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Abstract: Analysing an application in liquid film dynamics, a guide for obtaining the 

corresponding constrained functional derivatives for constraints coupling the functional 

variables is given. The use of constrained derivatives makes the proper account for constraints 

possible in time-dependent, nonequilibrium physical theories, with physical equations not 

emerging as Euler-Lagrange equations, which is especially relevant with respect to the 

dynamics of complex liquids. 
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 In many fields of physics, requirement of the conservation of some extensive property 

limits the change of physical variables. If functional derivatives are involved in the equations 

that govern the change of physical variables, an account for the constraints needs to be made 

in functional differentiation. In the case the physical equation emerges as an Euler equation, 

from a variational procedure, determining the physical variable(s) as stationary point(s) of 

some functional ][ρA , the well-known method of Lagrange multipliers gives an appropriate 

tool for the account for a constraint CC =][ρ , giving 
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for the given physical variable )(xρ , where the multiplier µ  is determined by the equation 

itself and the constraint. Some more general treatment of constraints, however, is necessary 

for other cases. For, the introduction of an undetermined "Lagrange" multiplier in itself 

generally only gives the given physical equation enough freedom to be adjustable to be in 

accordance with the constraint but does not fix the solution (the physical solution), allowing a 

range of unphysical solutions. 

 As an example, consider the equations of motion 
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for the height )(xh  and composition )(xφ  (not denoting time-dependence for simplicity) in 

the dynamical model of thin liquid films [1] proposed by Clarke [2] for simultaneous 

dewetting and phase separation in binary mixtures [3], where the two multipliers 1µ  and 2µ  

correspond to the constraints 
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           hNdxxh =∫ )(          (2) 

and 

       Bdxxhx =∫ )()(φ          (3) 

of volume and material conservation, respectively, though 1µ  playing no role in the model 

due to the spatial gradient acting on it. It follows from the form of Eqs.(1) that, irrespective of 

the µ 's, the solution of them automatically satisfies Eqs.(2) and (3), i.e. the equations 
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The role of the µ 's is to adjust the gradient of ],[ φhFT , 
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accordance with the constraints (2) and (3) (only with the proper ]][];[[ ρρµ FC 's the solution 

);( txh  and );( txφ  of Eqs.(1) will be physical). For, the behaviour of ],[ φhFT  only over the 

domain determined by Eqs.(3) and (4) may govern the motion of )(xh  and )(xφ , implying 

that the equations of motion for )(xh  and )(xφ  have to be invariant under the replacement of 

],[ φhFT  with a different functional ],[ φhFT′  that equals ],[ φhFT  over the domain Eqs.(3)-(4) 

(which leads to the K-equality condition on the derivative of ],[ φhFT ; see later). Note that 

2µ , of course, is expressable from Eqs.(1a) and (1b) as e.g. 
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but the proper expression for 2µ  cannot be expressed from Eqs.(1) in that way, contrary to the 

case a physical equation emerges as an Euler equation. The necessity of a modification of 
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φδ  under constraints is directly shown by the case of equilibrium, 

where );( txh  and );( txφ  are constant in time; since, without a modification, Eqs.(1) cannot 

give the Euler-Lagrange equations 
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of equilibrium, stemming from the minimization of the free energy ],[ φhFT  under the 

constraints (2) and (3). 

 Recently, the proper expression for the multiplier µ  in (a general) 
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to account for constraints of the form 
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(with invertible f, which may have an explicit x-dependence as well), where 
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(introducing the concept of constrained derivatives), which gives 
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for linear ][ρC 's, Ldxxxg =∫ )()( ρ . K-conserving differentiation has been extended to treat 

multiple (simultaneous) K-constraints (9) as well [5]. Clarke [2] applied the method of K-
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conserving differentiation in his above model to determine proper µ 's to account for the 

constraints (2) and (3), and verified the obtained µ 's theoretically as well with the help of an 

earlier result in his model [6]. The application of K-conserving differentiation in the case of 

constraints coupling variables of the differentiated functional, like Eq.(3), however, raises 

some questions, which will be answered in the following, giving a general guide for obtaining 

the constrained derivatives needed. 

