
organized in metachronal waves which result from hydro-
dynamic and steric interactions between cilia. In different
cells, these waves of ciliary strokes propagate along the
surface in different directions relative to the one defined
by the working stroke [14, 15]. Other examples for hydro-
dynamically stirred surfaces are realized in experiments
where bacteria are attached to a surface by their flag-
ella which are driven by rotatory motors [16]. Each bac-
terium in this system could be represented by a rotating
sphere as in our description. In principle, the synchro-
nization effects between two rotating elements discussed
here could be studied in such experiments. The extension
of our study to many hydrodynamically coupled cilia and
the description of metachronal waves and other collective
modes is left for future work.
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