 Clarke had obtained the proper expressions 
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i.e. the derivatives 

∫∫∫ ′
′

′−








′
′

′−′
′

′−= xd
x
hF

x
B
xxd

x
hF

xxd
xh
hF

xh
Nxh

hF
xh
hF TTT

h

T

K

T

)(
],[

)()(
)(

],[
)(

)(
],[

)(1
)(

],[
)(
],[

δφ
φδ

φφ
δφ

φδ
φ

δ
φδ

δ
φδ

δ
φδ  (13a) 

and 

     ∫ ′
′

′−= xd
x
hFx

B
xh

x
hF

x
hF TT

K

T

)(
],[)()(

)(
],[

)(
],[

δφ
φδ

φ
δφ

φδ
φδ

φδ    (13b) 

(K denoting the constraint (2)-(3) here), for his model via finding the proper decomposition of 

the functional variables [7], 

    
∫ ′′

=
xdxh

N
xhxh h

)(~)(~)(      (14a) 

and 

    

∫ ∫
′

′′′′
′′

=
xd

xdxh
N

xhx

Bxx
h

)(~)(~)(~
)(~)(
φ

φφ  ,   (14b) 



 6

using the conditions [4] that (i) for a )(xKρ  (satisfying the given constraint), the 

decomposition ],~[ Kρρ  should give back )(xKρ , and (ii) )](,~[ xKρρ  should satisfy the 

constraint for any )(~ xρ . The decomposition (14) yields the K-constrained derivatives (13) by 

[4] 
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That procedure can alternatively be viewed [8] as obtaining the constrained derivatives 

through 
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where ( )],[],,[][ φφφρρ hhh KKK =  is the extension 
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of the functional variables from the K-restricted domain, satisfying conditions corresponding 

to the above conditions (i) and (ii). The decomposition, or extension, of )(xh  and )(xφ  

yielding (13) may be considered as applying the constraint (4) to )(xφ  while letting )(xh  

vary free of it (but under (2)). The question immediatelly arises then as whether the 

extension/decomposition corresponding, e.g., to applying (3) also to )(xh , beside (2), is a 

proper extension/decomposition. On the basis of the two conditions (i) and (ii), the following 

extension emerges for that case with the help of the extension [5] obtained for simultaneous 

linear K-constraints: 
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(with )(xσ  an arbitrary function that integrates to zero), giving 
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Other formulae arise as well if the constraint (3) is divided in some proportion between h  and 

φ  (or, as for simultaneous constraints on a single variable, with the transformation in Eq.(18a) 

)()()( xhxxh φ→ , 1)( →xφ  in the integrands, and )(/)()( xxx φσσ →  and BNh ↔ ). 

 Ambiguity emerging from the above conditions (i)-(ii) for a proper extension ][ρρK  

appears even in the case of one functional variable with a single K-constraint, and a third 

condition, degree-zero K-homogeneity (that is, for linear K-constraints, normal degree-zero 

homogeneity), is what makes ][ρρK , that gives the proper 
ρδ

δ

K

, unique [8,5]. (For single K-

constraints, conditions (i) and (iii) alone also yield the proper, unique ][ρρK  [8].) Conditions 

(i) and (ii) in themselves lead to an (ambiguous) derivative that fulfils only the K-equality 

condition (namely, the condition that two functionals that are equal over a K-restricted 

domain should have equal K-conserving derivatives over that domain), and condition (iii) is 

needed to fulfil the other condition for 
ρδ

δ

K

: the K-independence condition, namely, that 



 8

ρδ
δ

K

 has to yield 
δρ
δ  for K-independent functionals. The question is as how condition (iii) 

applies for the present case of a constraint coupling two variables of the same functional. 

First, condition (iii) applies for the extension of the product of the two variables )(xh  and 

)(xφ , yielding the unique 
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-formula has to be valid also for ][ hG φ , with G being a one-variable 

functional. Second, condition (iii) applies for ],[ φφ KK h , since it yields a ]],[,[ φφ KKKT hhF  

that is independent of M in its variable )(xφ , i.e. invariant under changes )(xλφ  of )(xφ  (at a 

fixed )(xhK ), which leave 
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two-variable case can be considered as a single-variable case, with one linear constraint, 

Eq.(3).) Thus, 
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From Eqs.(20) and (21) then it follows that among the possible extensions of )(xhK  that 

satisfy conditions (i) and (ii), Eq.(17a) is the proper one, that is, Eqs.(17) is the full proper 

extension (i.e. Eqs.(14) is the proper decomposition), yielding the K-constrained derivatives 

(13). Note that, of course, condition (iii) applies for ],[ KK hh φ  (with )(xKφ  fixed) as well, but 

does not yield a unique )(xh -dependence, because of the simultaneous constraints on )(xh . 

 Having the constrained derivative formulae for the constraint Eqs.(2) and (3), the 

question naturally arises as how the constrained derivative looks like for a constraint (3) 

alone. In that case, 
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with any n, fulfil Eq.(20) (and satisfy conditions (i) and (ii)), yielding 
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however, ],[ KK hh φ  and ],[ φφ KK h  both cannot fulfil condition (iii), that is, they cannot be 

homogeneous of degree zero simultaneously. That means that no K-constrained derivative 

exists for the case of Eq.(3), which shows the importance of a second constraint on at least 

one of the functional variables. 

 In the case of a normalization-conservation constraint on the second variable as well, 

      φφ Ndxx =∫ )(  ,      (24) 

the treatment [5] of simultaneous constraints on one variable is needed. For that, it is 

important that in the extension (20), an additional term ( )Bxdxhxx −′′′′+ ∫ )()()( φξσ  is also 

allowed, where )(xσ ′  is an arbitrary function that integrates to zero and is homogeneous of 

degree zero in )()( xhxφ , and ξ  is an arbitrary function for which 0)0( =ξ  [5]. (In the case of 

the constraint (2)-(3), that term has no role, as for single constraints either.) Then the proper 

extension is 
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satisfying the three conditions, and giving 
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Note that the two variables can be interchanged in Eq.(26), because of the symmetry of the 

constraints in them, giving a further ambiguity, similarly to the case of two simultaneous 

constraints on a single functional variable [5]. 

 As a further example, the constraints (2), (3), and 

     Tdxxhxx =∫ )()()( φχ  ,      (27) 
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e.g., on three variables ( )(xh , )(xφ , and )(xχ ), can be mentioned. Then the extension 

(homogeneous of degree zero in all the three variables) yielding the corresponding 

constrained functional derivatives is 

    
∫ ′′

=
xdxh

N
xhxhh h

K
)(

)()](,,[ χφ  ,    (28a) 

   

∫ ∫
′

′′′′
′′

=
xd

xdxh
N

xhx

Bxxh
h

K

)(
)()(

)()](,,[
φ

φχφφ  ,   (28b) 

and 

       

∫ ∫
′

′′′′′′
′′′

=
xd

xdxhx
Bxhxx

TxxhK

)()(
)()()(

)()](,,[

φ
φχ

χχφχ  .  (28c) 

 Finally, the simple coupling 
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of two functional variables is worth of consideration. In that case, the extension 
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Here, condition (iii) applies for ),( φh , that is, only a simultaneous change ),( λφλh  has to be 

cancelled in Eq.(30). It is worth pointing out that the formula (31) can be obtained also 

directly from the formula ∫ ′
′
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Ndxx =∫ )(ρ , being valid for the discrete case as well [5], and Eq.(29) being a mixture of the 

continuous and the discrete case of normalization conservation. 

 In summary, a guide for obtaining the corresponding constrained functional 

derivatives for constraints coupling the functional variables, bearing particular relevance with 

respect to the dynamics of complex liquids, has been given, analysing a fluid-dynamical 

application. 
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